Redes de Computadores 1

Prof. Miguel Elias Mitre Campista

http://www.gta.ufrj.br/~miguel

Parte II

Camada Física

Base Teórica para Comunicação de Dados

- Transmissão da informação
 - Nos fios...
 - Usando a variação de alguma propriedade física:
 - Corrente e tensão
 - Variação da propriedade é representada no tempo de forma unívoca
 - Função g(t) do sinal resultante
 - · Sinal é modelado e analisado matematicamente
 - Análise de Fourier

Análise de Fourier

- Modelo matemático que descreve as variações de tensão e corrente a partir de funções
 - Soma de senos e cossenos pode representar qualquer função periódica razoavelmente estável

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n sen(\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

$$a_n = \frac{2}{T} \int_0^T g(t) sen(2\pi n f t) dt$$

$$c = \frac{2}{T} \int_0^T g(t) dt$$

$$b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$
Amplitude do seno

Análise de Fourier

- Modelo matemático que descreve as variações de tensão e corrente a partir de funções
 - Soma de senos e cossenos pode representar qualquer função periódica razoavelmente estável

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n sen(\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

$$a_n = \frac{2}{T} \int_0^T g(t) sen(2\pi n f t) dt \qquad c = \frac{2}{T} \int_0^T g(t) dt$$

$$b_n = \frac{2}{T} \int_{-T}^{T} g(t) \cos(2\pi n f t) dt$$

Amplitude do cosseno

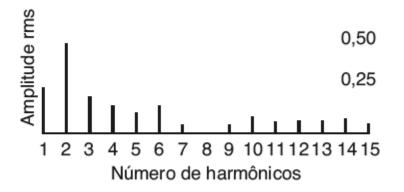
Análise de Fourier

- Modelo matemático que descreve as variações de tensão e corrente a partir de funções
 - Soma de senos e cossenos pode representar qualquer função periódica razoavelmente estável

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n sen(\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

$$a_n = \frac{2}{T} \int_0^T g(t) sen(2\pi n f t) dt$$

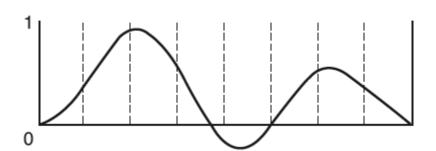
$$b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$

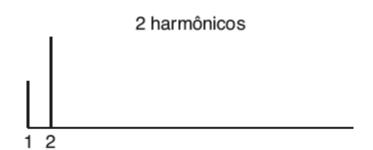

$$c = \frac{2}{T} \int_{-T}^{T} g(t) dt$$

Codificação binária do caractere ASCII 'b'

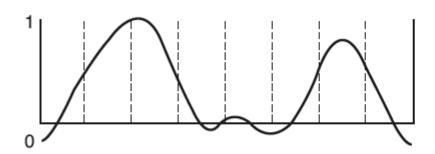
 Raiz quadrada média das amplitudes de Fourier,

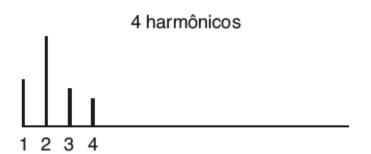
$$\sqrt{a_n^2 + b_n^2}$$



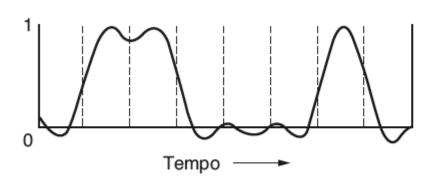

Aproximações sucessivas do sinal original

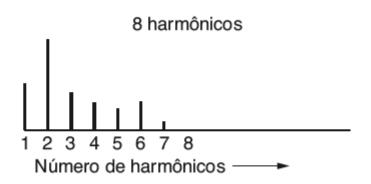
Como seria o sinal se a banda fosse tão estreita que apenas o primeiro harmônico (o fundamental) pudesse passar?


Aproximações sucessivas do sinal original



Como seria o sinal se a banda fosse tão estreita que apenas o primeiro e o segundo harmônicos pudessem passar?


Aproximações sucessivas do sinal original



Como seria o sinal se a banda fosse tão estreita que apenas o os quatros primeiros harmônicos pudessem passar?

Aproximações sucessivas do sinal original

A partir de 8 harmônicos, o sinal digital já poderia ser reconstruído. Portanto, mais harmônicos representariam <u>desperdício de banda passante</u>

- · Nem todas os coeficientes são reduzidos igualmente
 - Caso isso aconteça, o sinal perde apenas amplitude
- · Como consequência, o sinal é distorcido
 - Em geral, para um fio, todas as amplitudes são enviadas sem redução, de zero até uma frequência $f_{\rm c}$ (frequência de corte)

A faixa de frequências sem forte redução é chamada de largura de banda

· Relação entre a taxa de dados e os harmônicos:

$$f = \frac{n.r}{b}$$

f: frequência do canal

r: taxa de transmissão binária

n: número do harmônico

b: número de bits a serem enviados

Bps	T (ms)	Primeiro har- mônico (Hz)	Número de harmônicos enviados
300	26,67	37,5	80
600	13,33	75	40
1.200	6,67	150	20
2.400	3,33	300	10
4.800	1,67	600	5
9.600	0,83	1.200	2
19.200	0,42	2.400	1
38.400	0,21	4.800	0

Para enviar b bits em um canal com taxa binária r, é necessário um intervalo de tempo t=b/r. Portanto, a frequência do primeiro harmônico é f=r/b e para n harmônicos é f=n.r/b

· Relação entre a taxa de dados e os harmônicos:

$$f = \frac{n.r}{b}$$

f: frequência do canal

r: taxa de transmissão binária

n: número do harmônico

b: número de bits a serem enviados

Considerando que uma linha com qualidade de voz tem frequência de corte de 3kHz...

$$n = \frac{f.b}{r} = \frac{3 k.8}{9,6 k} = \frac{24}{9,6} = 2,5$$

Bps	T (ms)	Primeiro har- mônico (Hz)	Número de harmônicos enviados
300	26,67	37,5	80
600	13,33	75	40
1.200	6,67	150	20
2.400	3,33	300	10
4.800	1,67	600	5
9.600	0,83	1.200	2
19.200	0,42	2.400	1
38.400	0,21	4.800	0

$$n = \frac{f.b}{r} = \frac{3 k.8}{38,4 k} = \frac{24}{38,4} = 0,625$$

- Teorema de Nyquist: Até mesmo um canal perfeito tem capacidade de transmissão finita
 - Se um sinal arbitrário atravessar um filtro passa-baixa de largura de banda B, o sinal filtrado pode ser reconstruído a partir de 2B amostras
 - · Amostragens da linha mais rápidas são inúteis, pois as componentes de frequências mais altas já foram filtradas
 - · Se o sinal consistir em V níveis discretos então:

```
taxa máxima de dados = 2.B.log <sub>2</sub> V bits/s
```

Um canal de 3kHz sem ruído poderia transmitir sinais binários (V=2) a uma taxa maior que 6kb/s?

- Teorema de Nyquist: Até mesmo um canal perfeito tem capacidade de transmissão finita
 - Se um sinal arbitrário atravessar um filtro passa-baixa de largura de banda B, o sinal filtrado pode ser reconstruído a partir de 2B amostras
 - Amostragens da linha mais rápidas são inúteis, pois as componentes de frequências mais altas já foram filtradas
 - · Se o sinal consistir em V níveis discretos então:

```
taxa máxima de dados = 2.B.log <sub>2</sub> V bits/s
```

Um canal de 3kHz sem ruído poderia transmitir sinais binários (V=2) a uma taxa maior que 6kb/s?
Não, pois taxa máxima de dados = 2.3k.log₂2 = 6k bits/s

- · Com ruído, a situação se degrada mais rapidamente...
 - Ruído aleatório (térmico) sempre existe devido à movimentação das moléculas no sistema
- · Equação de Shannon e a relação sinal-ruído
 - Considerando:
 - · 5: Potência do sinal
 - · N: Potência do ruído
 - · B: Largura de banda

taxa máxima de dados = B.log ₂ (1 + S/N) bits/s

- · Com ruído, a situação se degrada mais rapidamente...
 - Ruído aleatório (térmico) sempre existe devido à movimentação das moléculas no sistema
- · Equação de Shannon e a relação sinal-ruído
 - Considerando:
 - · S: Potência do sinal
 - · N: Potência do ruído
 - · B: Largura de banda

Relação S/N é dada normalmente em decibéis. Portanto, 10.log₁₀S/N=S_d/N_d dB

taxa máxima de dados = $B.\log_{2}(1 + S/N)$ bits/s

- · Com ruído, a situação se degrada mais rapidamente...
 - Ruído aleatório (térmico) sempre existe devido à movimentação das moléculas no sistema
- · Equação de Shannon e a relação sinal-ruído
 - Considerando:
 - · 5: Potência do sinal
 - · N: Potência do ruído
 - · B: Largura de banda

Uma rede de acesso ADSL com largura de banda de 1MHz e relação sinal-ruído de 40dB pode transmitir no máximo a que taxa?

taxa máxima de dados = B.log $_{2}$ (1 + S/N) bits/s

- · Com ruído, a situação se degrada mais rapidamente...
 - Ruído aleatório (térmico) sempre existe devido à movimentação das moléculas no sistema
- · Equação de Shannon e a relação sinal-ruído
 - Considerando:
 - · S: Potência do sinal
 - · N: Potência do ruído
 - · B: Largura de banda

Uma rede de acesso ADSL com largura de banda de 1MHz e relação sinal-ruído de 40dB pode transmitir no máximo a que taxa?

Taxa máxima de dados = 106.log₂(1+104) ~13Mb/s

taxa máxima de dados = B.log ₂ (1 + S/N) bits/s

Meios de Transmissão

- Objetivo da Camada Física:
 - Transmitir um fluxo bruto de bits de uma máquina para a outra
- · Cada meio físico...
 - Tem propriedades particulares de:
 - · Largura de banda
 - Atraso
 - Custo
 - · Facilidade de instalação
 - Manutenção

Meios Guiados X Meios Não-Guiados

Meios Guiados:

- Mídia magnética
- Par trançado
- Cabo coaxial
- Linhas de energia elétrica
- Fibra óptica

Meios Não-Guiados:

- Redes terrestres sem-fio
- Satélite
- Raios laser transmitidos pelo ar

Meios Guiados

- · Dados escritos em mídia magnética
 - Pode representar uma forma de baixo custo para transporte de dados quando a rede de comunicação tiver custo elevado por bit transferido
 - Ex.: DVDs, fitas e discos
 - Pode representar a única forma de transferência de grandes massas de dados de regiões sem comunicação em rede
 - Ex.: Plataforma de petróleo em alto mar

- Velocidade da transmissão de dados
 - Nunca subestime a velocidade de uma "carroça" cheia de "fitas" em uma rodovia de alta velocidade...

- Velocidade da transmissão de dados
 - Nunca subestime a velocidade de uma "carroça" cheia de "fitas" em uma rodovia de alta velocidade...
- 1) Uma fita industrial pode armazenar 800 Gbytes
 2) Uma caixa de 60x60x60 pode conter cerca de 1.000 fitas

 Logo, a capacidade é de 6,4 petabits.

 Considerando um dia para entrega:

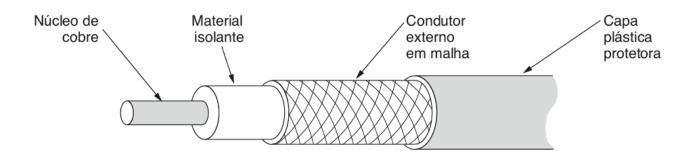
 A largura de banda seria = 6,4 petabits/24h = 70 Gb/s!

- Velocidade da transmissão de dados
 - Nunca subestime a velocidade de uma "carroça" cheia de "fitas" em uma rodovia de alta velocidade...

- Um dos meios de comunicação mais antigos e ainda um dos mais comuns
 - Um par consiste em dois fios de cobre encapados com cerca de 1mm de espessura
 - Ex.: Cat 5 UTP: cabo com quatro pares trançados

- Um dos meios de comunicação mais antigos e ainda um dos mais comuns
 - Um par consiste em dois fios de cobre encapados com cerca de 1mm de espessura
 - Ex.: Cat 5 UTP: cabo com quatro pares trançados

Por que os fios são trançados?

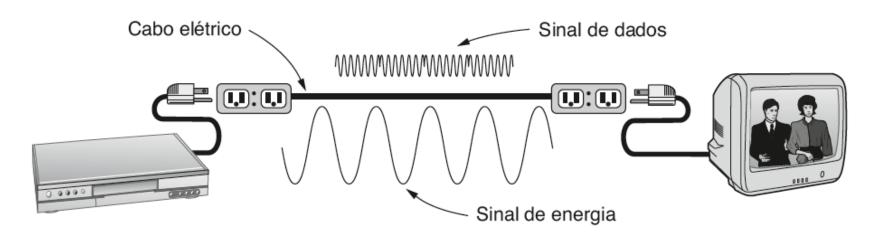

Em paralelo, eles formariam uma antena, o que geraria interferência.

- Aplicação mais comum
 - Sistema telefônico
 - Linhas usadas tanto para chamadas quanto para acesso à Internet via ADSL
- Alcance
 - Se estendem por quilômetros sem amplificação
- Interferência
 - Atenuada pelo trançado, mesmo quando muitos pares são colocados em um mesmo cabo com capa protetora

- Tipos de sinais transmitidos
 - Analógicos e digitais
- Largura de banda
 - Depende da atenuação no par:
 - · Função da espessura do fio e da distância percorrida
- Tipos
 - Cat 5 (100 Mb/s): 4 pares
 - · 2 para cada direção de transmissão
 - Cat 5e (1 Gb/s): 4 pares
 - Os 4 pares nos dois sentidos ao mesmo tempo

Cabo Coaxial

- Em comparação ao par trançado...
 - Tem melhor blindagem e, consequentemente, maior imunidade ao ruído
 - Logo, podem ser utilizados por distâncias maiores e com taxas de transmissão mais elevadas



Linhas de Energia Elétrica

- Já são usadas para comunicações a baixas taxas
 - Medição remota e automação residencial (Padrão X10)
- Nos últimos anos...
 - Aumento no interesse para a comunicações de dados
 - Dentro de casa como uma LAN
 - Ex.: HomePlug
 - · Fora de casa, para acesso à Internet

Linhas de Energia Elétrica

- Na rede de dados dentro de casa...
 - Eletricidade e dados poderiam compartilhar as mesmas linhas
 - Multiplexação em frequência
 - Problema: Forte atenuação e ruído

Fibras Ópticas

- IBM PC original (ano 1981)
 - Clock de 4,77 MHz
- PC atuais (ano 2009)
 - Múltiplos núcleos com clocks de 3 GHz

16x maior...

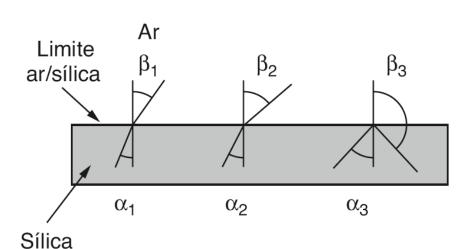
- · Enlaces de comunicação remoto
 - Linha T3 do sistema telefônico (ano 1981)
 - Taxa de 45 Mb/s
 - Linha moderna
 - Taxa de 100 Gb/s

Aproximadam. 16x maior...

Fibras Ópticas

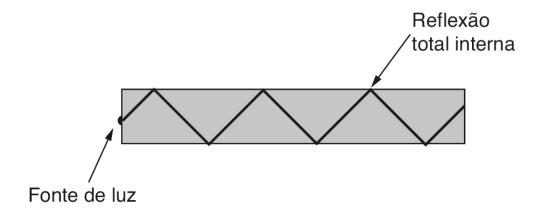
- · Evolução das CPUs
 - Isoladamente, estão alcançando os limites físicos
 - Evoluindo em número de núcleos
- Evolução das fibras
 - Podem ultrapassar taxas da ordem de 50.000 Gb/s
 - · Limite prático atual é de 100 Gb/s

O problema da evolução da fibra óptica é a incapacidade de processamento no domínio óptico. Dessa forma, o sinal deve ser convertido para o domínio elétrico, onde ele encontra uma velocidade de processamento limitada...


Fibras Ópticas

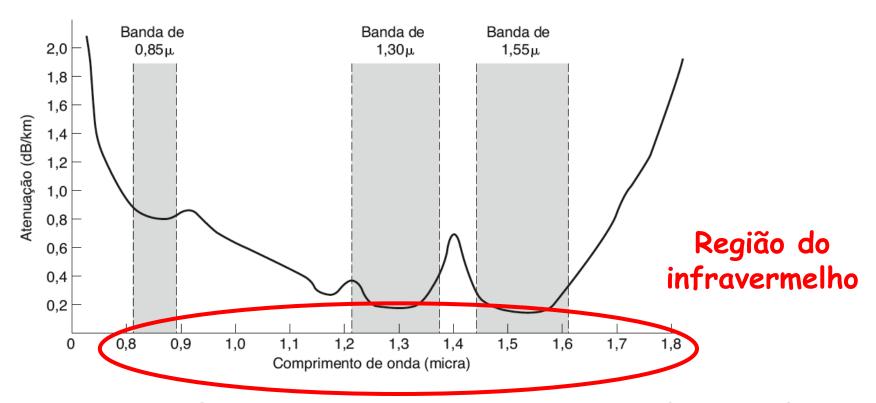
- Uso desejado...
 - Fibra até a última milha e até os consumidores
 - · Entretanto, custo de instalação elevado
- Uso atual
 - Fibra nas transmissões por longas distâncias
 - Backbones das redes e em algumas LANs de alta velocidade

- Possui três componentes principais:
 - Fonte de luz
 - · Pulso de luz: Bit 1
 - Ausência de luz: Bit 0
 - Meio de transmissão
 - Fibra de vidro ultrafina
 - Detector
 - Gera um pulso elétrico quando detecta a incidência da luz

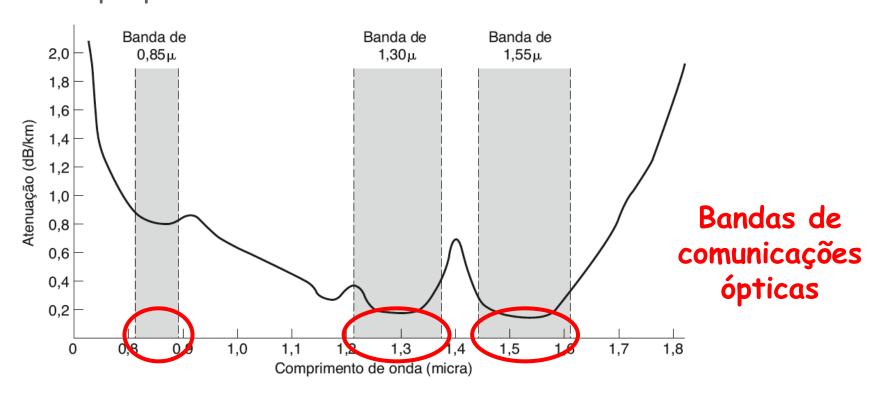

Conectando uma fonte de luz a uma extremidade da fibra e um detector na outra, tem-se um sistema unidirecional de transmissão óptica!

- Como acontece a transmissão da luz na fibra?
 - Propriedades físicas de refração e reflexão devido à mudança do meio físico (entre o ar e a fibra) são usadas
 - Lei de Snell-Descartes (Quem lembra?)
 - · Três exemplos de raios de luz incidentes internamente

Ângulo de incidência a_i , ângulo de refração β_i e índice de refração


- · Ângulo de incidência maior ou igual ao ângulo limite...
 - Luz confinada pela reflexão total interna

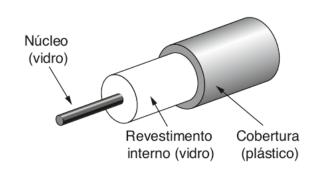
- Todos os feixes de luz incidentes acima do ângulo limite serão refletidos totalmente
 - Feixes podem percorrer ângulos diferentes
 - Fibra multimodo
- Caso a fibra seja fina o suficiente para apenas os feixes com ângulo de incidência igual a 90º possam ser transmitidos...
 - Fibra funciona como um guia de onda
 - Fibra monomodo
 - Podem atingir até 100 Gb/s por 100 km sem amplificação

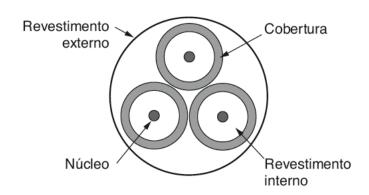

· Atenuação

- Depende do comprimento de onda da luz e de algumas propriedades físicas do vidro

· Atenuação

- Depende do comprimento de onda da luz e de algumas propriedades físicas do vidro



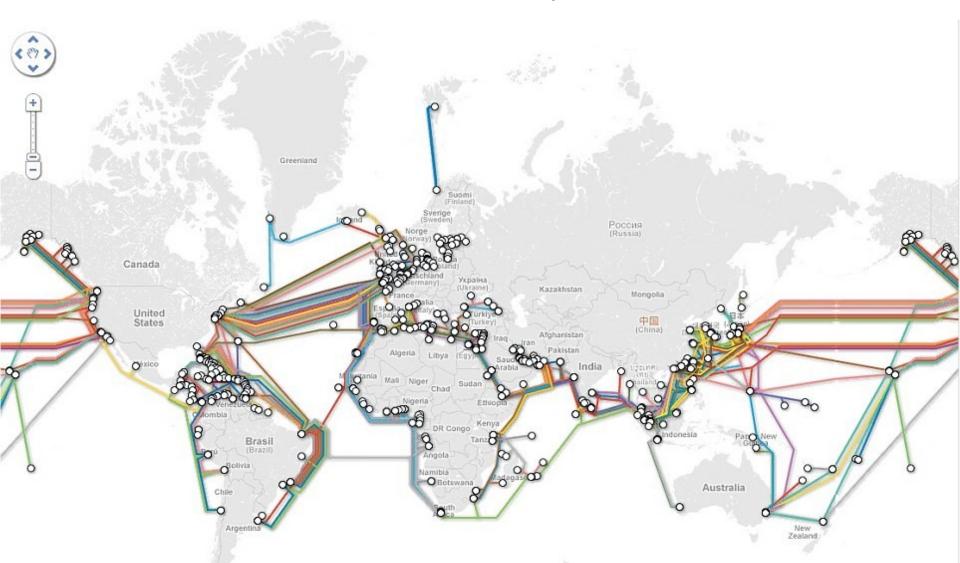

· Atenuação

- Os pulsos de luz se expandem à medida que se propagam
 - Dispersão cromática
 - Luz pode ser composta por feixes com diferentes comprimentos de onda
 - » Cada um terá um índice de refração diferente...
 - » E cada um irá se propagar com uma velocidade diferente
 - Com a distância, múltiplos pulsos podem se sobrepor...
- Solução: Aumentar a separação dos pulsos
 - Geração dos pulsos pode dispensar a separação já que consegue reduzir a atenuação cromática
 - Sólitons (?!?)

Cabos de Fibra

- Semelhantes aos cabos coaxiais
 - Apesar de não terem malha metálica
- Núcleo é revestido com vidro com índice de refração inferior
 - Diâmetro do núcleo da fibra:
 - Multimodo (50 micra) e monomodo (entre 8 e 10 micra)

Cabos de Fibra


Instalação

- No solo
 - Colocadas a um metro da superfície
- No mar
 - Depositadas no fundo do mar

· Conexões

- Conectores em suas extremidades
- Luvas mecânicas que mantém as extremidades ligadas
- Fusão que une as extremidades

Cabos de Fibra

Fonte: http://www.dailymail.co.uk/sciencetech/article-2039974/The-deep-web-The-new-map-undersea-cables-world-clicking.html

Fontes de Luz

 Comparação entre diodo semicondutor e LEDs emissores de luz

Item	LED	Laser semicondutor
Taxa de dados	Baixa	Alta
Tipo de fibra	Multimodo	Multimodo ou modo único
Distância	Curta	Longa
Vida útil	Longa	Curta
Sensibilidade à temperatura	Insignificante	Substancial
Custo	Baixo	Dispendioso

Recepção Óptica

- Fotodiodo
 - Emite um pulso elétrico ao ser atingido pela luz
 - Tempo de resposta limita a taxa de dados a cerca de 100 Gb/s

Fibra Ópticas X Fios de Cobre

Fibra

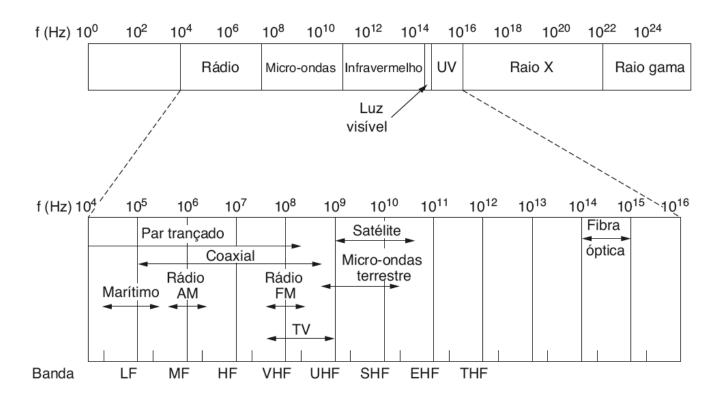
- Maior largura de banda
- Menor atenuação
 - · Requer um número menor de repetidores
- Não é afetada por picos de tensão ou interferências eletromagnéticas
- Não sofre corrosão
- É mais fina e leve
 - Melhor para instalação em dutos já lotados
 - · Melhor para transporte e suporte mecânico
- Mais difícil de ser interceptada por sniffers

Fibra Ópticas X Fios de Cobre

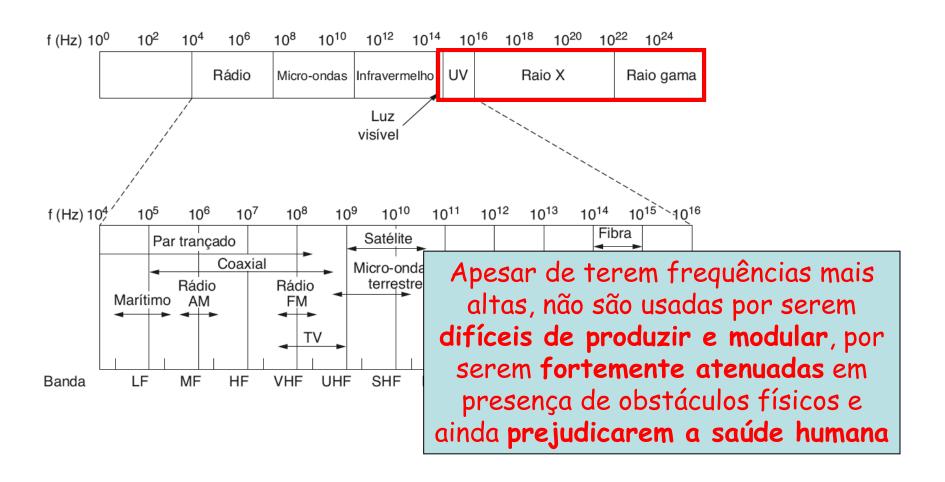
Cobre

- Material mais valioso
- Mais resistente ao manuseio
 - Fibra não pode ser dobrada
- Único par pode ser usado para transmissões bidirecionais
 - Cada fibra é usada em uma direção
- Interfaces mais baratas de conexão
- Manutenção ainda é mais conhecida

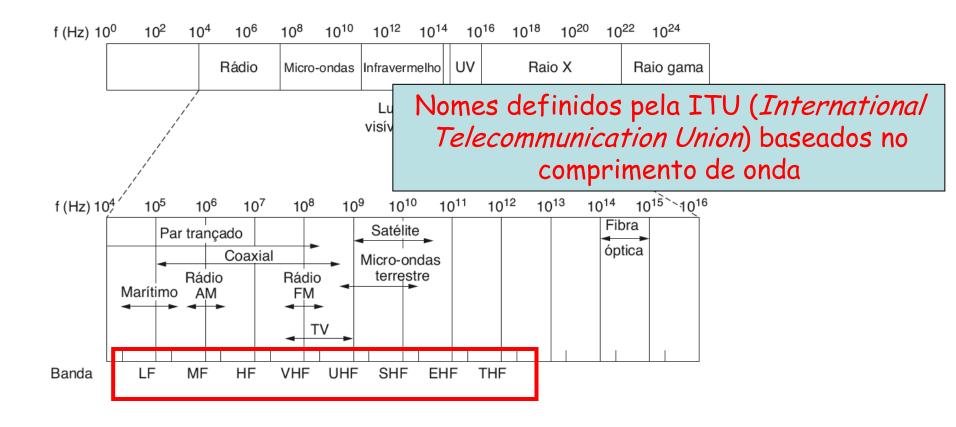
Meios Não-Guiados

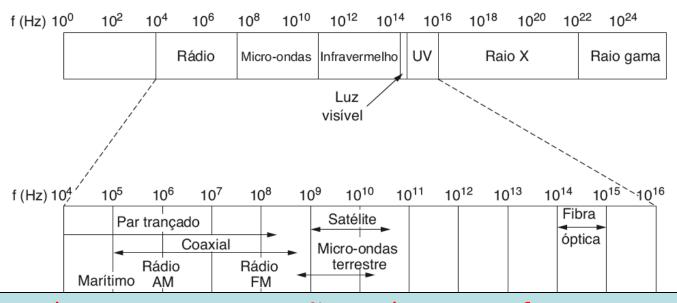

Meios Não-Guiados

- · Transmissão sem-fio
 - Cumpre demanda de ubiquidade de acesso
 - Usuários querem acesso "em qualquer lugar e a qualquer momento"
 - Par trançado, fibra, cabo coaxial não podem atender essa demanda
 - Ainda em comparação às redes cabeadas...
 - · Maior facilidade de instalação

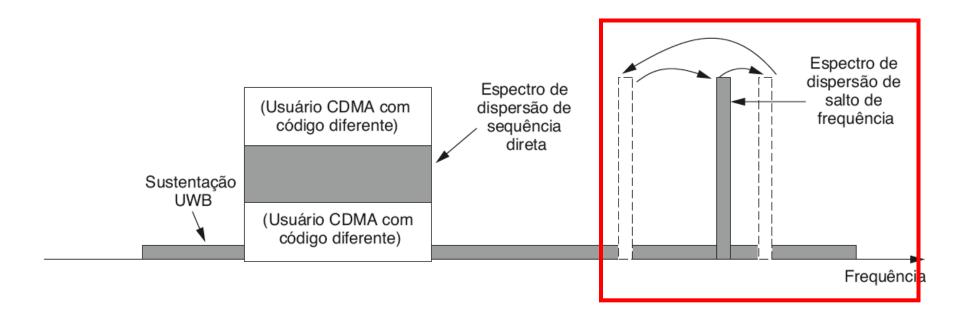

Princípios Básicos

- · Corrente elétrica gera onda eletromagnética
 - Antena instalada em um circuito elétrico pode transmitir e receber ondas eletromagnéticas
- Velocidade de transmissão depende do meio e do comprimento de onda
 - Exceto no vácuo, onde as ondas eletromagnéticas viajam na velocidade da luz, independente do comprimento de onda
 - Na fibra...
 - Velocidade da luz igual a 2/3 da velocidade da luz no vácuo

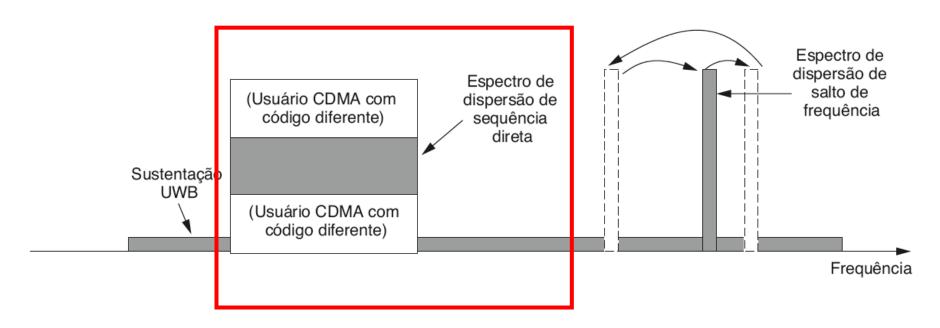

Espectro Eletromagnético

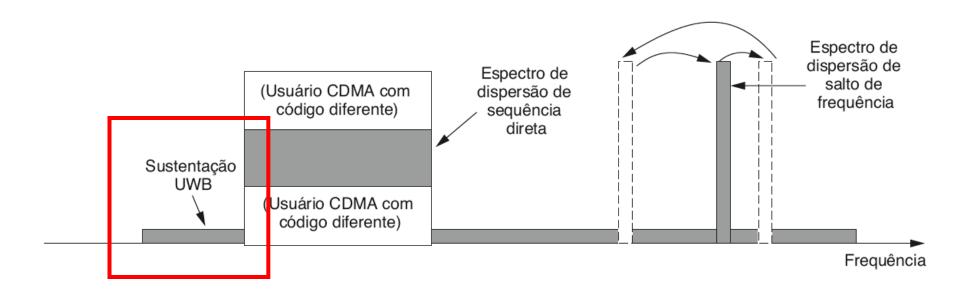


Espectro Eletromagnético



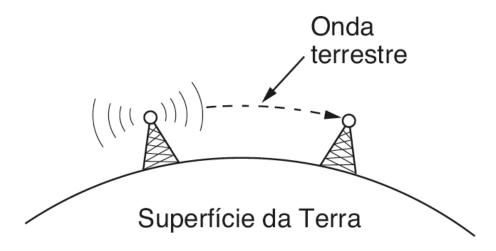
Espectro Eletromagnético




Normalmente, as transmissões utilizam uma faixa estreita de frequências ($\Delta f/f \ll 1$) para que se possa usar o espectro com maior eficiência. Será que esse método oferece robustez ao ruído, por exemplo?

Dispersão por salto de frequência, na qual o transmissor salta de frequência centenas de vezes por segundo para dificultar a interceptação e oferecer maior robustez à atenuação por múltiplos saltos ou a ruídos de faixa estreita

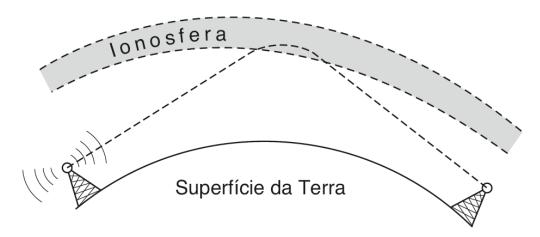
Dispersão de sequência direta, na qual uma sequência de código é usada para dispersar o sinal de dados por uma banda de frequência mais ampla. Serve ainda para compartilhamento do espectro de frequências (CDMA). Pode ainda oferecer maior robustez à atenuação por múltiplos saltos ou a ruídos de faixa estreita


UWB (Ultra Wide-Band) que envia uma série de pulsos rápidos em diferentes posições para troca de informações. Essas rápidas variações levam o sinal a se espalhar por uma faixa larga de frequências. Seu espalhamento pode ainda oferecer maior robustez à atenuação por múltiplos saltos ou a ruídos de faixa estreita.

Transmissão de Rádio

- Pode percorrer longas distâncias
- · Pode penetrar em prédios
- Pode ser utilizada tanto em ambientes abertos quanto em fechados
 - Entretanto...
- A potência cai com o quadrado da distância
- Está sujeita a interferências
- · Em altas frequências, ainda sofrem
 - Reflexões, absorções (chuva), refração, difrações etc.

Transmissão de Rádio


- Faixas VLF, LF e MF
 - As ondas de rádio seguem a curvatura da Terra
 - Baixas frequências percorrem maiores distâncias e sofrem menor atenuação por obstáculos (prédios)
 - · Radiodifusão em AM usa faixa MF

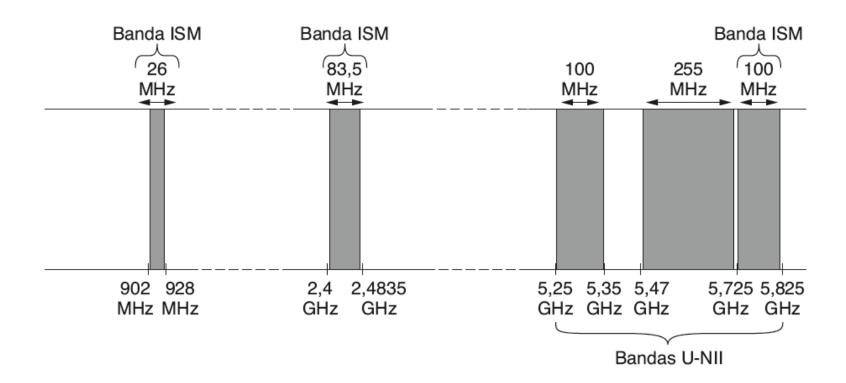
Transmissão de Rádio

· Faixa HF

- As ondas terrestres seriam absorvidas pela terra
- As transmissões são feitas pela ionosfera a uma altura de 100 a 500 km
 - As ondas sofrem múltiplas refrações até que refletem na ionosfera

Transmissão de Micro-Ondas

- Acima de 100 MHz
 - Ondas trafegam praticamente em linha reta
 - Portanto, podem ser concentradas em um feixe estreito
 - Uso de antenas parabólicas para transmissão e recepção
 - Devem estar alinhadas com precisão
 - Podem ser usadas por longas distâncias
 - Necessidade de instalação de repetidores para contornar a curvatura da Terra
 - Quanto mais alto estiverem as antenas, maiores podem ser as distâncias
 - Sofrem com atenuação por obstáculos (prédios)


Transmissão de Micro-Ondas

- · Acima de 4 GHz
 - Estimuladas pela necessidade crescente de espectro
 - Entretanto, as ondas podem ser absorvidas até mesmo pela chuva
 - Uso de redundância espacial
 - Enlaces de backup são usados, caso algum enlace operacional seja afetado por maior atenuação

Transmissão de Micro-Ondas

- Em comparação à fibra óptica...
 - Pode ter menos custo e maior simplicidade de instalação
 - As fibras podem sofrer problemas como:
 - Direitos sobre o caminho de instalação
 - Obras em regiões de difícil acesso (áreas urbanas)
 - Arrendamento de rede de fibra de terceiros

- Bandas do espectro para rádio, televisão e telefonia celulares
 - Uso regulamentado por órgãos nacionais e internacionais
 - ITU-R: Órgão internacional
 - Regulamentação a partir de:
 - Avaliação de proposta: Possibilidade de corrupção
 - · Sorteio: Possibilidade de revenda
 - · Leilão
 - Liberação de faixas para uso sem licença
 - As bandas ISM (U-NII nos EUA e HiperLAN na Europa)
 - Controle de potência (Máximo de 1W, por exemplo)

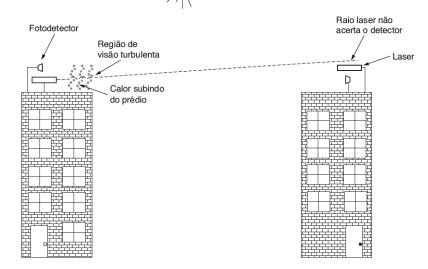
Banda ISM varia de país para país...

- Sucesso das redes sem-fio...
 - Estimula o aumento da capacidade de transmissão pelo aumento do espectro utilizável de frequências
 - Faixa de 700 MHz: Alocada para a TV, que está sendo liberada com a migração da TV analógica para a digital
 - IEEE 802.11af (WLAN) e IEEE 802.22 (WRAN)
 - **Problema:** Dispositivos não licenciados devem ser capazes de detectar um emissor licenciado para lhe dar prioridade

- Sucesso das redes sem-fio...
 - Estimula o aumento da capacidade de transmissão pelo aumento do espectro utilizável de frequências
 - Faixa de 60 GHz: Banda ISM com alta capacidade de transmissão
 - IEEE 802.11ad (WiGig)
 - **Problema:** As ondas de rádio são absorvidas até mesmo pelo oxigênio e, portanto, têm curto alcance

Transmissão em Infravermelho

- · Utilizadas em comunicações de curto alcance
 - Ex. Dispositivos de controle remoto
 - Padrão IrDA (Infrared Data Association)
 - Taxas de até 4 Mb/s

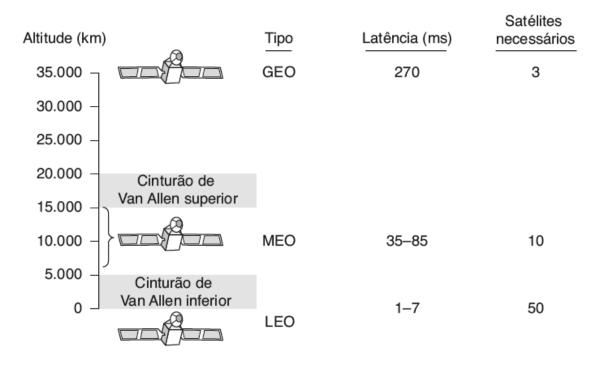

Vantagens:

- Direcionais, econômicos e fáceis de montar
- Desvantagem:
 - Não atravessa objetos sólidos
 - Essa desvantagem também pode ser vista como uma vantagem já que evita interferência entre sistemas vizinhos!

Transmissão via Luz

- · Transmissão óptica não-guiada (raio laser)
 - Comunicações são unidirecionais
 - Assim como nas fibras!
 - Problema: Dificuldade de manutenção do foco

• Ex.: A convecção do ar pode interferir na comunicação a laser


Satélites de Comunicação

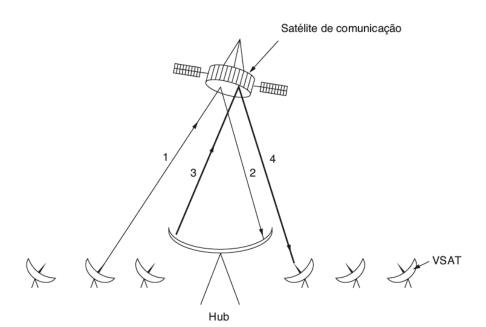
- Quatro tipos:
 - Geoestacionários
 - GEO (Geoestationary Earth Orbit)
 - Órbita média
 - MEO (Medium Earth Orbit)
 - Órbita baixa
 - LEO (Low Earth Orbit)

- Compostos por antenas e transponders
 - Cada transponder recebe o sinal em determinada frequência, converte para outra frequência e envia o sinal na nova frequência

Satélites de Comunicação

- Algumas propriedades:
 - Altitudes, atraso de ida e volta, número de satélites para cobertura global

- Satélites de altas órbitas
 - Em órbita circular equatorial, ficam estacionários em relação à Terra
- Espaçamento entre eles é de no mínimo 2 graus (depende da frequência)
 - Evita interferência entre eles
 - Número máximo limitado de satélites em órbita ao mesmo tempo (180 se espaçamento de 2 graus)
 - Cada transponder usa várias frequências e polarizações ao mesmo tempo para aumentar a largura de banda


- · Bandas de comunicação são definidas pela ITU
 - Algumas frequências podem interferir nas comunicações via micro-ondas terrestres
 - Canais de comunicação são unidirecionais
 - Uplink e downlink

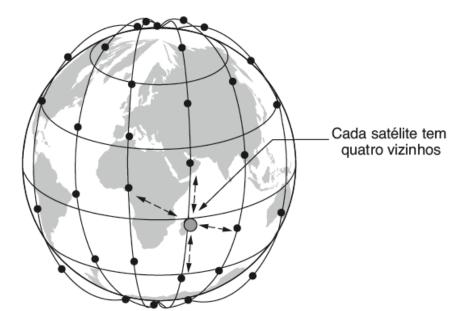
Banda	Downlink	Uplink	Largura de banda	Problemas	
L	1,5 GHz	1,6 GHz	15 MHz	Baixa largura de banda; lotada	
S	1,9 GHz	2,2 GHz	70 MHz	Baixa largura de banda; lotada	
С	4,0 GHz	6,0 GHz	500 MHz	Interferência terrestre	
Ku	11 GHz	14 GHz	500 MHz	Chuva	
Ka	20 GHz	30 GHz	3.500 MHz	Chuva; custo do equipamento	

- VSATs (Very Small Aperture Terminals) com hub
 - Alternativa menos custosa para comunicações via satélite
 - Estações não tem energia suficiente para comunicação direta por satélite e por isso usam hubs intermediários

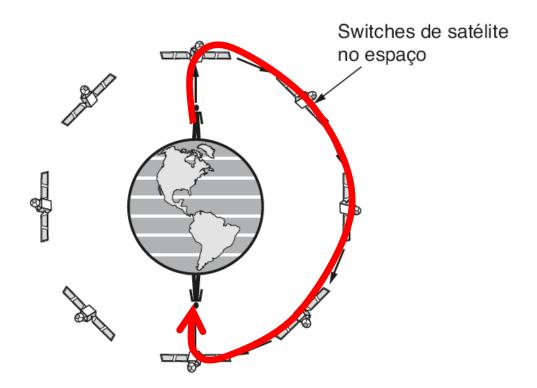
- VSATs (Very Small Aperture Terminals) com hub
 - Problema: Atraso de propagação
 - Se o atraso típico de ida e volta das comunicações via satélite é de 270ms, mas com o hub, chega a 540ms...

Satélites de Órbita Média

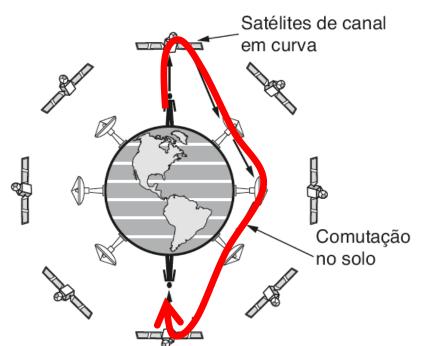
- · Vistos da Terra, se deslocam em longitude
 - Demoram 6h para circular a Terra
 - Devem ser acompanhados enquanto se movem
- · Tem uma área de cobertura menor que a dos GEOs
 - Exigem transmissores menos potentes para alcançá-los
- Não são usados para telecomunicações
 - Entretanto, são usados no sistema GPS (Global Positioning System)


Rápido movimento

- Exigem mais satélites para cobertura completa
- Podem desaparecer mais facilmente


• Em compensação...

- Introduzem um menor atraso de ida e volta
- Não exigem alta potência de transmissão
- São mais baratos em termos de lançamento


- Primeira iniciativa da Motorola
 - Projeto Iridium
 - 77 satélites formando seis cinturões em torno da Terra
 - 750 km de altitude
 - · Caso um satélite saisse de vista, outro o substituiria

- · Satélites vizinhos se comunicam
 - Retransmissão no espaço

- Retransmissão em terra
 - Alternativa da Globalstar
 - Mantém a tarefa mais complexa de comutação em terra para aumentar a facilidade de manutenção

Satélite X Fibra Óptica

· Satélite

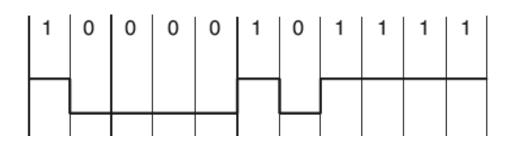
- Sobrevivência melhor
- Melhor para regiões com pouca infraestrutura
 - Exs.: Mar ou deserto
- Melhor para comunicações por difusão
 - · Mensagens recebidas por muitas estações
 - Transmissões de um satélite GEO cobrem 1/3 da Terra

· Fibra óptica

- Infraestrutura menos cara
 - Exceto em regiões atípicas
 - Indonésia e suas muitas ilhas

Modulação Digital e Multiplexação

Modulação Digital e Multiplexação

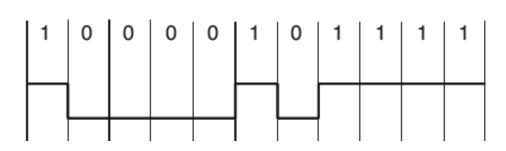

- · Canais com ou sem fio
 - Transportam sinais analógicos
 - · Variação de tensão, intensidade da luz etc.
- · Envio de sinais digitais
 - Conversão entre bits e sinais
 - Processo chamado de modulação digital

Modulação Digital e Multiplexação

- Modulação digital
 - Conversão direta de bits em sinal
 - · Transmissão de banda base
 - Regulagem em amplitude, fase ou frequência de uma portadora que transporta bits
 - Transmissão de banda passante
 - Sinal ocupa uma banda de frequências em torno da frequência do sinal da portadora
- · Caso haja compartilhamento do meio físico
 - Uso de multiplexação
 - Múltiplas transmissões no mesmo meio físico

Transmissão em Banda Base

- Non-Return-to-Zero (NRZ)
 - Forma mais simples de modulação digital
 - · Uso de tensões positivas e negativas
 - Ex.: +V para 1 e -V para 0
 - Receptor converte sinal para bits
 - · Amostragem periódica do sinal
 - Atenuação e ruído distorcem o sinal recebido
 - (a) Fluxo de bits
 - (b) NRZ (Non-Return-to-Zero)


Transmissão em Banda Base

- Non-Return-to-Zero (NRZ)

Esquema de modulação muito simples e raramente usadol Tais esquemas de conversão de bits em sinais são chamados de códigos de linha

raução e ruído distorcem o sinal recebido

- (a) Fluxo de bits
- (b) NRZ (Non-Return-to-Zero)

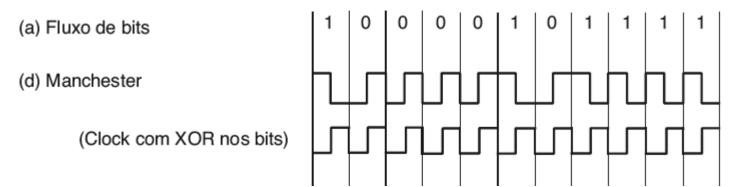
Limitações do NRZ

- Para taxa de bits T...
 - É necessário uma largura de banda de T/2 Hz
 - Nyquist: T = 2.Banda.log₂V
- · Logo...
 - NÃO há como aumentar a taxa sem aumentar a banda

Se mais níveis fossem usadas, seria possível aumentar a taxa SEM aumentar a banda.

Ex.: Com 4 níveis pode-se representar todas as possíveis combinações de pares binários

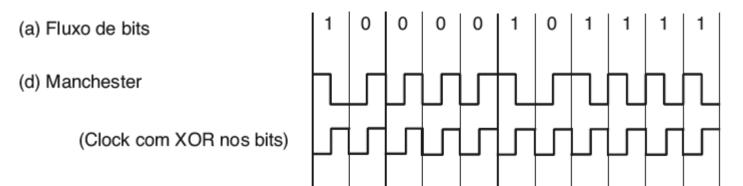
Símbolos


- Representação de sequências binárias através de níveis diferentes de tensão
 - +V representa 1 e -V representa 0
 - 1 bit por símbolo
 - +V representa 11, +0.5V representa 10, -0.5V representa 01 e -V representa 00
 - · 2 bits por símbolo
- Taxa de bits = (taxa de símbolos)x(nº de bits/símbolo)
 - Taxa de símbolos era chamada de Taxa Baud

Recuperação de Clock

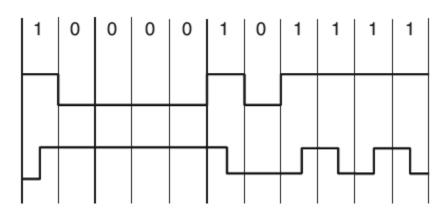
- Receptor precisa saber quando começa e quando termina um símbolo...
 - No NRZ, como poderíamos diferenciar 15 de 16 zeros seguidos?
 - · Uso do clock
- · Receptor precisa conhecer o clock antes de usá-lo...
 - O clock poderia ser conhecido a priori
 - · Mas precisaria de precisão em relação ao do transmissor
 - O clock poderia ser recuperado no destinatário
 - · Mas seria enviado como um sinal paralelo aos dados ou
 - Poderia ser misturado com o sinal de dados

Codificação Manchester


- · Recupera o clock a partir da combinação com o sinal
 - Operações de XOR

- Usada pelo padrão Ethernet
- · Qual a limitação da codificação Manchester?

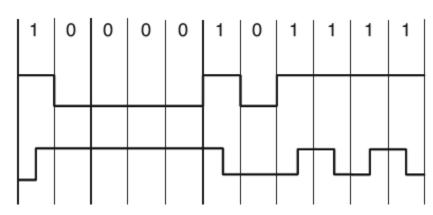
Codificação Manchester


- · Recupera o clock a partir da combinação com o sinal
 - Operações de XOR

- Usada pelo padrão Ethernet
- · Qual a limitação da codificação Manchester?
 - Exige duas vezes mais banda passante que o NRZ
 - · Banda passante era o problema inicial...

Non-Return-to-Zero Inverted (NRZI)

- Voltando ao NRZ, um problema para a recuperação do clock eram as sequências longas sem transição
 - Sequências de 0's ou de 1's...
- Usados pelo padrão USB
- No NRZI, as transições são usadas
 - Presença de transição: Bit 1
 - Ausência de transição: Bit O
 - (a) Fluxo de bits
 - (b) NRZ (Non-Return-to-Zero)
 - (c) NRZ inverso (NRZI)



Non-Return-to-Zero Inverted (NRZI)

- Voltando ao NRZ, um problema para a recuperação do clock eram as sequências longas sem transição
- Problema permanece para sequências grandes de zeros...

 Problema permanece para sequências grandes de zeros...

- (a) Fluxo de bits
- (b) NRZ (Non-Return-to-Zero)
- (c) NRZ inverso (NRZI)

Codificação 4B/5B

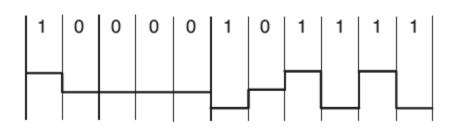
- Mapeamento de sequências de bits em outras sem sequências repetidas de 0's ou 1's
 - Para isso ser possível, o mapeamento deve ser maior que o sinal de origem
 - Ex.: 0000 → 00100
- Codificação 4B/5B
 - Mapeia cada 4 bits em um padrão fixo de 5 bits
 - Não há mais que 3 zeros em sequência
 - Possui 20% de overhead
 - Menor que os 100% da codificação Manchester

Codificação 4B/5B

- Algumas combinações não são usadas...
 - 2^4 = 16 de dados contra 2^5 = 32 do mapeamento
 - · Os símbolos não usados podem ser usados para controle
 - 11111 representa linha ocupada, por exemplo

Dados (4B)	Código (5B)	Dados (4B)	Código (5B)
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

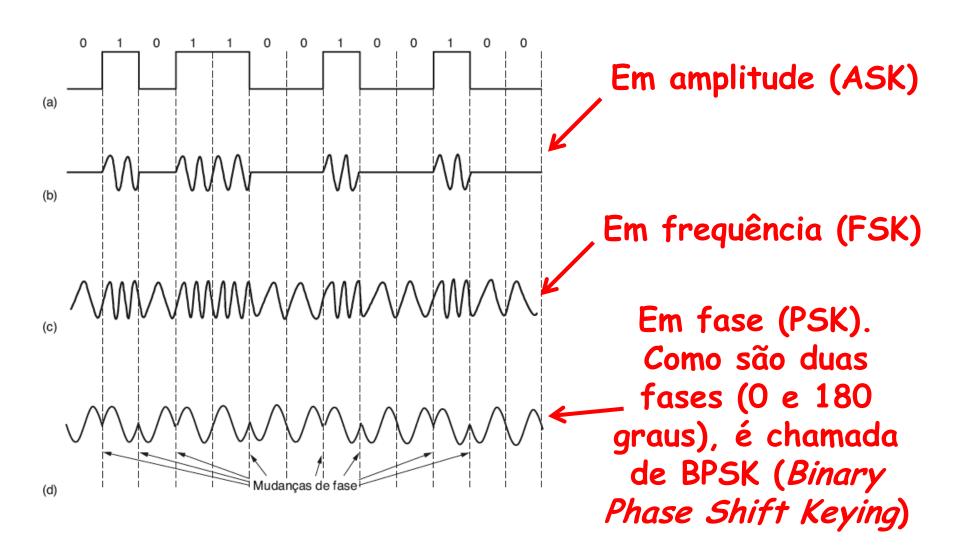
Sinais Balanceados


- Possuem tanto tensões positivas quanto negativas
 - Mesmo em curto intervalos de tempo
 - Vantagens:
 - Mistura de sinais positivos e negativos forçam transições
 - » Ajudam na recuperação do clock
 - Calibragem de receptores é mais simples já que a média de tensão em zero pode ser usada como patamar de decisão
 - » Uma grande sequência de 1's levaria a média para algum valor acima de 1...
 - » Já uma grande sequência de 0's levaria a uma outra média de tensão → a variação do patamar dificulta a decisão

Sinais Balanceados

- · Possuem média de tensão zero
 - Não possuem componente elétrico de corrente contínua (CC)
 - Vantagens:
 - Linhas podem atenuar essa componente
 - Receptores capacitivos filtram componentes CC, deixando passar apenas as componentes de corrente alternada (CA)

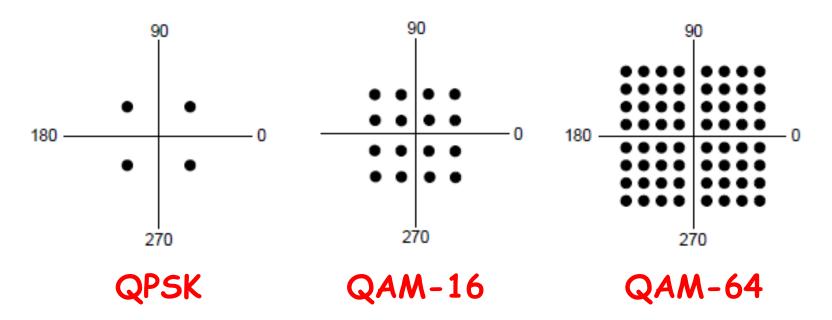
Codificação Bipolar


- · Alternativa para sinalização balanceada
 - +V ou -V representam o 1 lógico
 - Transmissão do 1 é alternada entre +V e -V de modo a garantir o balanceamento
 - OV representa o O lógico
- Nas redes de telefonia...
 - Alternate Mark Inversion (AMI)
 - (a) Fluxo de bits
 - (e) Codificação bipolar (também Alternate Mark Inversion, AMI)

- · Faixas de frequência que começam no zero
 - Em redes sem-fio, isso implicaria antenas muito grandes
 - Tamanho da antena é função do comprimento de onda
 - Em meios compartilhados, isso implicaria em baixa eficiência
 - Todos os sinais seriam transmitidos na mesma faixa de frequência

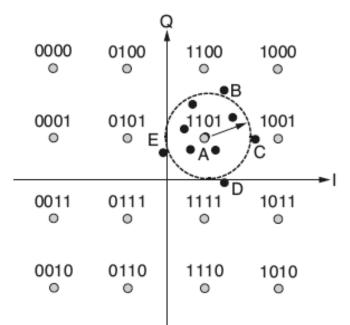
- · Escolha da faixa de frequência
 - Uma faixa de frequências arbitrária é usada para a transmissão do sinal
 - Sinal é deslocado para essa faixa arbitrária
 - Na recepção, o sinal pode ser retornado para banda base por simplicidade de detecção de símbolos

- Modulação digital
 - Transmissão da banda passante modula um sinal de portadora sobreposto à banda passante
 - Modulação em amplitude
 - ASK (Amplitude Shift Keying)
 - Modulação em frequência
 - FSK (Frequency Shift Keying)
 - Modulação em fase
 - PSK (Phase Shift Keying)



Modulação em Quadratura

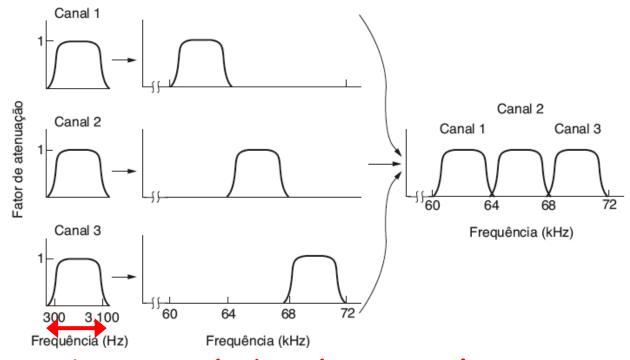
- · Uso mais eficiente da largura de banda
 - Quadrature Phase Shift Keying (QPSK)
 - 4 deslocamentos de fase: 45, 135, 225 e 315 graus
 - 2 bits por símbolo
- Esquemas de modulação podem ser combinados
 - Aumento do número de bits por símbolo
 - · Em geral, amplitude e fase são moduladas em combinação


Modulação em Quadratura

- Diagrama de constelação
 - Distância do ponto até a origem dá a amplitude
 - Ângulo entre o eixo x positivo e a linha ligando o ponto com a origem dá a fase

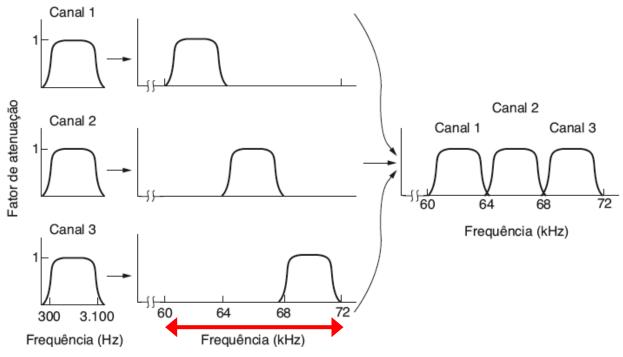
Modulação em Quadratura

- Código de Gray QAM-16
 - Mapeamento que evita que símbolos adjacentes tenham mais de um bit diferente
 - Isso reduz o erro ocasionado pelo ruído

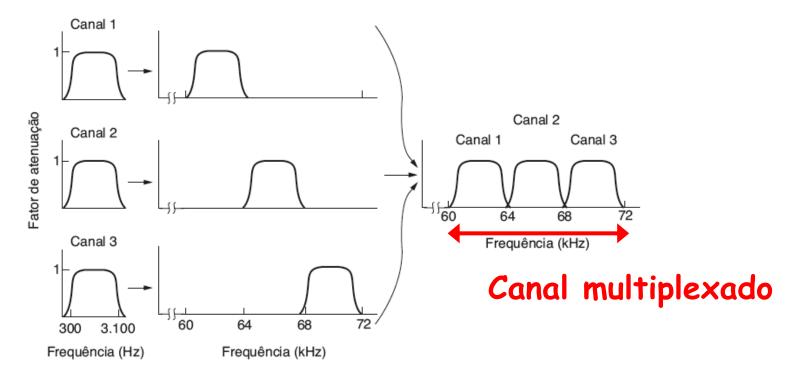

Quando 1101 é enviado:

Ponto	Decodifica como	Erros de bit
Α	1101	0
В	110 <u>0</u>	1
С	1 <u>0</u> 01	1
D	11 <u>1</u> 1	1
E	<u>0</u> 101	1

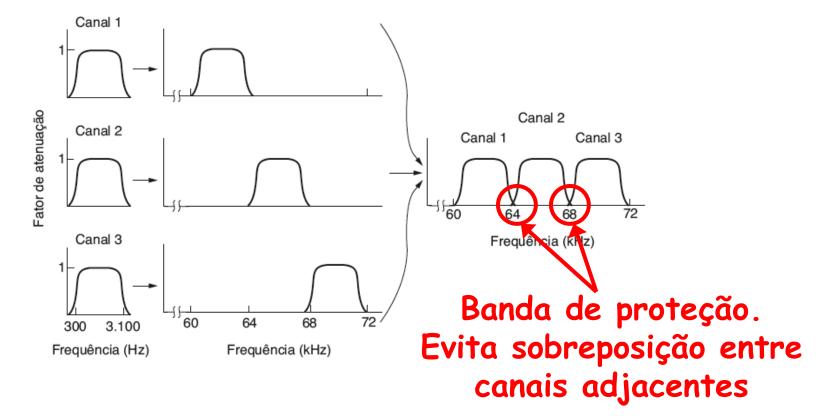
Multiplexação


- · Esquemas de modulação
 - Permitem o uso de sinais para transmissão de bits
 - Enlaces com ou sem fios
- · Entretanto...
 - Os custos de instalação de uma linha de transmissão entre um par de nós é semelhante, independente da largura de banda
 - Então, por que não instalar uma linha de transmissão com largura de banda grande e compartilhar os recursos?
 - MULTIPLEXAÇÃO

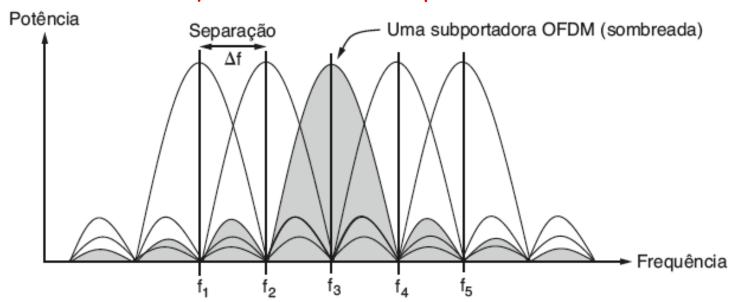
- · Divide os espectro de frequências em bandas
 - Cada banda é dada a um usuário
 - Rádio AM usa multiplexação FDM

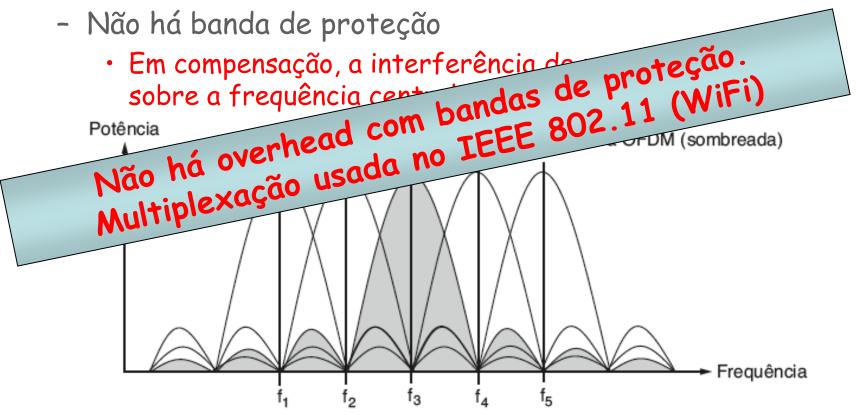

Largura de banda original

- Divide os espectro de frequências em bandas
 - Cada banda é dada a um usuário
 - Rádio AM usa multiplexação FDM

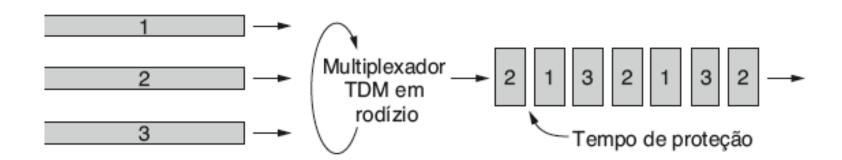


Aumento da largura de banda

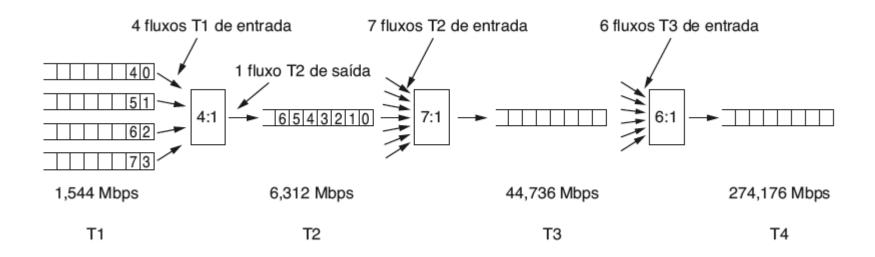

- Divide os espectro de frequências em bandas
 - Cada banda é dada a um usuário
 - Rádio AM usa multiplexação FDM


- · Divide os espectro de frequências em bandas
 - Cada banda é dada a um usuário
 - Rádio AM usa multiplexação FDM

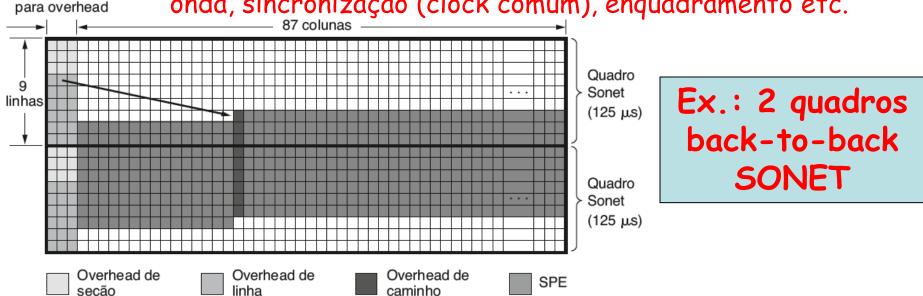
- Multiplexação ortogonal com divisão de frequência (OFDM)
 - Não há banda de proteção
 - Em compensação, a interferência de um canal adjacente sobre a frequência central da portadora deve ser zero



 Multiplexação ortogonal com divisão de frequência (OFDM)


Multiplexação por Divisão de Tempo - TDM

- Divide o espectro em slots de tempo
 - Usuários se alternam periodicamente usando a largura de banda inteira por um pequeno período de tempo
 - Os bits de cada fluxo de entrada são apanhados em um slot de tempo fixo e enviados para o fluxo agregado
 - O fluxo agregado deve ter uma velocidade igual a soma de todos os fluxos de entrada


Multiplexação por Divisão de Tempo - TDM

• Ex. Multiplexação de streams T1 em portadoras mais altas

Multiplexação por Divisão de Tempo - TDM

- SONET/SDH (Synchronous Optical Network/ Synchronous Digital Hierarchy)
 - Padrões para conectar diferentes padrões TDM usados por concessionários de comunicação em longa distância
- Define sinalização comum, relacionado a comprimento de onda, sincronização (clock comum), enquadramento etc.

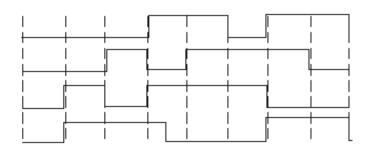
- · Forma de comunicação que usa dispersão espectral
 - Sinal de banda estreita espalhado por banda mais larga
 - Mais tolerante a interferências
 - Vários usuários usam a mesma banda ao mesmo tempo
 - Cada bit é subdividido em *m* intervalos curtos
 - Chamados de chips
 - Cada usuários tem uma sequência de chips exclusiva
 - Sequência de chips: Bit 1
 - Negação da sequência de chips: Bit O
 - Só é possível se a banda disponível for m vezes maior que a largura de banda necessária para a comunicação

- · Sequência de chips de pares distintos são ortogonais
 - Produto interno normalizado é nulo
 - Assumindo sequências $S = \langle S_1, ..., S_m \rangle$ e $T = \langle T_1, ..., T_m \rangle$

$$\mathbf{S} \bullet_{\mathbf{T}} = \frac{1}{\mathbf{m}} \sum_{\mathbf{j}=1}^{\mathbf{m}} S_{\mathbf{j}} T_{\mathbf{j}} = 0$$

- Produto interno de S com S é 1, já de S com S' é -1

$$\mathbf{s} \bullet \mathbf{s} = \frac{1}{\mathbf{m}} \sum_{\mathbf{s} = 1}^{\mathbf{m}} S_{\mathbf{s}} S_{\mathbf{s}} = 1$$


$$A = (-1 -1 -1 +1 +1 -1 +1 +1)$$

$$B = (-1 -1 +1 -1 +1 +1 +1 -1)$$

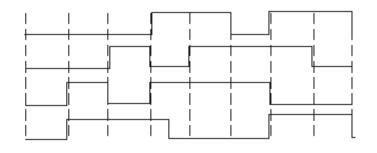
$$C = (-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1)$$

$$D = (-1 +1 -1 -1 -1 -1 +1 -1)$$

Sequência de chips que representa o bit 1 para quatro casos

Sinais representativos das sequências

Como ficariam as somas das sequências de chips caso estações diferentes fizessem transmissões simultâneas de um bit?


$$A = (-1 -1 -1 +1 +1 -1 +1 +1)$$

$$B = (-1 -1 +1 -1 +1 +1 +1 -1)$$

$$C = (-1 +1 -1 +1 +1 +1 -1 -1)$$

$$D = (-1 +1 -1 -1 -1 -1 +1 -1)$$

$$\begin{array}{lll} S_1 = C & = (-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1) \\ S_2 = B + C & = (-2 \ 0 \ 0 \ 0 + 2 + 2 \ 0 - 2) \\ S_3 = A + \overline{B} & = (\ 0 \ 0 - 2 + 2 \ 0 - 2 \ 0 + 2) \\ S_4 = A + \overline{B} + C & = (-1 + 1 - 3 + 3 + 1 - 1 - 1 + 1) \\ S_5 = A + B + \overline{C} + D = (-4 \ 0 - 2 \ 0 + 2 \ 0 + 2 - 2) \\ S_6 = A + B + \overline{C} + D = (-2 - 2 \ 0 - 2 \ 0 - 2 + 4 \ 0) \end{array}$$

Para recuperar o fluxo
de bits de uma estação
em particular, o receptor
precisa conhecer a
sequência de chips do
transmissor

$$A = (-1 -1 -1 +1 +1 -1 +1 +1)$$

$$B = (-1 -1 +1 -1 +1 +1 +1 -1)$$

$$C = (-1 +1 -1 +1 +1 +1 -1 -1)$$

$$D = (-1 +1 -1 -1 -1 -1 +1 -1)$$

Recuperação a partir do produto interno normalizado da sequência recebida e da sequência de chips do transmissor

$$\begin{array}{lll} S_1 = C & = (-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1) \\ S_2 = B + \underline{C} & = (-2 \ 0 \ 0 \ 0 + 2 + 2 \ 0 - 2) \\ S_3 = A + \overline{B} & = (\ 0 \ 0 - 2 + 2 \ 0 - 2 \ 0 + 2) \\ S_4 = A + \overline{B} + C & = (-1 + 1 - 3 + 3 + 1 - 1 - 1 + 1) \\ S_5 = A + B + \underline{C} + D = (-4 \ 0 - 2 \ 0 + 2 \ 0 + 2 - 2) \\ S_6 = A + B + \overline{C} + D = (-2 - 2 \ 0 - 2 \ 0 - 2 + 4 \ 0) \end{array}$$

$$\begin{array}{l} S_1 \bullet C = [1+1-1+1+1+1-1-1]/8 = 1 \\ S_2 \bullet C = [2+0+0+0+2+2+0+2]/8 = 1 \\ S_3 \bullet C = [0+0+2+2+0-2+0-2]/8 = 0 \\ S_4 \bullet C = [1+1+3+3+1-1+1-1]/8 = 1 \\ S_5 \bullet C = [4+0+2+0+2+0-2+2]/8 = 1 \\ S_6 \bullet C = [2-2+0-2+0-2-4+0]/8 = -1 \end{array}$$

$$\mathbf{s} \bullet_{\mathbf{T}} = \frac{1}{\mathbf{m}} \sum_{\mathbf{i}=1}^{\mathbf{m}} S_{\mathbf{i}} T_{\mathbf{i}}$$

$$A = (-1 -1 -1 +1 +1 -1 +1 +1)$$

$$B = (-1 -1 +1 -1 +1 +1 +1 -1)$$

$$C = (-1 +1 -1 +1 +1 +1 -1 -1)$$

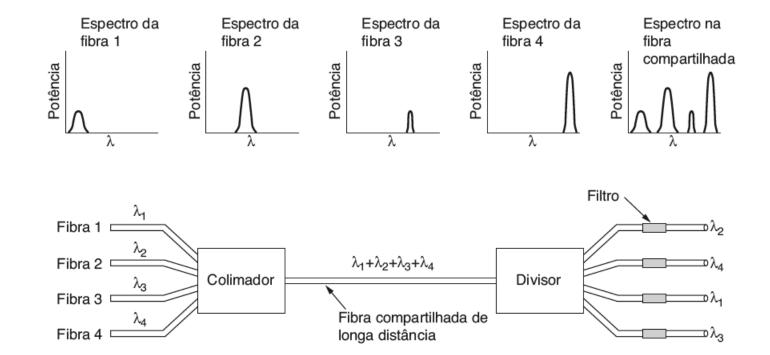
$$D = (-1 +1 -1 -1 -1 -1 +1 -1)$$

No caso
$$S_4$$
...
 $(A+B'+C).C =$
 $A.C+B'.C+C.C =$
 $0+0+1=1$

$$\begin{array}{lll} S_1 = C & = (-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1) \\ S_2 = B + \underline{C} & = (-2 \ 0 \ 0 \ 0 + 2 + 2 \ 0 - 2) \\ S_3 = A + \overline{B} & = (\ 0 \ 0 - 2 + 2 \ 0 - 2 \ 0 + 2) \\ S_4 = A + \overline{B} + C & = (-1 + 1 - 3 + 3 + 1 - 1 - 1 + 1) \\ S_5 = A + B + \underline{C} + D = (-4 \ 0 - 2 \ 0 + 2 \ 0 + 2 - 2) \\ S_6 = A + B + \overline{C} + D = (-2 - 2 \ 0 - 2 \ 0 - 2 + 4 \ 0) \end{array}$$

$$\begin{split} &S_1 \bullet C = [1 + 1 - 1 + 1 + 1 + 1 - 1 - 1]/8 = 1 \\ &S_2 \bullet C = [2 + 0 + 0 + 0 + 2 + 2 + 0 + 2]/8 = 1 \\ &S_3 \bullet C = [0 + 0 + 2 + 2 + 0 - 2 + 0 - 2]/8 = 0 \\ &S_4 \bullet C = [1 + 1 + 3 + 3 + 1 - 1 + 1 - 1]/8 = 1 \\ &S_5 \bullet C = [4 + 0 + 2 + 0 + 2 + 0 - 2 + 2]/8 = 1 \\ &S_6 \bullet C = [2 - 2 + 0 - 2 + 0 - 2 - 4 + 0]/8 = -1 \end{split}$$

$$\mathbf{S} \bullet \mathbf{T} = \frac{1}{\mathbf{m}} \sum_{\mathbf{i}=1}^{\mathbf{m}} S_{\mathbf{i}} T_{\mathbf{i}}$$


- Número de canais simultâneos é função do número máximo de sequências de chips ortogonais possíveis
 - Depende do método gerador
 - Códigos de Walsh

· Limitações:

- Chips precisam estar sincronizados no tempo no receptor
- Ruído pode alterar as sequências de chips


Multiplexação por Divisão de Comprimento de Onda

- Transmissão
 - Cada fibra possui energia em um comprimento de onda
- Recepção
 - Filtro sintonizado em um comprimento de onda

Comutação

Comutação de Pacotes Vs. Circuitos

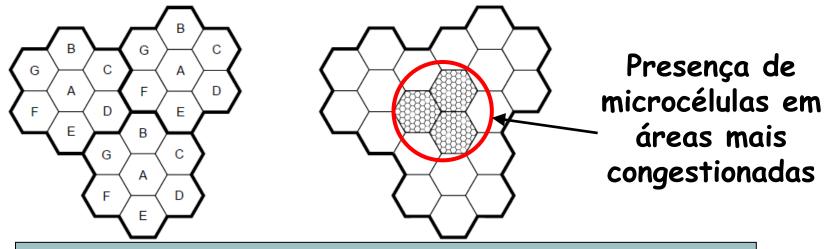
Telefonia Móvel

Sistema de Telefonia Móvel

- Primeira geração (16)
 - Voz analógica para telefones móveis
- Segunda geração (26)
 - Voz digital para telefones móveis
- Terceira geração (36)
 - Voz digital + dados para telefones móveis

Primeira Geração

- · Nos anos 50, sistema "apertar para falar"
 - Único transmissor localizado no topo de edifícios
 - Único canal para transmissão e recepção
 - Necessidade de um botão para o uso
 - Usuário aperta um botão que ativa o transmissor e desativa o receptor
- Nos anos 60, sistema de telefonia móvel aperfeiçoado (Improved Mobile Telephone System - IMTS)
 - Dois canais: um para transmissão e outro para recepção
 - · Não havia mais a necessidade do botão!
 - Presença de 23 canais para comunicações simultâneas

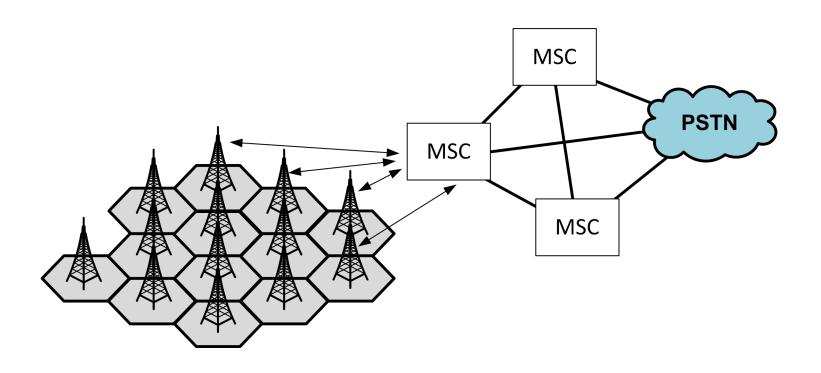

Primeira Geração

- Nos anos 50, sistema "apertar para falar"
 - Único transmissor localizado no topo de edifícios
 - Único canal para transmissão e recepção

 - 23 canais ainda era muito pouco e muitas vezes os desativa o rea muito pouco e muito pouco e mais ainda era muito pouco e muito pouco e mais ainda era muito pouco e wobile Telephone System - IMTS)
 - Dois canais: um para transmissão e outro para recepção
 - Não havia mais a necessidade do botão!
 - Presença de 23 canais para comunicações simultâneas

Sistema Avançado de Telefonia Móvel (AMPS)

- Advanced Mobile Phone System (AMPS)
 - Regiões geográficas são divididas em células
 - · Frequências não são reutilizadas em células adjacentes
 - Para mais usuários, células menores podem ser usadas

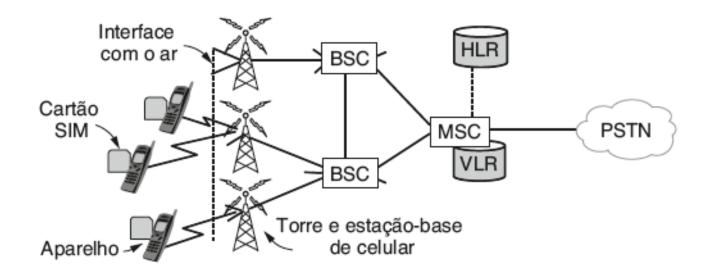


Reuso de frequências permite aumento da capacidade do sistema

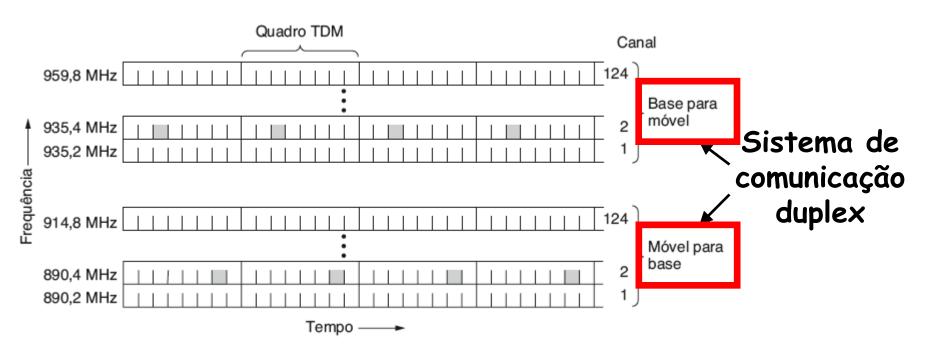
Topologia Celular

- · Centro de cada célula
 - Estação base: Computador + transmissor/receptor
- Cada estação base
 - Comunicação com o centro de comutação móvel (Mobile Switching Center MSC)
- MSC
 - Comunicação com ambos as estações base e com a rede de telefonia pública

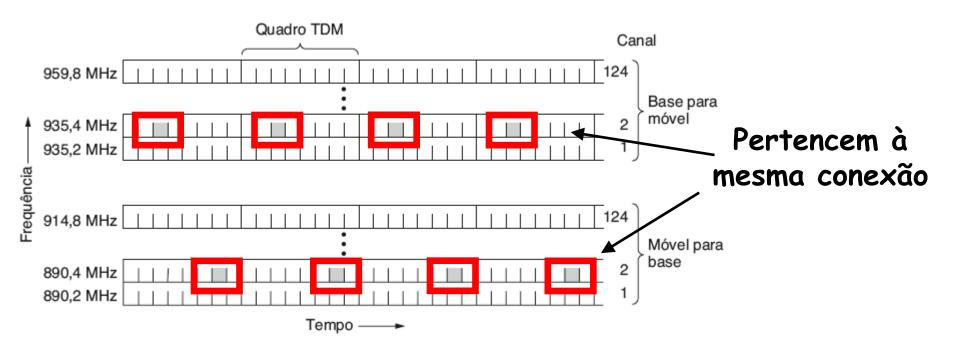
Topologia Celular



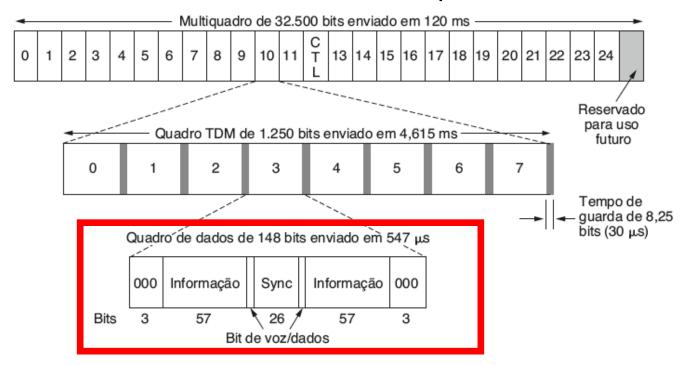
Segunda Geração


- Segunda geração: Voz passou a ser digital
 - Permite aumento de capacidade
 - Digitalização e compactação
 - Permite maior segurança
 - Sinais de voz e controle podem ser criptografados
- Como não havia padronização, vários sistemas foram desenvolvidos, entre eles:
 - GSM (Global System for Mobile Communications)
 - · Mistura de TDM com FDM
 - CDMA (Code Division Multiple Access)

- Topologia da rede parecida com a 16
 - Introdução do cartão SIM
 - Ativa o aparelho e mantém informações pessoais para identificação do usuário e codificação das conversas
 - Introdução do BSC (Base Station Controller)
 - · Controla os recursos de rádio e cuida do handoff
 - Introdução do VLR (Visitor Location Register)
 - · Mantém banco de dados de aparelhos nas vizinhanças
 - Introdução do HLR (Home Location Register)
 - Mantém banco de dados com última localização conhecida dos aparelhos


Topologia da rede parecida com a 16

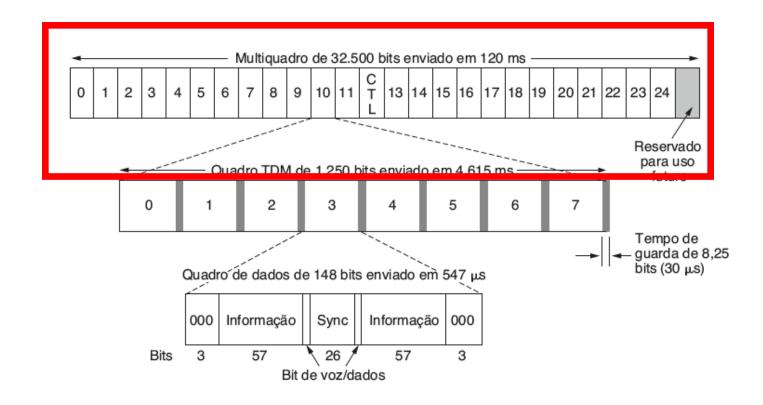
- Usa 124 canais de frequência (FDM)
 - Cada canal usa 8 slots TDM
 - Faixas de 900, 1800 e 1900 MHz



- Usa 124 canais de frequência (FDM)
 - Cada canal usa 8 slots TDM
 - Faixas de 900, 1800 e 1900 MHz

Quadro GSM

- · Informação
- Sync: Sincroniza os nós
- Bit de voz e dados: Indica o tipo da informação
- · 000: Marcação de início e fim do quadro



Quadro GSM

Multiquadro

- Slot 12: Controle

- Slot 25: Reservado para uso futuro

Terceira Geração

- Voz e Dados Digitais
 - Tráfego de dados já ultrapassa o de voz na rede fixa
- Serviços básicos pretendidos no Projeto IMT-2000
 - Transmissão de voz em alta qualidade
 - Serviço de mensagens
 - E-mail, fax, SMS, chat
 - Serviços multimídia
 - Música, vídeos, filmes, televisão
 - Acesso à Internet
 - · Web, inclusão de áudio, vídeo

Terceira Geração

- Propostas IMT
 - WCDMA (Wideband CDMA)
 - CDMA2000
 - Todos os dois usam CDMA de banda larga e devem ser compatíveis com a base instalada (GSM)

Soft Handoff

- · Salto suave entre as estações-base
 - (a) antes, (b) durante e (c) depois

Material Utilizado

Capítulo 2 do Livro "Computer Networks", Andrew S.
 Tanenbaum e David J, Wetherall, 5a. Edição, Editora
 Pearson, 2011

Leitura Recomendada

Capítulo 2 do Livro "Computer Networks", Andrew S.
 Tanenbaum e David J, Wetherall, 5a. Edição, Editora
 Pearson, 2011