Post-IP technologies
virtualization and security

Guy Pujolle
Virtualization for a post-IP network
Intel would like to propose a generic router

Intel proposes to have a generic hardware with virtual network operating system

A router can support simultaneously CISCO IOS and Juniper Junos and Alcatel OS and Nortel OS, etc.

Cisco reaction was to virtualize the different releases of IOS.
Virtual router

Network A

Network B

Network C

Network D
Virtualization of the Control Plane

Control algorithms

<table>
<thead>
<tr>
<th>NOS Control 1</th>
<th>NOS Control 2</th>
<th>NOS Control 3</th>
<th>NOS Control 4</th>
<th>NOS Control 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hypervisor
Why virtualization?

- A better use of the resources
- Sharing of the resources for the routing schemes
- Security of the machines against attacks
- Isolation of the traffic in the virtual machines

- Management and control
- Need an hypervisor
- How to move the virtual entities (router, etc.)
Virtualization of the Management Plane

NM System 1 NM System 2 NM System 3 NM System 4 NM System 5

Hypervisor
Protocol virtualization

A = IP stack is mandatory in the core network
within the virtual protocol
Virtualization of the Data Plane

Peripheral systems

- Linux Protocol stack 1
- Linux Protocol stack 2
- Linux Protocol stack 3
- Linux Protocol stack 4

Hypervisor
Virtualization of the Data Plane
Virtualization of the protocols
Post-IP security through a strong authentication and closed traceability
Why two-factor authentication is needed

Password issues

- **Attacker**s can sniff out what's typed on keyboards, simply by recording keystroke sounds
 - Recommendation to enhance security with **two-factor authentication** that combines passwords with one-time-password tokens or **smartcards**, or with biometric recognition, like fingerprint readers

- A well known two-factor authentication device is the RSA SecurID token
 - This token works with a proprietary authentication infrastructure called ACE.
Two-factor authentication

Our proposal

- Tokens are based on the Java Card technology

- They execute Java applications supported by the open code project *OpenEapSmartcard*.

- The authentication platform is fully based on IETF standards (mainly the *Extensible Authentication Protocol*, EAP), no proprietary features

- Our authentication scenario deals with the classical SSL/TLS protocol (more precisely EAP-TLS), which is widely deployed through the WEB, and which relies on *Public Key Infrastructure* (PKI)
What is EAP?

EAP is an IETF standard

- The Extensible Authentication Protocol (EAP) was introduced in 1999, in order to define a flexible authentication framework.
 - **EAP**, RFC 3748, "Extensible Authentication Protocol, (EAP)"
 - **EAP-TLS**, RFC 2716, "PPP EAP TLS Authentication Protocol"
 - **EAP-SIM**, RFC 4186, "Extensible Authentication Protocol Method for Global System for Mobile Communications (GSM) Subscriber Identity Modules (EAP-SIM)"
What is EAP?

EAP Message Format.
What is EAP?

An *Esperanto* for Access Control in IP infrastructures.

- **Wireless LAN**
 - Wi-Fi, IEEE 802.1x
 - WiMAX mobile, IEEE 802.16e, PKM-EAP

- **Wired LANs**
 - ETHERNET, IEEE 802.3
 - PPP, RFC 1661, “The Point-to-Point Protocol (PPP)”

- **VPN (Virtual Private Network) technologies**
 - PPTP, RFC 2637, "Point-to-Point Tunnelling Protocol"
 - L2TP, RFC 2661, "Layer Two Tunnelling Protocol"
 - IKEv2, RFC 4306, "Internet Key Exchange Protocol"

- **Authentication Server**
 - RADIUS, RFC 3559, “RADIUS (Remote Authentication Dial In User Service) Support For Extensible Authentication Protocol (EAP)”
 - DIAMETER, RFC 4072, "Diameter Extensible Authentication Protocol Application”

- **Voice Over IP**
What is EAP?

EAP components

- **According to RFC 3748, EAP implementations conceptually consist of the four following components:**
 - 1- The lower layer is responsible for transmitting and receiving EAP frames between the peer and authenticator.
 - 2- The EAP layer receives and transmits EAP packets via the lower layer, implements duplicate detection and retransmission, and delivers and receives EAP messages to and from EAP methods.
 - 3- EAP peer and authenticator layers. Based on the Code field, the EAP layer de-multiplexes incoming EAP packets to the EAP peer and authenticator layers.
 - 4- EAP methods implement the authentication algorithms, and receive and transmit EAP messages. **EAP methods can be implemented in Java Card systems.**
What is EAP?

EAP Java Card Technology

Full Software Implementations

Partial Software Implementations + EAP JavaCard Technology

Mainframe
Why open Java Card technology code?
- Internet and WEB technologies are based on *open code*.
- No proprietary features.
- Good security principle that enables code reviewing.
- Fair choice among multiple Java Card systems.
Architecture Overview
The platform
Summary

- We have presented two-factor authentication tokens, based on the Java Card technology.
- We have introduced the open code project *OpenEapSmartcard*, which is used by these tokens.
- We have built an authentication architecture fully based on IETF standards.
- We have shown a real Wi-Fi platform that deals with these technologies.