

Circuitos Lógicos

Aula 9 cruz@gta.ufrj.br http://gta.ufrj.br/~cruz

Na última aula

- Universalidade NAND
- High Z
- Don't care

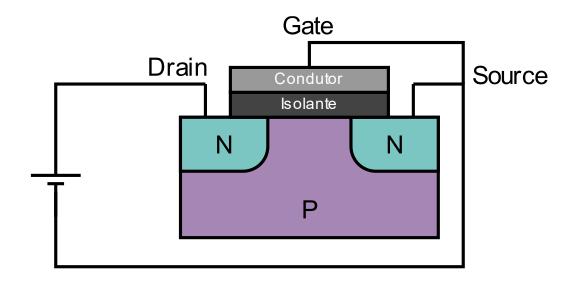
Hoje

- Memória
 - Propriedades gerais
 - Volatilidade
 - Mutabilidade
 - Acesso
 - □ Tipos existentes no mercado
 - Fita (velharia)
 - Disco rígido
 - SRAM
 - DRAM

Hoje

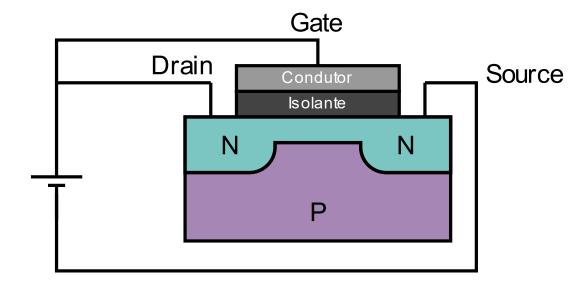
- Memória
 - Propriedades gerais
 - Volatilidade
 - Mutabilidade
 - Acesso
 - □ Tipos existentes no mercado
 - Fita (velharia)
 - Disco rígido
 - SRAM
 - DRAM

Atenção


Hoje teremos uma pequena carga de Física III, Cálculo II e Cálculo III.

Pedimos desculpas pelo incômodo.

Transistor: como era mesmo?


- Tensão no gate controla a corrente entre drain e source
- Tensão baixa em drain
 - Corrente não consegue passar de N para P
 - Elétrons não passam de P para N
 - □ Transistor está em aberto
 - □ Não há corrente

Transistor: como era mesmo?

- Tensão no gate controla a corrente entre drain e source
- Tensão alta em drain
 - Elétrons se acumulam e criam um canal N
 - □ Transistor está fechado
 - ☐ Há corrente

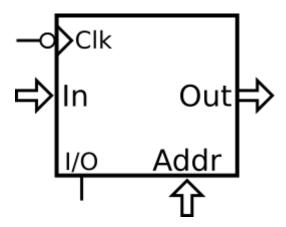
Palavra

Bit, byte e palavra

- Bit
 - □ Informação binária
 - 0 ou 1
- Byte
 - □ Oito bits
 - De 0 a 255 (111111111₂ ou FF₁₆)
- Palavra
 - □ Unidade de informação associada a uma determinada arquitetura
 - 8 bits
 - 16 bits
 - 32 bits
 - 64 bits

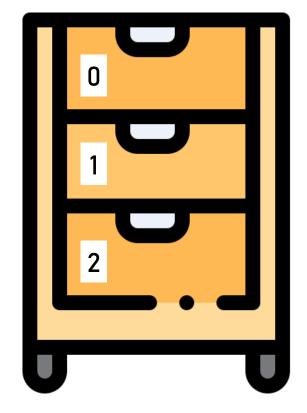
Palavra de memória

- A unidade básica de leitura/escrita na memória
- Geralmente é a unidade básica de endereçamento



Memória

Módulo de memória


- Recebe um **endereço** em Addr
- Recebe uma operação I/O
 - □ Se escrita (I)
 - Grava a palavra em In no endereço indicado por Addr
 - □ Se leitura (O)
 - Ignora In
 - Coloca a palavra do endereço em Out

Memória enquanto gaveteiro numerado

- Gaveta tem tamanho fixo
 - □ Palavra
- Cada gaveta tem **endereço** único
- Usuário armazena informação em gaveta
 - □ Escrita
- Usuário recupera informação em gaveta
 - Leitura

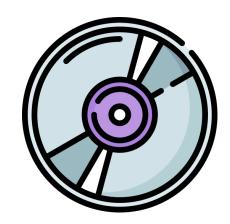
Propriedades importantes

Volatilidade

- Memória volátil
 - Necessita alimentação para continuar armazenando informação
 - "Esquece" quando desligada
- Memória não-volátil
 - ☐ Interrupção de alimentação não apaga informação
 - Sempre lembra

Volatilidade

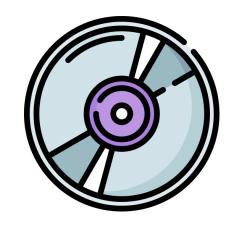
- Memória volátil
 - Necessita alimentação para continuar armazenando informação
 - "Esquece" quando desligada
- Memória não-volátil
 - ☐ Interrupção de alimentação não apaga informação
 - Sempre lembra



Se uma "lembra" sempre e a outra "esquece", por qual motivo usar a que esquece?

Mutabilidade

- Read Only Memory (ROM)
 - Escrita no momento de fabricação
 - □ Não aceita mudanças nos dados
- Programmable Read Only Memory (PROM)
 - □ Escrita por usuário
 - Não aceita mudanças nos dados
- Erasable Programmable Read Only Memory (EPROM)
 - Escrita por quem comprou
 - Apagável (geralmente com luz ultra-violeta)
- Electrically Erasable Programmable Read Only Memory (EEPROM ou E²PROM)
 - Escrita por quem comprou
 - □ Apagável com eletricidade



Todas ROM são não-voláteis

Mutabilidade

- Read Only Memory (ROM)
 - Escrita no momento de fabricação
 - □ Não aceita mudanças nos dados
- Programmable Read Only Memory (PROM)
 - ☐ Escrita por usuário
 - Não aceita mudanças nos dados
- Erasable Programmable Read Only Memory (EPROM)
 - ☐ Escrita por quem comprou
 - □ Apagável (geralmente com luz ultra-violeta)
- Electrically Erasable Programmable Read Only Memory (EEPROM ou E²PROM)
 - Escrita por quem comprou
 - □ Apagável com eletricidade

Se uma é facilmente apagável e eu posso fazer tudo, por qual motivo uso as outras?

Acesso

- Aleatório Random Access Memory (RAM)
 - □ Tempo de acesso não depende do endereço a ser acessado
 - Tanto para leitura quanto para escrita
- Linear
 - □ Tempo de acesso depende do endereço a ser acessado
 - Tanto para leitura quanto para escrita

Se uma é facilmente acessável, por qual motivo uso a outra?

Acesso – analogia do baralho

Em ambos os casos, alguém deve encontrar uma carta de baralho escolhida por outro alguém

- Acesso aleatório
 - □ Baralho ordenado
 - Baralho disposto sobre mesa

Encontrar qualquer carta específica demora sempre o mesmo tempo

- □ Baralho desordenado
- □ Cartas empilhadas

Encontrar qualquer carta específica demora tempos diferentes

Acesso

- Aleatório Random Access Memory (RAM)
 - □ Tempo de acesso não depende do endereço a ser acessado
 - Tanto para leitura quanto para escrita
- Linear
 - □ Tempo de acesso depende do endereço a ser acessado
 - Tanto para leitura quanto para escrita

Se uma é facilmente acessável, por qual motivo uso a outra?

Importante notar

- Tecnologias diferentes produzem combinações diferentes
 - □ Volatilidade
 - Mutabilidade
 - □ Acesso
 - □ Custo
- Nem todos os casos de uso possuem os mesmos requisitos

Importante notar

- Tecnologias diferentes produzem combinações diferentes
 - □ Volatilidade
 - Mutabilidade
 - □ Acesso
 - □ Custo
- Nem todos os casos de uso possuem os mesmos requisitos

Computadores usam uma "hierarquia de memória"

Memórias diferentes usadas para propósitos diferentes

Mídia magnética

Campo magnético

- Movimento de cargas gera um campo magnético
 - □ Toda corrente gera um campo magnético em volta do fio
 - ☐ (Regra da mão direita)
- Partículas carregadas em movimento sofrem uma força causada por campos magnéticos

Movimento de partícula carregada afeta outras partículas carregadas

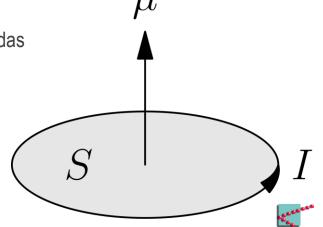
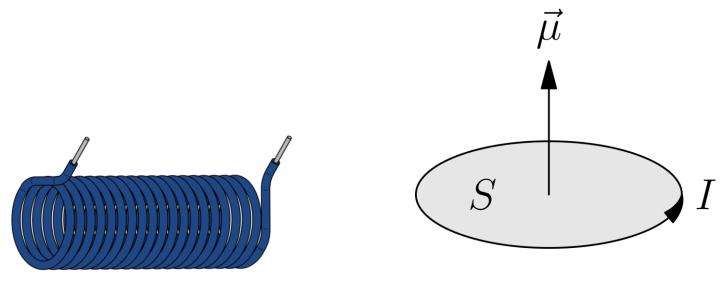
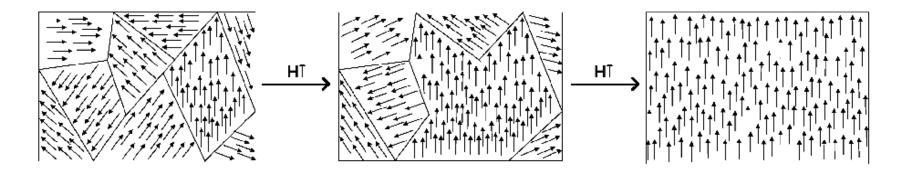



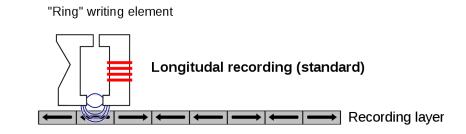
Imagem retirada da wikipedia

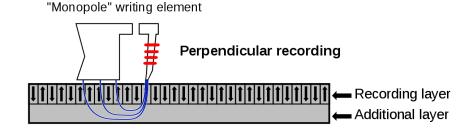
Campo magnético


- Toda corrente elétrica gera um campo magnético em volta do fio
 - Capaz de influenciar outras cargas em movimento

Magnetismo dos materiais

- Em alguns materiais movimento de elétrons gera um campo magnético em volta do átomo
 - □ Momento magnético: força e orientação do campo magnético gerado por um corpo
- Em alguns materiais, campos "se alinham" com campo magnético externo
 - □ E continuam magnetizados


Magnetismo dos materiais


- Corrente elétrica forte o suficiente pode magnetizar material
- Corrente elétrica fraca o suficiente pode "medir" o magnetismo do material

Armazenamento magnético

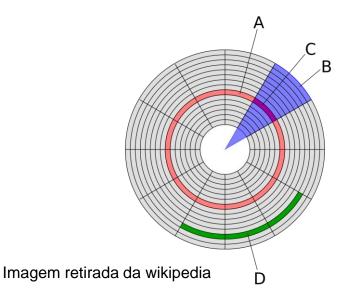
- Corrente elétrica forte o suficiente pode magnetizar material
- Corrente elétrica fraca o suficiente pode "medir" o magnetismo do material
- Ideia
 - Magnetizar material
 - Direção do campo
 magnético indica se 0 ou 1*

Fita magnética (velharia)

- Fita plástica coberta de material magnético
- Cabeçote de gravação emite campo eletromagnético
 - Campos magnéticos são retidos por cada pedaço da fita
- Cabeçote de leitura detecta campos magnéticos
 - Campos magnéticos são emitidos pela fita
- Primeiros modelos não podiam ser re-gravados

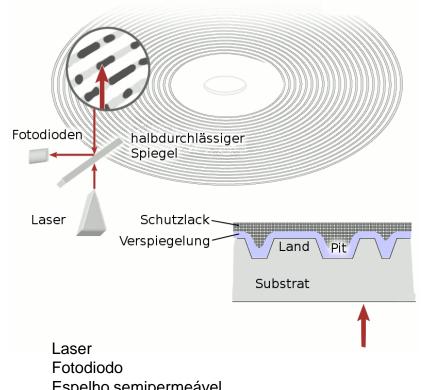
Disco rígido

- Disco coberto de material magnético
- Campos magnéticos escritos são retidos pelo disco
- Campos magnéticos são lidos pelos leitores
- Pode ser reescrito



Atenção

- Nas fitas magnéticas, os dados são organizados em formato de fita
- Nos discos, em trilhas
 - □ A: trilha
 - □ B: Setor (geométrico)
 - □ C: Setor (armazenamento)
 - □ D: Cluster



Mídia óptica

Reflexão

- Materiais podem refletir ou não
 - Possível fazer uma mídia que represente 0's ou 1's a partir reflexão/não reflexão*

Espelho semipermeável Veniz protetor Camada reflexiva

Imagem retirada da wikipedia

Codificação

- Leitor
 - □ Troca "land" para "pit" significa 1
 - ☐ Ausência de troca significa 0

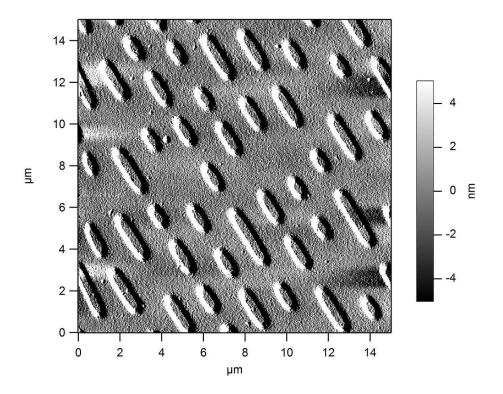


Imagem retirada da wikipedia

Gravação, regravação

- Inicialmente, processo de gravação era industrial
- Depois, CDs virgens podiam ser feitos em gravadores domésticos
 - Camada reflexiva queimada por gravadores
- Mais tarde, CDs regraváveis chegaram ao mercado
 - Camada reflexiva podia ser derretida até que voltasse ao estado inicial

Queima e derretimento em escala microscópica

Imagem retirada da wikipedia

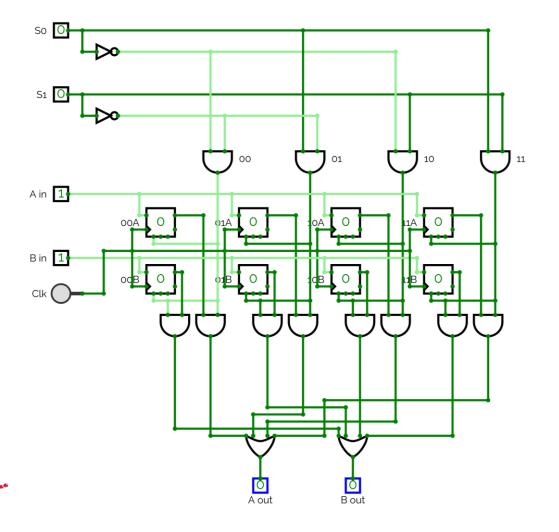
Memórias puramente eletrônicas

Partes mecânicas

- Partes mecânicas são lentas
 - □ Cabeçotes
 - □ Discos
 - ☐ Canhões de leitura
- Partes mecânicas são pouco precisas
 - Limitam o tamanho do equipamento
- Partes mecânicas geralmente forçam acesso sequencial
 - □ Endereçamento se dá por movimentação de algum componente

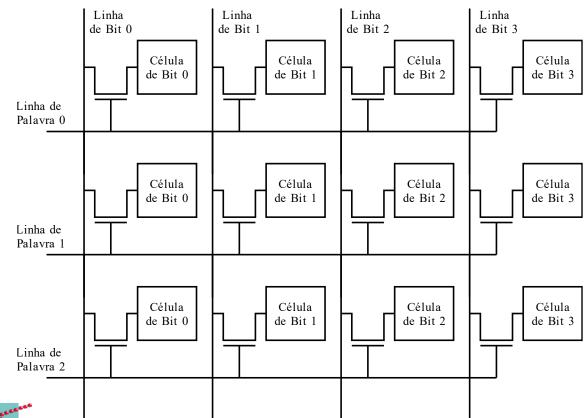
Memórias sem partes mecânicas

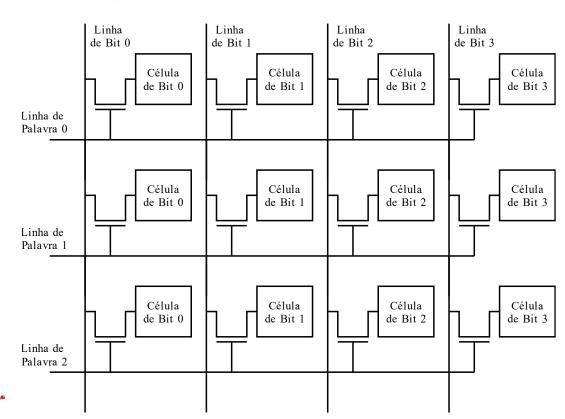
- Apenas semicondutores e outros componentes eletrônicos
- Endereçamento eletrônico
 - □ Portas lógicas decidem qual é o endereço acessado
 - Endereços acessados de maneira aleatória!


Célula de bit (bit cell)

- Armazena exatamente um bit
 - Ou seja, unidade atômica de armazenamento
- Fica ativa para leitura/escrita quando sua palavra está ativa
- É lida/escrita junto com sua palavra
- Pode ser feita de diversas maneiras diferentes

Endereçamento

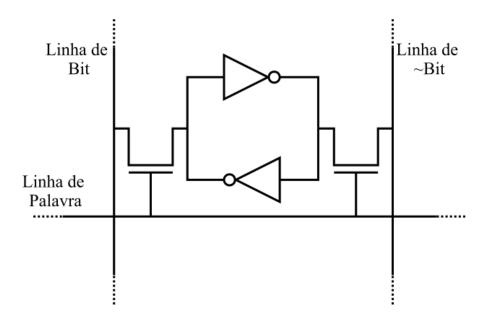

- Cada "linha de palavra" é ativa em um mintermo possível das entradas de endereçamento
- Rede de portas liga a entrada e saída do bit correspondente às entradas e saídas do módulo
- No exemplo temos FFs, mas podemos ter outra célula de bit


Endereçamento

- Linha de palavra
 - Ativa em um mintermo possível das entradas de endereçamento
 - Seleciona todos os bits daquela palavra
- Linha de bit
 - ¬ Recebe um bit
 - Leitura/escrita
 - Pode ser passagem para várias palavras diferentes
 - Ativas em momentos diferentes

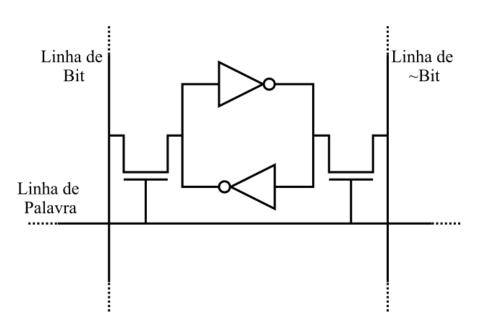
Random Access Memory (RAM)

- Tempo de acesso a endereços de memória é o mesmo para endereços diferentes
- Possível por causa do chaveamento eletrônico
 - □ Transistores e portas lógicas
- Normalmente, transistor fica aberto e é fechado quando bit deve estar ativo

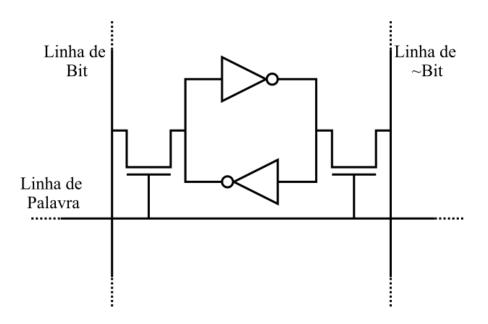


Static Random Access Memory

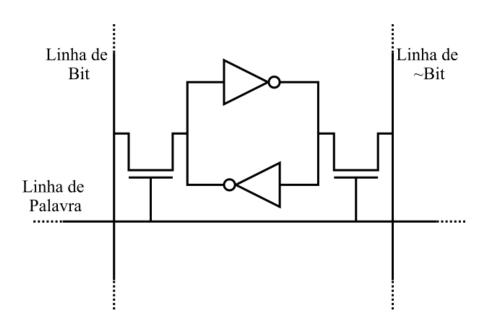
SRAM: portas lógicas


- FF é um tipo de SRAM!
 - ☐ Há tipos mais simples

SRAM com NOT: leitura


- Duas portas NOT "fracas" em realimentação
 - Valor é armazenado de um lado
 - Complemento é armazenado do outro

SRAM com NOT

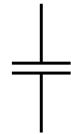

- Linha de palavra = 1
 - □ Transistores fecham circuito
 - Valor aparece na linha de bit
 - Complemento aparece na linha de ~bit

SRAM com NOT: escrita

- Linha de palavra = 1
 - □ Transistores fecham circuito
 - Circuito "forte" coloca valor a ser escrito na linha de bit
 - Circuito "forte" coloca complemento do valor a ser escrito na linha de ~bit
 - □ Valor é armazenado

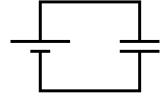
SRAM

- Comparada com as outras
 - Muito rápida
 - □ Muito cara
- Utilização
 - □ Dentro do processador
- Mas por quê "estática"?
 - Memória não precisa ser "lembrada" de seu valor
 - Veremos a seguir uma memória que precisa

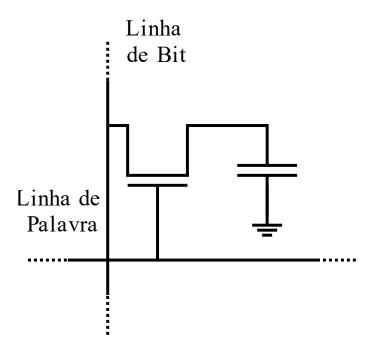


Dynamic Random Access Memory

O capacitor

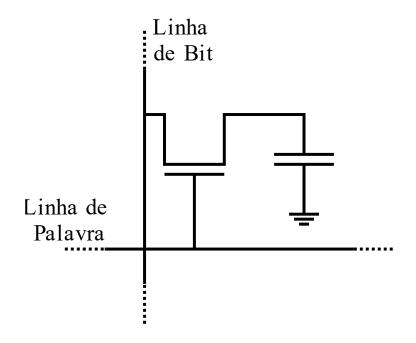

- Duas placas condutoras separadas por um isolante
- Armazena energia na forma de campo elétrico
 - □ Carga
- Funciona como uma pilha recarregável muito simples
 - Descarrega rápido
 - □ Carrega rápido

O capacitor


- Carrega quando ligado em uma fonte
 - □ Rápido
- Mantém a tensão quando a fonte vai embora
 - Por um curto período de tempo
- Descarrega "sozinho"
 - □ Na DRAM comercial, demora 1/16s

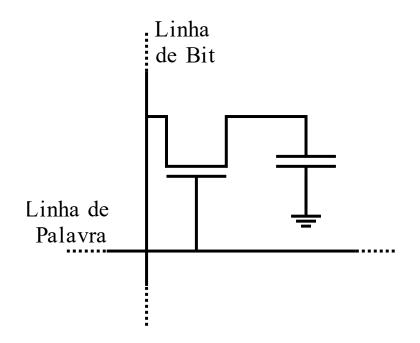
A célula DRAM

Capacitor controlado por um transistor

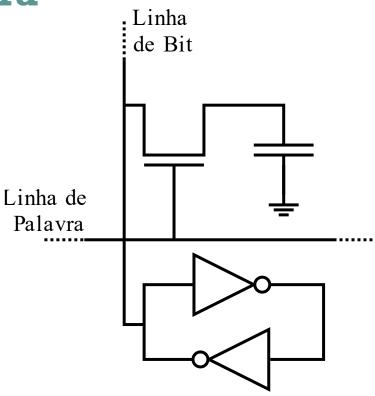


A célula DRAM: escrita

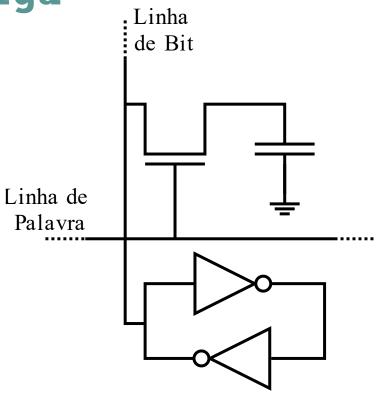
Ativar o transistor


 Colocar o valor 0 ou 1 na linha de bit

A célula DRAM: leitura

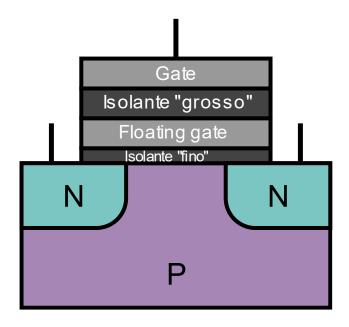

- Ativar o transistor
- Verificar se o valor é 0 ou 1
 - □ Pode estar fraquinho

A célula DRAM: leitura


- Colocar nas portas 0,5 Vcc
- Ativar o transistor
 - Valor fraquinho do capacitor vai ativar realimentação nas portas
 - □ Portas vão reforçar leitura

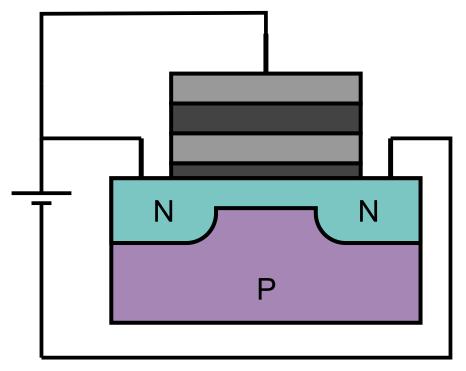
A célula DRAM: recarga

- Colocar nas portas 0,5 Vcc
- Ativar o transistor
 - Valor fraquinho do capacitor vai ativar realimentação nas portas
 - Portas vão carregar capacitor

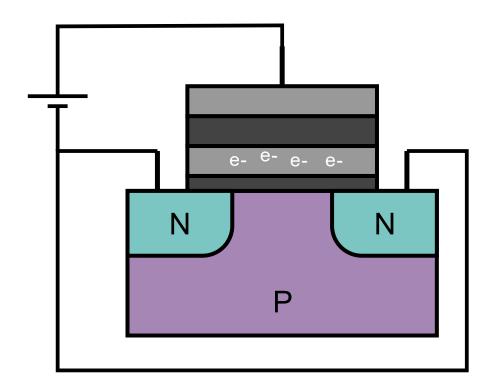


Memória Flash

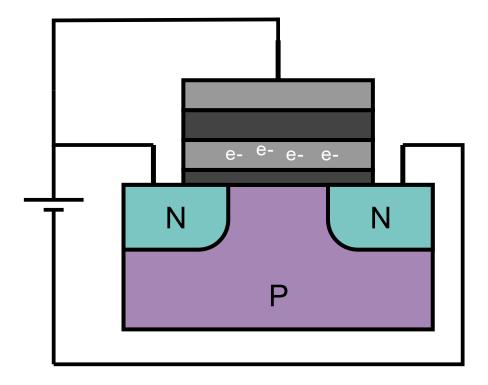
Floating Gate Transistor*


- Gate tem uma placa condutora separada por dois isolantes
 - □ Um é mais fino que outro

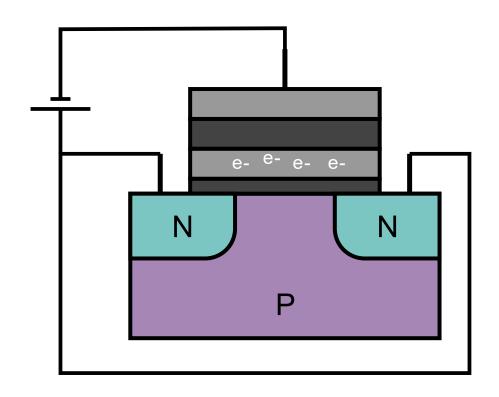
Estado inicial: valor lógico 1


- Transistor está em 1
- Pequena tensão no gate fecha o transistor
 - Deixa passar corrente

Escrita: hot electron injection


- Se 0:
 - Alta tensão é aplicada entre gate e o resto do transistor
 - Elétrons "pulam" do substrato e ficam presos no floating gate
 - Agora, campo elétrico torna mais difícil o transistor deixar passar corrente
- Se 1:
 - □ Nada

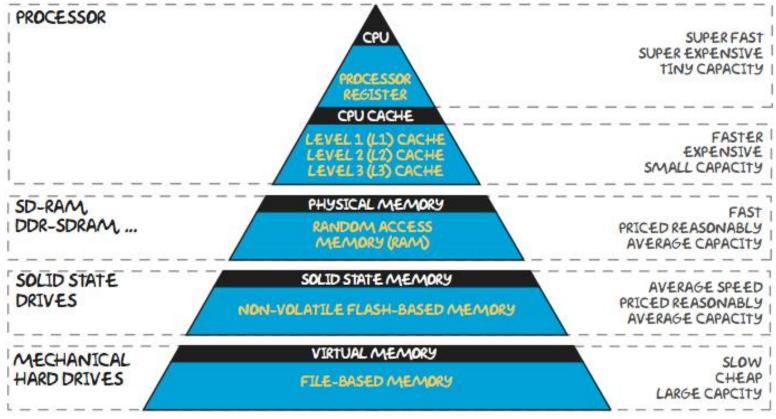
Estado final: valor lógico 0


- Transistor está em 0
- Pequena tensão no gate não fecha o transistor
 - □ Elétrons não deixam
 - □ Corrente não passa

Apagamento: reverter tensão alta

- Alta tensão reversa é aplicada entre gate e o resto do transistor
 - □ Elétrons saem do floating gate
 - Transistor volta ao estado inicial
- Deve ser feito com todos os transistores de um mesmo bloco

Hierarquia de memória



Hierarquia de memória

- Nenhuma tecnologia é sempre ótima
- Dividir situações
 - Usar tecnologia diferente em cada situação

Hierarquia de memória

Conclusão

- É importante lembrar dados
- Requisitos variam
 - □ Quantidade de dados
 - □ Tempo de acesso
 - □ Preço por bit
 - □ Volatilidade
- Soluções variam
 - □ Disco rígido
 - □ SRAM
 - DRAM
 - □ Flash
 -

Próxima aula

■ Latch e flip-flop

Créditos

Os ícones desta apresentação foram feitos por Freepic e retirados de <u>www.flaticon.com</u>

www.gta.ufrj.br