

I. INTRODUCTION
Despite the great success, the Internet has difficult problems

to be solved without performing a fundamental change into its
architecture. It's not easy to change, for example, the
semantics of location and identification of IP to solve mobility
problems in the network, or to adapt stronger notions of
identity on the Internet to solve its security problems.
However, virtual environments permit to carry out tests of
new protocols and alternatives to IP into production
environments. These new solutions can be implemented using
the infrastructure of real networks, which deal with production
traffic. This happens because virtualization allows the protocol
stack used in each virtual network to be completely different
from that of the actual network, which could still run the
TCP/IP and other Internet protocols as we know them. So, it is
important to identify which virtualization platforms have good
performance of CPU, RAM memory access, and I/O network.

II. XEN VERSUS KVM
We have performed many real tests to qualitatively compare

the performance of RAM memory access, CPU and I/O
network of Xen 4.2 release, configured in routed mode, and
KVM, which are hardware virtualization platforms. KVM is a
virtualization platform that uses the open source machine
emulator and virtualizer QEMU to abstract the native
instruction set and create a map between the instructions of the
guest OS and the host OS. Thus, each instruction sent by VMs
(Virtual Machines) to the hardware is intercepted and handled
by the QEMU emulator at runtime [1]. Xen is a hardware
virtualization platform that allows the creation of virtual
machines using the para-virtualization technique. In this
technique, the hypervisor does not simulate physical devices
to the VMs. For this reason, each virtual machine OS is
changed to be executed with a privilege level that allows them
to know all hardware addresses, including the addresses of
other virtual domains. However, the device drivers of
virtualized OSes interact with Xen hypervisor, which enables
them to make direct controlled access to the physical devices.
The hypervisor operates, for example, to ensure that each VM
allocates only the amount of memory, CPU, and disk set for
itself when it was created.

III. RESULTS
We have performed tests using Dell PowerEdge 2950

servers with Quad-Core Intel Xeon processors, 4 MB caches
per core processor, 8 GB RAMs, 876 GB hard drives,
CentOSes release 6.4, 64-bit Linux kernels 2.6.32-358.2.1.
Each experiment was performed 15 times, and a 95%
Confidence Interval (CI) for the mean was also obtained.

First, we have performed CPU and memory tests to identify
the hypervisor with lower overhead over them. For the CPU
tests, we use the Super Pi [2] to calculate Pi to 222 decimal
digits. The memory tests used the STREAM benchmark [3] to
measure the data transfer rate of one memory location to
another, while complex arithmetic operations were performed.

Table 1: CPU and memory test results.
Time (s) Rate (Mbps)

Mean CI Mean CI
Native Linux 74 0.1 5309 0.3

KVM 77 0.1 5181 2
Xen 323 4.6 4293 70

Table 1 shows that KVM, despite using QEMU to
completely virtualize the hardware, performs better than Xen.
This probably happens because KVM makes the Linux kernel
act as a hypervisor, since the KVM code is integrated into the
kernel code when KVM is enabled. At last, the network
overhead was evaluated. We have used the Iperf tool in a
scenario with three physical machines: one with/without a VM
(KVM/Xen) to route packets, and the others running native
Linux to generate and receive traffic.

Table 2: Network test results.

Transmission rate (Mbps) Reception rate (Mbps)

 Mean CI Mean CI
Native Linux 939 0.1 903 2

Standard KVM 168 0.5 139 0.2
VIRTIO KVM 939 0.1 888 0.7

Xen 880 1.1 553 6.9

We enabled the VIRTIO lib [4] to virtualize I/O operations

into KVM. Thus, I/O network operations of KVM were
performed by the kernel forwarding mechanism as if virtual
interfaces were physical network interfaces. Results indicate
that VIRTIO KVM performs better than Xen and standard
KVM.

ACKNOWLEDGMENTS
The authors would like to thank Faperj and CNPq for

partially funding this research.

REFERENCES
[1] Red Hat, Inc., “KVM (Kernel Virtual Machine) documentation”, April

2013. Available: http://www.linux-kvm.org/page/Documents.
[2] wPrime Systems Inc., “Super PI: A single threaded benchmark that

calculates pi to a specific number of digits,” December 2011. Available:
http://www.superpi.net.

[3] J. D. McCalpin, “STREAM: Sustainable memory bandwidth in high
performance computers,” January 2013. Available:
http://www.cs.virginia.edu/stream.

[4] VIRTIO, “VIRTIO: Using virtio_net for the guest NIC: throughput tests
using Iperf,” May, 2013. Available: http://www.linux-
kvm.org/page/Using_VirtIO_NIC.

Evaluating Xen and KVM Virtualization Platforms
Leopoldo A. F. Mauricio, Globo.com Inc., and Marcelo G. Rubinstein, Programa de Pós-Graduação

em Engenharia Eletrônica (PEL), Universidade do Estado do Rio de Janeiro, RJ, Brazil

{leomauricio@gmail.com, rubi@uerj.br}

