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Chapter 1

Introduction

The Internet has evolved and deeply changed in the last 40 years. Cur-
rently, the network presents many vulnerabilities and challenges for sup-
porting innovation in the network core. Besides, the network management
by human administrators became costly and prone to failure, and the sim-
ple automation of management through software components may worsen
the problem due to the wide variety of systems and unexpected behaviors.
These are the main reasons for condemning the Internet current architecture
and developing a new one. The goal of Horizon Project [1] is to conceive
and test a new architecture for a post-IP environment. The key features to
design and build this new architecture are the network virtualization and the
piloting system, which cope with the network constraints. This architecture
is intelligence-oriented and based on multi-agent systems in order to guar-
antee an efficient and scalable network management. Besides, it should be
easily implemented, scalable, secure, robust, and should also provide quality
of service on demand. Choosing the virtual network to be used depends on
the context and on the service to be offered.

To reach these goals, we developed an autonomic-oriented architecture to
support self-organized, self-control, and self-secure management. This archi-
tecture is based on the piloting plane, which automatically chooses the best
parameters to optimize the behavior of the network. Indeed, the autonomic-
oriented architecture associates to each network device a situated view used
to determine the context and to choose and optimize control algorithms and
parameters.

Another important concept for post-IP networking used in this project
is the network virtualization, which allows the abstraction of the network as
virtual substrate. A virtual substrate represents a coherent functional group
of instances of virtual routers rather than physical routers. The architecture
proposed in Horizon supports different kinds of virtual networks running over
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the same physical substrate. The developed control and management system
guarantees the efficient use of physical resources, as well as an adequate map-
ping of the virtual resources over the physical resources. Hence, the proposed
architecture provides a background for new environments concerning wire-
less networks, sensor networks, delay tolerant networks, or RFID networks.
Moreover, the proposed architecture also provides the basis for supporting
new proposals for mobility [2], security [3, 4], and content distribution [5, 6],
also in the context of Future Internet.

In this dynamic multi-stack network, the piloting system distributes phys-
ical resources among virtual networks. This allows a service provider to
simultaneously run multiple end-to-end services with different qualities of
service and different securities. Virtual networks are created and destroyed
when necessary. The piloting system associated to network virtualization
allows a better use of physical resources, adapting virtual networks to the
customers.

The teams on Horizon Project developed the basis for a complete pilot-
ing plane to control virtualized environment. Self-piloting is used to facilitate
continuous tuning of the virtual networks, adaptation to unpredictable con-
ditions, and prevention and recovery from failures. The self-piloting scheme
feeds control algorithms with specific information collected with the devel-
oped monitoring modules. The goal of the developed piloting plane is to
obtain the knowledge required to optimize the creation and the destruction
of virtual networks and the distribution of the physical resources. The devel-
oped solution considers aspects such as security, QoS, reliability, robustness,
context, access, service support, self-management, and self control of the
communication resources and services. Therefore, the project Horizon pro-
vided ways for transitioning from a static mono-stack Internet to a dynamic
multi-stack network.

As a summary, this project designed and developed a post-IP architecture
using a piloting plane and virtual networking. To tackle this challenge, multi-
agent systems were used as a modeling foundation. Hence, the proposed
architecture supports human management as well as artificial agents that
work as assistants, problem solvers, planners, etc., using various types of
interaction and coordination. The multi-agent paradigm was selected as the
basis for our solution due to some intrinsic properties of agents, such as
autonomy, proactivity, adaptability, cooperating, and mobility. Moreover,
the notions of agents and organizations and their decentralized and pro-
active nature match well the requirements of large-scale pervasive computing
environments.
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1.1 Report outline

This deliverable presents the results of the Task 4.3 and the final conclu-
sions of the project. This task, based on the requirement analysis produced
by Task 4.1 and on the integration models described in Task 4.2, has the
objective of designing the overall virtualized and autonomous infrastructure
with the piloting system. Task 4.3 presents the final integration results, as
well as the demonstration of some of the main modules developed in Horizon.
Hence, this report presents the ultimate Horizon architecture.

This report addresses the following themes. In Chapter 2, we describe the
Horizon general proposal structure, as well as the developed solutions for each
item. After, in Chapters 3, 4, and 5, we describe some of the last developed
modules, which provide a full integration of the proposed architecture.

Chapter 3 describes a common interface for managing virtual networks
built over different virtualization platforms. Network virtualization is a long-
term challenge due to the inherent difficulty to virtualized I/O devices. There
are different proposals that virtualized networks at different levels such as
Xen, which virtualizes computers, and OpenFlow, which virtualizes net-
work flows. As networks evolve, new scenarios with hybrid virtualization
approaches may appear, introducing a new challenge, which is to allow an
efficient management interface of virtualized networks despite of its individ-
ual components and heterogeneous underlying technologies. In this chapter
we describe the Substrate Abstraction for Virtualized Environments (SAVE),
which is a unified approach to manage virtual networks independently of its
underlying substrate and fills a gap in the management of virtual networks.
We show that a standardized interface allows the proper management of the
virtualized networks, providing a complete interface for network management
for the piloting plane. We perform some experiments to show that the pa-
rameters of different virtualization platforms can be used to generate generic
virtual network control and management parameters.

We also extended the agent modules described in the previous reports in
Chapter 4. Autonomic networks were proposed to deal with management
problems by enabling systems to self-manage. But, in order to perform a
self-management in an optimal, robust and secure way, it is necessary to
have a piloting system. The main goal of a piloting system is to regulate
and adapt the virtual network in response to changing context in accordance
with applicable high-level goals and policies. In this context, this report ex-
tends the self-organizing and normative piloting system to govern the entities
of the network in a decentralized way. Moreover, we provide a simulation
environment that enable users to experiment and observe the network be-
havior in face of the application of different normative and organizational
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configurations of the piloting plane.
Next, Chapter 5 presents an architecture for the deployment of clouds

over virtualized networks. This architecture, conceived within the scope of
the Horizon architecture, was used to build a software infrastructure. This
infrastructure is composed of a network substrate, a set of software tools for
creating virtual networks on demand (autonomic self-management system),
a computational grid, and a workflow management system.

To provide a better comprehension of the final Horizon architecture, in
Chapter 6 we describe some demonstrations that can be performed using the
developed modules. For instance, we provide a prototype to experiment the
use of virtual routers and the Ginkgo platform, when using image processing
workflows, utilized in e-Science applications. We also describe demonstra-
tions using the virtualization tools and the piloting plane simulator. Finally,
Chapter 7 presents the main conclusions of this work and future directions.
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Chapter 2

Horizon general view

The objective of Horizon project is to define an architecture from the
data plane to the knowledge plane via the virtualization, the management,
the control, and the piloting planes. Most of the efforts applied in this project
were focused on the virtualization and the piloting planes. The virtualization
will provide several forwarding planes where different flows will be allocated
depending on control algorithms fed by the piloting plane. The piloting
plane introduces a smart process for optimizing partitioning in the physical
resources and feeding the control algorithms. This architecture also concerns
about fulfilling the user requirements. Therefore, the piloting plane is defined
with strong intelligence schemes and is able to react in real time.

The project was divided into four work packages:

1. The context-aware post-IP architecture (Deliverables D1.1,
D1.2, and D1.3 [7]) - In the first steps of the project, we deter-
mined the main features to develop an autonomic post-IP environment.
Post-IP networks present specific challenges, because, up to now, we
have no definition about what should be the new protocol stack for
the network, or even how the IP could be modified to provide new
functionalities without impacting on the network performance. Hence,
the architecture developed by Horizon should provide support to any
kind of protocol stack that could be developed as an option to IP. One
important characteristic that were observed was that networks must
be aware of their context in order to provide an efficient control and
management. Indeed, the context provides to each node a ‘situated
cognition’ about the network state. This way, the node is able to col-
lect and store only the subset of measures that concerns to its duties
when managing the network. Hence, in this work package, we observed
the main requirements for building a context-aware architecture for a
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new Internet.

2. The virtual network environment (Deliverables D2.1, D2.2,
and D2.3 [7]) - A second working area within Horizon was the de-
velopment of virtualized environments that presented high packet for-
warding performance and high isolation among virtual slices. Virtual
networking enables the sharing of the network equipments between sev-
eral entities in a way that the decisions and the network usage of an
entity do not interfere with the decisions and usage of the other en-
tities sharing the same substrate. Virtual networking allows that the
physical resources are better used, since logical network and physical
equipments are decoupled by the virtualization layer. Hence, it is possi-
ble to change a logical router between different physical routers to make
a preventive maintenance or to reduce power consumption. Although
this is an important feature, it is not the main outstanding characteris-
tic provided by network virtualization. Indeed, network virtualization
allows that different proposals for networks co-exist over the same phys-
ical substrate. Hence: (i) using network virtualization, there is no need
to find a single solution to all Internet problems; (ii) virtualization is
the path for transitioning the current Internet to a new architecture,
because both environments could exist until all devices were updated
to the new version of the protocol stack; (iii) network virtualization
is also the natural path for testing new proposals. Using this tech-
nique, it is possible to verify in large scale if a new proposal is scalable
and correctly implemented. This leads us to another characteristic of
virtual environments, which is the elastic resource allocation. Using
virtualization, it is possible to build a new solution in a small environ-
ment and only extend this environment if the new solution demands
more resources. This avoids high initial costs with infrastructure and
also losses due to an over or underestimation in the equipment require-
ments. Hence, network virtualization is a key feature for supporting
innovation in the network core.

3. The piloting plane (Deliverables D3.1, D3.2, and D3.3 [7]) -
The developed piloting system, used to control and manage the vir-
tual networks, can be seen as an aggregation of two specific planes: a
knowledge plane and an orchestration plane. The knowledge plane is
in charge of recovering the knowledge useful for feeding the control and
management algorithms. The orchestration plane, on the other hand,
is in charge of indicating the course of the virtual network. The ad-
vantage of the piloting system is the possibility to adapt in real time
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through the management and orchestration plane. The piloting pro-
cess aims to adapt the virtual network to new conditions and to take
advantage of the intelligent decisions to alleviate the global network.
Therefore, the role of the piloting system is to govern and adapt the
virtual network in response to changing context in accordance with
applicable high-level goals and policies. It supervises and integrates
all other planes’ behavior, ensuring integrity of management and con-
trol operations. In this context, the use of a multi-agent system per-
mits the achievement of a more attractive orchestration process due to
the following points: (1) each agent holds different processes (dynamic
planners, low coupling); (2) the agents are cooperative and reactive, in
the sense that they are able to use a privileged view of their neighbors
and individual knowledge together. As mentioned, the purpose of the
piloting system is to regulate and integrate the behaviors of the net-
work in response to changing context and in accordance with applicable
high-level norms. Norm is a regulation mechanism that defines a set of
rules to the system agents in order to ensure a social order that enables
the achievement of the global goal of the organization. Our piloting
system can be seeing as a self-organizing control framework into which
any number of network devices can be plugged into or out of in order
to achieve the required service level agreement. Therefore it hosts sev-
eral self-organizing piloting systems each one managed by a piloting
agent. Each agent maintains its own knowledge base consisting of a
set of data models about the physical and virtual devices. In this way,
agents manage virtual devices by following a set of norms and using
a set of knowledge. Moreover, agents can communicate and cooperate
with each other by using behaviors.

4. Piloting the virtual networking environment (Deliverables D4.1,
D4.2, and D4.3 [7]) - This final work package presents as main func-
tionality the integration of all the proposed solutions developed in the
other work packages. The objective of the Work Package 4 is to create
the environment of the piloting system and to supervise the work to
be carried out in WP2 (Virtualization) and WP3 (The Piloting plane).
Besides, the WP4 specifies the service control requirements establishing
the basis for the WP activities in a form of policy based architectures
or prototypical applications. Hence, in this work package we specified
some of the main requirements of the current Internet and we pro-
posed some case studies to evaluate the proposed solutions. We also
designed the overall architecture of Horizon, which considered a local
and a global view. In the local view, we developed and integrated
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local control and management functions. Hence, we developed mecha-
nisms that run inside each node in the network. In the global view, we
developed and integrated algorithms to control the network as whole,
considering the observations made by all nodes. In this sense, we de-
veloped both centralized and decentralized solutions, considering the
use of agents to monitor network nodes and to exchange relevant infor-
mation, considering the situated view of each network element. In this
task, we also prepared demonstrators, to simplify the comprehension
of the developed work. Some of these demos are also available through
videos, available in the project homepage [1]. They can be reproduced
by downloading the developed software and installing then according
the corresponding manuals in an easy way.

Therefore, in this project we used a methodology that has focused in two
main features: the development of an agent-based autonomic piloting system
and of a framework for using virtual networks. The last work package objec-
tive, described in this report, is to fuse both areas in a consistent prototype
that proves the main paradigms proposed in this project. Hence, we devel-
oped a common interface to provide network management and control for
virtual networks using any virtualization platform (Chapter 3) and also ex-
tensions to our autonomic and agent-based environment (Chapters 4 and 5).
Finally we developed testbeds and demonstrators to provide an easy experi-
mentation of the integration of the project results.
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Chapter 3

Common interface for control
and management of virtual
networks

Network virtualization is an approach proposed to increase the network
core support for innovation, which allows that multiple networks coexist over
the same physical substrate [8]. Hence, virtual networks share computational
resources and execute different protocol stacks without interfering with each
other. In this scenario, the ISP role is decoupled into different levels of ser-
vice provision [9]. There are infrastructure providers, which manage physi-
cal networks, the virtual network providers, which allocate slices for virtual
networks over different physical infrastructure domains, and the network op-
erators, which contract virtual network providers to deploy their services.

The virtualization technique allows the abstraction of computational re-
sources, so multiple logical environments can execute and share the same
physical infrastructure. At the same time that network virtualization enables
innovation, it introduces new problems, mainly related to the operation of
virtual networks and how to share resources and keep isolation [10]. Indeed,
the management of virtual networks faces challenges, because virtualization
technologies available today differ deeply in their architectures [11]: some are
based on the notion of complete virtual machines, such as Xen [12], others
in the concept of containers, such as OpenVZ [13], while others are based
in a completely different approach, such as OpenFlow, in which the network
control is centralized and the data plane is shared by all virtual networks [14].
Another aspect of the network virtualization is the emerging cloud comput-
ing scenario [15]. In cloud computing, data centers use virtualization to slice
its resources among their customers, each with different requirements. Dif-
ferent clouds can be interconnected and each cloud vendor can implement
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its own virtualization solution. For instance, a virtual network operator can
contract virtual network elements belonging to different cloud providers and
use service providers to interconnect them.

Virtual network operators should not deal with the various subtleties of
the different network virtualization techniques. Indeed, the virtual network
operators should specify virtual networks only in terms of virtual topology
and node capacity. The management of the different virtual network plat-
forms and the mapping of the abstract management primitives into the real
primitives, which are platform specific, should be done by underlying tools
of the virtual network provider.

We propose a common interface for managing virtual networks deployed
over different virtualization platforms called the Substrate Abstraction for
Virtualized Environments (SAVE). Since it is hard to provide a single inter-
face to manage all specific parameters of all virtualization technologies, we
define an abstraction level that specifies the main management primitives
and virtual network dimensions. SAVE takes into consideration all the dif-
ferent underlying virtualization substrates and allows network operators to
simply operate networks despite of their particular characteristics.

The main contributions of SAVE are summarized as follows:

• SAVE introduces an abstraction layer that allows the management of
virtual networks composed of virtual routers and virtual servers created
with different platforms;

• SAVE defines a set of dimensions which describe any virtual network
element as well as high-level primitives to manage any virtual network;
and

• the architecture of SAVE is designed to be extensible to new virtual-
ization platforms and to allow the support of multiple virtualization
solutions at the same time.

Our proposal was implemented and tested, providing compatibility to
Xen and OpenFlow platforms. We developed the modules that model the
management primitives of these two platforms into the defined high level
abstraction layer. Experiments show that the proposed mapping scheme
guarantees a high conformance between the values contracted by the virtual
network operator and the resources provided by the infrastructure provider.
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3.1 State of art

The development of an interface for configuring virtual machines created
under different technologies has been a growing concern in the last years.
Virtual machines, besides being used in data centers, are also the substrate
for creating virtual networks. The purpose of a virtual network is to provide a
“soft networking environment”, which means flexible resource management,
configurable topology, and programmable network architecture [16]. Manag-
ing all this parameters simultaneously in different virtualization platforms,
however, is a huge challenge.

Libvirt is a virtual machine management library that provides an interface
to different hypervisors [17]. This library provides primitives such as turning
a node on and off, migration, and monitoring. Another similar approach was
proposed by Peng et al., which provides virtual machine management func-
tions based on an agent platform [18]. Although these approaches provide
primitives for different hypervisors, they do not deal with virtualized net-
work functions, such as setting virtual network topologies. Moreover, these
approaches do not intend to create a common interface for any virtualization
platform, but a set of important primitives of each platform.

Leon-Garcia et al. developed a system based on the MIBlet concept for
effectively designing and managing virtual networks [16]. The key idea is to
logically split the Management Information Base (MIB) of a network element
into multiple MIBs, called MIBlets. The resource agent running in each
network node then provides a selective view of the element to each customer
network resource management system, which is responsible for managing
the virtual network. Then, the management system controls the access of
the customers to the physical nodes, while also offers abstract and selective
views of the physical network resources allocated to the virtual network.
This system creates partitions in the physical shared resources, which are
the ports, the address space, and the bandwidth, by using the MIBs as an
open interface for managing network elements. This proposal was developed
to work in ATM networks using commercial network equipment, but it does
not provide an interface to deal with virtual networks created with Xen,
OpenFlow, and other network virtualization platforms.

Building federated systems is another way to integrate different network
virtualization platforms. Park et al. present a framework to federate and
operate virtualized networks [19]. The authors propose a common federation
interface that provides three key functionalities, which are the representa-
tion of the network core schema, operational data exchanges, and federated
network operations. The authors do not explain, however, how to map this
common interface into different administrative domains and virtualization
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platforms.
Virtual network environments can be created in a single physical node

for testing new mechanisms or new network configurations. Virtualization
tools such as NetKit [20] and Manage Large Networks (MLN) [21] model
virtual networks as a whole and provide mechanisms for creating and de-
ploying the virtual networks. These proposals, however, are coupled to spe-
cific technologies. Galan et al. propose a generic management model for
virtual network environments created over a single physical machine that
works over any virtualization platform [22]. The authors propose a modeling
technique for virtualized infrastructures and provide a management interface
for virtual network environments, based on the Common Information Model
(CIM) Schema [23]. The CIM Schema presents extensions that models vir-
tualization platforms such as Xen and VMware. The proposal of Galan et al.
develops an extension called Virtual Network Environment CIM (VNE-CIM)
that models parameters such as the life cycle and the resource allocation in
virtual networks built in a single physical node. Although the management
of this kind of virtual network is simpler than the management of a virtual
network distributed over a set of physical nodes, these approaches introduce
important concepts for defining virtual networks.

SAVE differs from all these approaches, because it provides a high level
common interface which deals with the primitives for managing virtual net-
works. Different from approaches such as Libvirt, which are specific to virtual
machine management, SAVE defines primitives for virtual networking. SAVE
also proposes a common interface just as in the proposals of Leon-Garcia et
al. and Park et al., but our approach supports different virtualization plat-
forms and explains how to map the high level primitives into the different
real primitives.

3.2 Network Virtualization

A virtual network is defined as a set of virtual nodes connected through
virtual links, which are instantiated over a physical infrastructure as seen in
Figure. 3.1. There, two virtual networks belonging to different owners are in-
stantiated over a physical infrastructure managed with SAVE. These virtual
network elements share physical resources with virtual elements from other
networks. Nevertheless, virtual networks should remain isolated from each
other and must respect service level agreements and fulfill the requirements
of clients.

A problem that arises with network virtualization is how to define a subset
of management operations that can be applied in generic virtualized archi-
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Figure 3.1: Example of two virtual networks instantiated over a physical
infrastructure managed with SAVE.

tectures and also, which virtual dimensions can be controlled. Tools such
as FlowVisor [14], VNEXT [24], OMNI [25], and others provide virtual net-
work management primitives that are platform specific. Hence, instantiating
nodes, creating virtual links, and even monitoring network status vary from
platform to platform, because the way to define, access, and manage nodes
is different.

3.3 SAVE Architecture

SAVE defines a set of primitives to easily manage and define a generic
virtual network. We propose an architecture that gives the basis for imple-
menting and expanding these primitives to any virtualization platform. Our
architecture also provides a secure access interface for the virtual network
operators.

The proposed architecture is composed of five modules as seen in Fig-
ure 3.2. The network operator represents any external entity that inter-
acts with SAVE, such as a network manager or an artificial intelligence driven
manager. The network operator accesses the HTTP server, which is the inter-
face between operators and SAVE, to manage the virtual network. The HTTP
Server receives the network operator’s request and forwards them to the
controller, which consults the access control list to verify the operator
permissions to manage a given network. After that, the controller accesses
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Figure 3.2: The SAVE architecture and its main modules: HTTP Server,
Access Control List, Controller, Handlers and Mapping Knowledge Base.

the mapping knowledge base, which stores the mapping procedures for each
virtualization technology. Hence, this module provides the knowledge of how
to convert high level primitives into real management primitives of each vir-
tualization platform. This module also stores the mapping of a given virtual
topology in the real infrastructure. Hence, the mapping knowledge base

informs the controller which network virtualization platforms are being used
by the network operator and how to convert the high-level requests into real
requests in each platform. Given that, the controller maps the parameters
and send the requests to the adequate virtualized substrate handlers.

3.3.1 HTTP Server

The HTTP Server provides services to the network operators to retrieve
network status and configure networks parameters by using the high-level
control primitives. Hence, this module works as common interface that cre-
ates the abstract level perceived by the network operators. Indeed, the net-
work operator has no knowledge about the infrastructure providers and their
virtualization technologies.

The HTTP Server is based on the web service approach and delivers se-
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curity and access control. Connections among network operators and the
server are encrypted and ensure proper end-to-end data-exchange confiden-
tiality. The network operators can belong to different access lists, which
defines which information can be seen by each operator and which manage-
ment operations can be performed. Control and monitoring requests and
answers are exchanged as XML requests between the server and the network
operators.

3.3.2 Controller

The controller is the central module of SAVE. It receives network oper-
ator requests, verifies operator credentials, translate the request in substrate
specific operations and dispatch the requests to the handlers. For example,
suppose that a network operator wants to instantiate a new node in a given
virtual substrate. The controller verifies with the mapping knowledge

base the current virtualization technologies being used in the virtual network
and how the node instantiation parameters are mapped in those virtualiza-
tion technologies. After that, the controller generates a request containing
the identifier of the virtual network and the substrate specific parameters to
fulfill the demands of the operator. The request is forwarded to the proper
virtualized substrate handler and finally the virtual node is instanti-
ated.

3.3.3 Access Control List

The access control list contains associations among network opera-
tors and virtual networks with the corresponding permissions. The module
enhances management security and ensures that only operators with correct
credentials can perform actions in the virtual networks. For example, a vir-
tual network owner can give monitoring permissions to all of its operators,
and allows only the network manager to perform virtual network topology
changes.

3.3.4 Mapping Knowledge Base

The mapping knowledge base is divided in sub modules. The substrate
base sub module continuously monitors the virtualized substrates to detect
the current state of virtual networks. The information obtained in the mod-
ule is stored in the mapping database sub module. The virtual substrate

mapping modules are specific for each virtualized substrate technology, con-
taining intelligence about primitive mapping on each different substrate. If a
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Figure 3.3: Mapping Knowledge Base. Stores virtual network information
and mapping procedures.

new substrate technology is created, we can add support to it by just adding a
new mapping sub module specific to the new technology. Finally, the network
mapping sub module exchanges information with the substrate base, the
mapping database and the virtual substrate mapping sub modules to
translate network operator requests into specific parameter mappings for each
substrate. This information is further received by the controller module.

3.3.5 Virtualized Substrate Handler (VSH)

Handlers allow SAVE to communicate with virtualized substrates. They
develop the role of a translator, receiving management operations and vir-
tual network parameters from the controller and issuing instructions to
the corresponding virtualization substrate. Hence, the controller maps high
level primitives into the primitives of each substrate and the VSHs map these
primitives into small ones provided by other tools. For instance, if a virtual
network operator changes its topology by adding a new node and the corre-
sponding virtual links, the controller will receive, process, and forward this
request to the corresponding VSH. The VSH will then translate this request
into small platform specific ones provided by tools such as Libvirt or VNEXT,
which are create a node, configure the node parameters, change allocation
parameters, and create virtual links.
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3.4 SAVE Network Dimensions

SAVE considers a set of network characteristics, or dimensions, which
are enough to define a virtual network. Other works propose different sets
of characteristics, but these sets are not always platform independent [14,
23]. The idea of SAVE is to define a set of dimensions which are platform
independent and that describe all the most important network characteristics
used in network control and management.

The proposed dimensions are divided into two main subsets, which are
the interconnection dimensions and element dimensions. The interconnection
dimensions describe the characteristics that define the virtual network. The
element dimensions allow the definition of specific characteristics for each
network element.

3.4.1 Interconnection Dimensions

The interconnection dimensions define characteristics that are common
to any node in the virtual network and that specify the network as a whole.
Hence, these dimensions comprise the network topology, which depends on
the element dimensions, and the traffic definition.

3.4.1.1 Topology

The virtual network topology defines how virtual nodes and virtual links
are connected. The definition of both the node and the links is specified
in the element dimensions. Hence, topology interprets different nodes as
undistinguished elements with different identifiers. The same applies for the
links.

The main virtual network operator actions correlated to the topology
dimension are to create, delete, modify, monitor, and view the topology.
The network view and monitoring allows the virtual network control to react
to events such as link failures and loops. The other actions allow the operator
to design and maintain the virtual network.

It is important to notice that the operator specifies characteristics to
the nodes and the links, but the operator has no control over the map of
virtual elements into physical elements, except for the physical location of
the network inputs and outputs. Hence, one hop link between two virtual
nodes in a virtual topology may be mapped into multiple physical hops, as
long as the requirements of virtual node and links are maintained. Hence, the
virtual network monitoring is harder to be implemented than the physical
one, because a group of measurements in different nodes and/or links must be
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aggregated to provide a view of a single measurement to the virtual network
operator.

3.4.1.2 Traffic Definition

Many virtual networks share the same physical substrate. Hence, the in-
frastructure providers must receive a description of the traffic that belongs to
each virtual network in order to provide correct packet forwarding through
the right virtual elements. Nevertheless, each infrastructure provider works
with a different virtualization platform, each with different definitions of the
traffic. For instance, OpenFlow networks define virtual network traffic ac-
cording to all header fields of the TCP/IP model. Xen, OpenVZ, and other
similar platforms use the IP-based packet forwarding primitives, which are
based only on the destination IP address. Moreover, a virtual network op-
erator may demand a protocol stack completely uncorrelated with TCP/IP.
Thus, the role of SAVE is to give support to the virtual network provider
to translate the traffic definition of the virtual network operator into traffic
definitions of the infrastructure provider.

Since virtual networks can use any kind of protocol stack, it is not possible
to specify the traffic of each virtual network based on the TCP/IP headers.
Hence, SAVE uses two aspects for defining the traffic of each virtual network.
The first aspect is the definition of the values of the bits of a packet. Each bit
can be set as ‘0’, ‘1’, or ‘x’ (don’t care). The ‘x’ bits work as a wildcard, which
means that the bit can be ‘1’ or ‘0’. The second aspect is the traffic sources.
The virtual network operator must define which nodes in the virtual topology
are traffic sources. This is important, because different virtual networks may
have a correlated bit definition, but since they present different sources, their
traffic can be differentiated. Using these two parameters, a large range of
virtual networks can be defined.

Each infrastructure provider may classify the traffic in a different way.
One may choose hardware-based packet classification, while other may choose
to set a special header after classifying packets in the source nodes. These
techniques, however, are not in the scope of SAVE.

3.4.2 Element Dimensions

The element dimensions define the specification of nodes and links of the
virtual topology. Each virtual node in SAVE, besides having an identifica-
tion, is defined based on the processing power, memory, and disc. A virtual
link, which also has identification, is defined based on its bandwidth and on
the end nodes connected by it.
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3.4.2.1 Node Dimensions

A SAVE virtual node is defined by:

• Processor - a virtual processor is a slice of the physical processor.
Network nodes use processor power to forward and process packets,
besides updating network statistics. Without proper processor slicing,
a given network can face packet drops and failures in the convergence
of routing algorithms. Depending on the characteristics of the virtual
node, the processing power has different means. When the virtual el-
ement simply forwards packets, the processor dimension means packet
forwarding rate. When a virtual element is a middle box, it must ex-
ecute specific processing as well, thus the processor dimension must
involve cycles per second allocated to the virtual element. Thus, pro-
cessor must be specified in terms of forwarding rate and cycles per
second ;

• Memory - a virtual node uses memory for forwarding and processing
packets. Also, the nodes use the memory for storing forwarding and
filtering rules. Depending on the type of network element, the amount
of allocated memory is different. Forwarding virtual elements must
have enough memory to execute its operational system, its routing
algorithms and to store routing tables. Virtual switches must store
forwarding tables and forwarding rules. SAVE converts the memory
allocation requests of the virtual network operators into the adequate
amount of memory according to the kind of physical node used to create
the virtual node ;

• Disk - a virtual node my require disk for storing monitored data and
packet processing behaviors. Hence, SAVE allows the definition of an
amount of non-volatile memory in each node.

3.4.2.2 Link Dimensions

A network element may specify bandwidth requirements through SLAs.
Hence, each link connecting a node with other nodes must be described in
terms of end-points and bandwidth. The bandwidth dimension is controlled
in terms of bytes per second per virtual link. Based on this two data, SAVE is
able to call a virtual topology mapping primitive, which will search for paths
between the two virtual nodes that accomplish the bandwidth requirements
set by the virtual network operator.
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Table 3.1: Metrics of network elements
Element Processor Memory Bandwidth Disk
Processor Cycles/s Bytes Mb/s GBytes
Forwarding Pkt/s Number of rules Mb/s GBytes
Hybrid Cycles/s + Bytes + Mb/s GBytes

pkt/s number of rules

3.4.2.3 Network Elements Description According to the Dimen-
sions

The network elements present different profiles. These profiles are built
according to the functions performed by the network element. SAVE de-
fines three different element profiles. The first is the forwarding element,
which describes a node that just forwards packets according to information
on their tables. These nodes represent current routers and switches. The
second profile is the processing element, which describes the network ele-
ments with the function of processing packets or requests. Hence, this profile
models middle-boxes or servers. The third profile is a hybrid of the two
others, called hybrid element. This profile models elements that forward
packets, but also need processing power. Such an element could, for instance,
authenticate messages hop-by-hop or perform advanced logging or intrusion
detection systems. The three node categories can accommodate any possible
node configuration in virtualized networks.

The element dimensions are differently described for each of these element
models. For a processing element, the processor represents the number
of cycles per second that the hired virtual machine can perform. Accord-
ingly, the memory is set as the amount of physical memory that is set for
the virtual machine to execute the user applications. Differently from the
processing element, in a forwarding element, the processor represents
the maximum volume of packets that the hired element can process. Since
the memory required for packet forwarding is not a system bottleneck, then
the memory for this kind of element can be set based only on the number of
forwarding/routing rules required by the element. Because the hybrid node
performs both roles of forwarding and processing, a network operator must
specify the memory and the processor in both ways for this kind of node.
Table 3.1 resumes the characteristics set for each element and Figure 3.4
describes in more details how the defined dimensions are correlated.
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Figure 3.4: Diagram correlating the dimensions and types of network ele-
ments.

3.5 SAVE Control and Management Primi-

tives

3.5.1 Primitives of Node Elements

The node elements are operated through different primitives. The basic
primitives that control nodes are the instantiate and delete primitives. The
instantiation of a node involves the selection of a virtual node disk image, the
physical location of the node and the configuration of its parameters such
as processor utilization, memory, bandwidth, etc. The deletion of nodes
comprises the deletion of the node. The node is monitored through different
daemons and the monitor primitive is used to retrieve information about
the node such as processor usage, memory usage, associated links and their
capabilities. Infrastructure operators use the modify primitive to migrate
virtual elements among different physical nodes.

For each type of node element, different modify primitives are applied.
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In the processing elements, the processor dimension can be modified in
terms of the number of cycles/s allocated to the element and the memory can
be modified in term of available megabytes. In forwarding elements, the
processor dimension is controlled in terms of the number of packets that are
forwarded per second. In these elements, the memory is managed in terms
of the size of the rule tables and the operator can erase the table, insert,
remove and modify table rules. Hybrid elements can be managed with
the conjunction of management primitives of the processing and forwarding
elements.

The primitives of node elements are summarized in Table 3.2.

Table 3.2: Primitives of node elements in SAVE.

Primitives of Node Elements

Instantiate node

Get node

Modify node

Delete node

Monitor node

Migrate node

Get processor

Set processor

Monitor processor

Get memory

Set memory

Monitor memory

Get memory rule

Insert memory rule

Modify memory rule

Delete memory rule

Monitor memory rule

Get disk

Set disk

Monitor disk

3.5.2 Primitives of Link Elements

Link elements can be created and deleted. During the creation of the
link, it must be specified the end points of the link, the bandwidth allocated
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to the link, queues and policies. SAVE allows operators to verify statistics of
the links through monitor primitives. The monitor primitives for links allow
the visualization of link statistics such as number of packets transmitted
and packets lost and the modify primitive allows operators to change the
allocated bandwidth, different queues and policies. It is also possible to
insert links between end points and to remove links through the create and
delete primitives. Table 3.3 shows a resume of the link element primitives
provided by SAVE.

Table 3.3: Primitives of link elements in SAVE.

Primitives of Link Elements

Instantiate link

Get link

Modify link

Delete link

Monitor link

Migrate link

Set bandwidth

Get bandwidth

Monitor bandwidth

Set delay

Get delay

Monitor delay

3.5.3 Primitives of Interconnection

Given a set of nodes and link elements, there are primitives that al-
low operators to manage all elements simultaneously. The monitor topology
primitive, for instance, lets operators to visualize all of their node and link
elements. Another primitive concerning nodes and links is the migration,
which is performed by the infrastructure manage. In the migration, the log-
ical topology is remapped over the physical devices in order to achieve a
specific objective. Table 3.4 shows the primitives of interconnection, which
are correlated to the network traffic and the network topology.
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Table 3.4: Primitives of interconnection in SAVE.

Primitives of interconnection

Instantiate topology

Get topology

Modify topology

Delete topology

Monitor topology

Migrate topology

Map topology

Set traffic definition

Get traffic definition

Modify traffic definition

Delete traffic definition

3.6 Mapping the High-level Primitives in the

virtualization platforms

Different virtualization platforms have different ways to define and control
a virtual network. A virtual network created by linking virtual machines or
virtual containers works just as a physical network. Therefore, this kind of
virtual network can be controlled just as it is done in a physical network.
In this case, an administrator could use the standard distributed network
control algorithms or project new mechanisms to be run by the nodes.

When different virtualization platforms are in use, such as the one pro-
posed in OpenFlow, the network elements work in a predefined way and
their behavior cannot be changed. Moreover, the network control must be
centralized. Hence, mapping a distributed control mechanism in this kind
of network is not trivial, especially because the nodes do not run different
algorithms than the ones specified in the OpenFlow standard.

SAVE is intended to work independent of the virtualization platform used
in the physical substrate. Hence, all the dimensions described in Section 3.4.2
and the primitives defined in Section 3.5 must be mapped in the different vir-
tualization platforms. Indeed, the interconnection dimensions are platform
independent, but the element dimensions are correlated to the virtualiza-
tion platform characteristics and the physical-to-virtual mapping must be
carefully designed.
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3.6.1 Mapping virtual nodes and the corresponding
primitives

A virtual node is not equally defined in all network virtualization models.
Hence, mapping a node and its primitives requires specific knowledge about
the underlying virtualization platform.

As described before, virtualization models such as OpenFlow does not
allow network nodes to be modified. Instead, these nodes must follow the
rules predefined in the standard. The network operator can only program
the network controller, a central entity with access to all OpenFlow switches.
When using machine or container virtualization, the network nodes can be
programmed by the network administrator, which may perform a decentral-
ized network control. Moreover, the nodes have processing power and can be
used not only for forwarding packets, but also as a middle box.

Because of the differences between virtualization platforms, it is not pos-
sible to define a single model for network nodes. That is the reason why we
defined processor, forwarding, and hybrid nodes. If the virtualization plat-
form follows a model such as the proposed by OpenFlow, than we restrict the
virtual nodes only to forwarding nodes. If a virtualization platform based on
containers or virtual machines is in use, then we can create all the three kinds
of nodes. If these conditions hold, we can provide a correct dimension map-
ping using SAVE. Nevertheless, the primitives mapping challenge still persist.
Primitives such as create node, change resource allocation parameters, etc.,
are easily mapped, but configuring memory is a problem. Memory opera-
tions in forwarding nodes correspond to configure the data plane. Hence,
SAVE must define a common interface to configure the data plane, which is
to define forwarding and filtering rules, in a way that must be independent
of a centralized or distributed network control.

3.6.1.1 Virtual node memory mapping

The infrastructure provider is responsible for managing the physical net-
work, which is offered to the network operators. The virtualization platform
is a choice of the infrastructure provider and cannot interfere in the virtual
network control. Hence, the network operator must be able to define its con-
trol and management functions independent of the underlying virtualization
platform. Indeed, SAVE assures that the network operator does not need to
know the underlying virtualization platform for controlling its own network.

SAVE defines primitives for configuring the virtual network data plane
that are independent of a central or distributed control plane in the physical
or in the virtual network. Indeed, SAVE is based on the plane separation
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Figure 3.5: Model for configuring the forwarding node memory using SAVE.

Figure 3.6: Virtual machine/container virtualization model using decentral-
ized operator control.

paradigm. Hence, control plane and data plane do not need to run on the
same device. SAVE inserts a control layer between data and control plane,
as shown in Figure 3.5, in order to guarantee that the data plane can be
configured independent of the network control chosen by the virtual network
operator and by the infrastructure provider.

Figures 3.6, 3.7, 3.8, and 3.9 show how the data plane is configured, as-
suming the two network virtualization models. Figure 3.6 shows the classical
network control, which is distributed and both the control and the data plane
are on the same device. In this case, the SAVE memory layer intercepts the
control plane requests to the data plane and convert them into the appropri-
ate requests, according to the real data plane defined by the infrastructure
provider.

Figure 3.7 shows the same model, but assuming that the network opera-
tor uses a centralized control. In this case, the centralized operator controller
must configure the data planes using the SAVE memory interface. The phys-
ical routers of the infrastructure provider are able to receive these requests
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Figure 3.7: Virtual machine/container virtualization model using centralized
operator control.

and translate them to the proper technology, allowing a correct configuration
of the data plane of each virtual node.

Figures 3.8 and 3.9 shows the use of SAVE with the OpenFlow model,
assuming the use of a distributed and a centralized control by the network
operator, respectively. In the distributed operator control, SAVE maps the
distributed control into a centralized control through the use of emulation,
as suggested by Nascimento et al. [26]. Hence, the centralized infrastructure
controller emulates a network for the network operator, which uses the SAVE
memory interface to configure the emulated data plane. The centralized
infrastructure controller intercepts the requests and uses them to configure
the real data plane through the OpenFlow protocol.

In Figure 3.9, both the operator and the infrastructure administrator use
a centralized network control. In this case, the centralized operator controller
generates requests to configure the data plane using SAVE and these requests
are intercepted by centralized infrastructure controller, which translate them
into the OpenFlow protocol using the SAVE module.

Therefore, SAVE provides an interface to intermediate requests to con-
figure the data plane that is compatible with different technologies in the
virtual and in the physical layers. The key idea is that the network operator
does not need to know how the infrastructure provider organizes and config-
ures its devices, as soon as the virtual network data plane can be configured
using the SAVE interface.
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Figure 3.8: Centralized virtualization model using decentralized operator
control.

3.6.2 Mapping virtual links and the corresponding prim-
itives

Virtual links can be defined independent of virtualization platform. The
link is an abstraction that does not change from physical to virtual sub-
strates and is defined as a connection between two end points, as shown in
Figure 3.10(a). The link can also have specific characteristics, such as band-
width and delay, but these characteristics are equally defined in both physical
and virtual networks. Therefore, mapping the dimensions of the link element
is trivial.

Mapping virtual link primitives is not as easy as mapping the link di-
mensions, but it theoretically is platform independent. In both network
virtualization models, a virtual link can be mapped in one or more physical
links, just as described in Figures 3.10(b) and 3.10(c). Designing a link prim-
itive that deals with virtual links mapped over more than one physical link
is more complex than restricting the virtual network to the one-to-one link
mapping, but it provides much more flexibility when mapping the virtual
networks over the physical networks.

Hence, in terms of modeling, mapping a virtual link in an OpenFlow
network or in a Xen network is just the same. It is important noticing that

34



Figure 3.9: Centralized virtualization model using centralized operator con-
trol.

practical steps for migrating a virtual link, for instance, are different in the
two platforms, because the control primitives are different. The virtual link
migration concept, however, is just the same.

3.7 Prototyping the map of dimensions and

high-level primitives in Xen and Open-

Flow networks

In order to validate our proposal, we implemented a SAVE prototype,
which works with Xen and OpenFlow virtualization platforms. These two
platforms were selected because of their disparity in terms of network virtu-
alization and management.

In this Section, we explain how to map dimensions and their primitives
in each of the two platforms, which means building the virtual substrate

mapping blocks for Xen and OpenFlow. We also develop experiments to
generate mapping parameters and then we validate our mapping schemes
through conformity tests.
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(a) Defining a virtual link.

(b) One-to-one link mapping.

(c) One-to-many link mapping.

Figure 3.10: Mapping virtual links in physical links, which is platform inde-
pendent.

3.7.1 Test Environment

We show now an example of how to use SAVE as a common interface
for network virtualization for both Xen and OpenFlow platforms. We use a
testbed composed of three machines, as described in Figure 3.11, to show the
use of SAVE in a real scenario. The Traffic Generator machine (TG) sends

36



Figure 3.11: Test environment used for testing SAVE over different virtual-
ization platforms.

packets to the Traffic Receiver machine (TR), and the packets are forwarded
through the Traffic Forwarder machine (TF). TF is an HP Proliant DL380 G5
server equipped with two Intel Xeon E5440 (2.83GHz) processors and 10GB
of RAM. Each processor has four cores. TF uses the two network interfaces
of a PCI-Express x4 Intel Gigabit ET Dual Port Server Adapter. In the
Xen experiments, TF executes Xen virtualization platform version 4.0 over
Debian Linux operational system with kernel version 2.6.26. TG and TR are
general-purpose machines equipped with Intel DP55KG motherboards and
Intel Core I7 860 (2.80GHz) processors. TG and TR are directly connected
to TF via their on-board Intel PRO/1000 PCI-Express network interface.

In the experiment scenario, TF represents an infrastructure provider that
can offer virtual elements to clients. TG and TR represent end users that
exchange packets between them. We used the Linux Kernel Packet Generator
to generate packet flows. In order to create the mapping functions for Xen
and to evaluate our mapping algorithms, we created a hybrid element (a
node that forwards packets and perform extra processing activities despite
of the forwarding activities) in TF. The node forwards packets of different
sizes and flows with different packet rates. These results are used to calibrate
the mapping algorithms. After that, we tested if the SAVE algorithms and
the calibration were able to fulfill the resource requirements of the hybrid

element for different client requirements. In our prototype, OpenFlow nodes
work together with FlowVisor [27], which possesses native control to the
interconnect dimensions, easing the control of them.

3.7.2 Processor mapping in Xen and OpenFlow

In SAVE, depending on the category of the node, network operators define
the amount of CPU cycles or the packet rate to be sustained. We assume
the existence of control mechanisms that ensure the provision of the defined
amount of resources [28, 10, 29, 30, 31, 32]. Hence, SAVE does not treat
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isolation issues in virtualized environments. SAVE objective is to map the
high–level parameters into parameters that make sense in each virtualization
platform. Pure OpenFlow networks only define forwarding elements. In
order to include processing elements, we must associate another virtualization
technique which provides processing virtual environments, such as Xen and
OpenVZ.

Defining the packet rate of the forwarding element is simple in OpenFlow
networks, because this platform is oriented for virtual networking. Hence,
FlowVisor definition [14] already presents a CPU definition based on the
packet/s rate. Xen supports the creation of forwarding, processing, and hy-
brid elements. Nevertheless, the Xen platform demands a mapping between
the SAVE parameters and the hypervisor scheduler parameters, in order to
provide the proper CPU resource reservation.

Xen presents scheduler parameters to control the CPU sharing among
virtual elements, which are the weigh and the cap. Weight represents a
relative cycle division among virtual elements. For instance, a virtual element
with weight 256 must receive twice the cycles received by a virtual element
with weight 128. Besides that, the cap parameter defines the percentage of
the maximum amount of CPU cycles received by the virtual element. In
order to map SAVE parameters into proper Xen parameters, our Xen virtual
substrate mapping uses Algorithm 1, which is based on the adjust of the
CAP value and assumes that all virtual machines have equal weight. SAVE
receives the required CPU cycles and the required packet rate and outputs
the cap value for the virtual node.

In the algorithm, the PckRateToCap function uses a mapping table, which
maps cap values that satisfies different packet rates. The mapping table for
Xen is generated according to our tests seen in Figure 3.12. In the test,
we measure the forwarding rates of network elements according to the input
packet rate and the cap value in a Xen virtual element. We created different
packet flows with 64 byte packets and measured the associated forwarding
rate when cap varies. By this graph, we observe that there are minimal
cap values to guarantee that all received packets will be forwarded. Based
on this experiment, we mount a table with approximate values of CAP to
guarantee a certain forwarding rate. This table is used to configure the CPU
for forwarding nodes.

The processing nodes receive as CAP the percentage calculated based on
the cycles/s rate indicated in SAVE input for CPU. The hybrid node is a
composition of a processing and a forwarding node. Therefore, it receives
as input parameter the CPU usage for processing and a packet rate. SAVE
calculates the corresponding CAP for each kind of processing and sums them.
This value is used as CAP for the virtual machine instantiated to the hybrid
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Algorithm 1 CPU dimension mapping in Xen.

Input: requiredCpuCycles, requiredPacketRate
Output: xenCapV alue
cpuMaxCycle := getMaxCpuCycle(physicalCore)
cap = 0
if nodeType == processor then
cap := 100 ∗ requiredCpuCycles/cpuMaxCycle

end if
if nodeType == forwarding then
rateCap := pckRateToCap(requiredPacketRate)
cap := rateCap

end if
if nodeType == hybrid then
rateCap := pckRateToCap(requiredPacketRate)
cap := rateCap+ (100 ∗ requiredCpuCycles/cpuMaxCycle)

end if
if capToCycle(cap) <= cpuMaxCycle then
xenCapV alue := cap

else
CannotAllocateResources

end if
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Figure 3.12: Forwarding rate as function of cap value for fixed input rates.

node.
To prove that this processing mapping for hybrid nodes works, we per-

formed a second test. We assumed that a virtual network instantiates a hy-
brid node that requires a packet processing power correspondent to 70 kpkt/s
and a processing power corresponding to x% of the CPU machine capacity.
We varied x and verified if the hybrid node requirements were respected. We
used the Linux tool ‘stress’ to generate the processing requirements according
to x. Figure 3.13 shows the results.

Figure 3.13(a) shows that independent of the amount of processing power
requested by the hybrid node, the forwarding rate was respected, which
means that the proposed map provides the correct CPU power for forwarding
packets. Figure 3.13(b) shows the processor usage with the stress applica-
tion in the same scenario. By this graph, the stress application received the
agreed processing power for all x values, which means that our map also
respect the provision of processing power for other applications rather than
forwarding packets. Hence, the hybrid map works as expected and we can
see that even if extra processor cycles are allocated to a virtual element, it
keeps its forwarding rate and at the same time uses its extra processor cycles
to execute extra processing activities.

3.7.3 Memory Dimension Mapping in Xen and Open-
Flow

The memory dimension involves the allocation of memory to nodes. The
memory is described according to the kind of node in SAVE. Indeed, for a
processing node, it is important to define the amount of memory available
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Figure 3.13: Analysis of hybrid nodes processing map assuming the use of
different processing requirements and a fixed forwarding rate of 70 kpkt/s.

for processing, but for forwarding nodes, the number of forwarding rules
and the capacity for forwarding packets are the most important metrics. The
virtual network operator is not able to map a number of forwarding rules to
an amount of memory, because it depends on the underlying infrastructure.
Hence, SAVE is responsible for doing this map.

In this Section, we show how to map the memory dimension in Xen and
in OpenFlow. Therefore, we show how to specify and map the memory in
processing and hybrid nodes for Xen and in forwarding nodes for Xen
and OpenFlow.
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We use our memory mapping algorithm, described in Algorithm 2, to
allocate memory to Xen nodes. SAVE allocates to processing elements

fixed amounts of memory in megabytes. The memory amount is a virtual
machine parameter in Xen, specified before instantiating the virtual machine.
For this reason, this is a simple map. For allocating memory to forwarding

nodes in Xen, we must use a function, which maps the maximum number
of forwarding rules allowed and convert it to memory space. This memory
space must be enough to hold forwarding rules and the forwarding element
operating system (bootSpace).

Algorithm 2 Memory dimension mapping in Xen.

Input: requiredMemorySpace, ForwardingRules
Output: xenMemorySize
maxMemorySize = getMaxMem(physicalMachine)
requiredMemory := 0
if nodeType == processor then
requiredMemory := requiredMemorySpace+ bootSpace

end if
if nodeType == forwarding then
rulesSpace := rulesToSpace(ForwardingRules)
requiredMemory := rulesSpace+ bootSpace

end if
if nodeType == hybrid then
rulesSpace := rulesToSpace(ForwardingRules)
requiredMemory := requiredMemorySpace+ bootSpace+ rulesSpace

end if
if requiredMemory <= maxMemorySize then
xenMemorySize := requiredMemory

else
CannotAllocateResources

end if

As shown in the Algorithm, the amount of memory to hybrid nodes is
a composition of the memory to processing nodes and the memory required
by the forwarding rules.

The memory dimension map in OpenFlow networks reefers only to for-
warding nodes and is very simple. FlowVisor, which configures virtual net-
works in OpenFlow, accepts as input for memory control the number of
forwarding rules of each virtual network. Hence, SAVE configures FlowVisor
with the received value, using the Virtual Substrate Mapping module of
OpenFlow.
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Therefore, SAVE provides the proper functions for mapping element di-
mensions into different virtualization models.

3.7.4 Implementing the control and management prim-
itive mapping

We show now more details about the mapping of the control primitives,
in which we describe the initial prototype developed for SAVE. We focus in
the development of four main modules of SAVE architecture:

• HTTP Server & Controller - This server receives service requests, val-
idates parameters, and verifies whether the requested service is sup-
ported in the requested virtualization platform. If all requirements are
supported, then this module forwards the packet to the Virtualized
Substrate Handlers (VSH). In this initial implementation, which works
as proof of concept, we opted to implement both the HTTP server and
the controller as a single module for simplicity. We restricted the avail-
able functions provided by this module to the essential function set of
the HTTP Server and the Controller.

• Mapping Knowledge Base - This is a data base containing indications
of the current supported network virtualization platforms.

• Virtualized Substrate Handlers - The VSHs map the service calls of
SAVE in the prototype services in the specified virtualization technol-
ogy. Hence, we developed a VSH for Xen and a VSH for OpenFlow.
The VSH sends a call to the control client in the virtualization platform.

• Control client in the virtualization platform - SAVE maps generic re-
quest into platform specific requests. We used VNEXT [33, 34] and
OMNI [35, 36], developed in the previous work packages, as clients for
Xen and OpenFlow platforms, respectively.

The scheme of our prototype is shown in Figure 3.14.
It is important mentioning that it is very easy to extend SAVE to other

virtualization platforms, as soon as there is a client for that platform that
performs virtual network management functions. That is the main reason
for creating the VSH as separated modules. Also, with this architecture, we
can extend and modify a VSH without interfering with the management of
other virtualization platforms. A new virtualization platform is integrated
by inserting a new entry in the Mapping Knowledge Base and by adding the
corresponding new VSH.
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Figure 3.14: Developed prototype of SAVE, which works with Xen and Open-
Flow platforms.

When the HTTP Server & Controller module receives a request, it searches
for the requested technology in the Mapping Knowledge Base to obtain ac-
cess to the corresponding VSH. After that, it forwards the request to the
VSH.

The VSHs are written as python modules to simplify expansions and are
placed on the same directory. The directory of the new module must follow
the model <technology> client, where <technology> is the name of the new
virtualization platform. For instance, if we create a virtualization platform
called “HorizonModel”, then the directory of the new module would be called
HorizonModel client and this new directory is placed under the SAVE root
directory. Hence, if our server supports HorizonModel, OpenFlow, and Xen,
then we would have the following organization in the directories:

virtualnetworkserver/HorizonModel client/
virtualnetworkserver/OpenFlow client/
virtualnetworkserver/Xen client/
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The corresponding VSH instantiates an object of the class Client to deal
with the control client of the virtualization platform. In this implementation,
this object receives the parameters that identify the control client server,
which means the identification of the server and the TCP/UDP port. It is
not part of SAVE scope to develop the control client. In case of a distributed
network control, the identification field may contain an identification of the
set of nodes instead of the identification of a single server.

A simple code for the class Client run by the server is in Algorithm 3.

Algorithm 3 A simple code for the class Client run by the SAVE server.

class Client():
def init (self, server = None, port = None):

self.server = server
self.port = port

This class is stored in a file called client <technology>.py inside the di-
rectory <technology> client.

3.7.4.1 Implementing the VSHs

The Virtualized Substrate Handlers maps the services of SAVE in the
services of the virtualization platform, following the standards defined by
SAVE. The VSHs respect these rules:

• the VSH is written as a Python class;

• the class name is Handler;

• the constructor receives as parameter an instance of the class Client;

• the VSH must import the class Client and the module httplib;

• the VSH must present a service for each service offered by SAVE, and
both services must have the same name;

• all the parameters of a service are passed as a single parameter orga-
nized as a dictionary with the tuples {’parameter’:’value’}; and

• all functions that perform a service must return a tuple containing two
elements, the error code of the httplib module and the XML message
with the service reply.

An example of part of a VSH is presented in Algorithms 4 and 5.
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Algorithm 4 An example of code for a VSH concerning link primitives in
SAVE.
from technology client import Client
import httplib
class Handler():

def init (self, tc = None):
self.tc = None
self.setTechnologyClient(tc)

def setTechnologyClient(tc):
if isinstance(tc, Client):

self.tc = tc
def getVirtualNetworkBandwidth(self):

message = “<get virtual network bandwidth>%s</get virtual
network bandwidth>”

return httplib.OK, message
def setVirtualNetworkBandwidth(self, param):

message = “<set virtual network bandwidth>%s</set virtual
network bandwidth>”

return httplib.OK, message
def monitorVirtualNetworkBandwidth(self, param):

message = “<monitor virtual network bandwidth>%s</monitor
virtual network bandwidth>”

return httplib.OK, message
def getVirtualNetworkDelay(self):

message = “<get virtual network delay>%s</get virtual
network delay>”

return httplib.OK, message
def setVirtualNetworkDelay(self, param):

message = “<set virtual network delay>%s</set virtual net-
work delay>”

return httplib.OK, message
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Algorithm 5 An example of code for a VSH concerning link primitives in
SAVE (continuation).

def monitorVirtualNetworkDelay(self, param):
message = “<monitor virtual network delay>%s</monitor

virtual network delay>”
return httplib.OK, message

def instantiateVirtualNetworkLink(self):
message = “<instantiate virtual network link>%s</instantiate

virtual network link>”
return httplib.OK, message

def getVirtualNetworkLink(self, param):
message = “<get virtual network link>%s</get virtual network

link>”
return httplib.OK, message

def modifyVirtualNetworklink(self, param):
message = “<modify virtual network link>%s</modify virtual

network link>”
return httplib.OK, message

def deleteVirtualNetworklink(self, param):
message = “<delete virtual network link>%s</delete virtual

network link>”
return httplib.OK, message

def monitorVirtualNetworklink(self, param):
message = “<monitor virtual network link>%s</monitor

virtual network link>”
return httplib.OK, message

def migrateVirtualNetworklink(self, param):
message = “<migrate virtual network link>%s</migrate

virtual network link>”
return httplib.OK, message
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3.7.4.2 Implementing SAVE general functions

SAVE requires functions that are not correlated with the virtualization
platform, but with its own management. We provide a summarized list:

• getServiceList - Since an initial implementation may not provide all the
listed services, we created a service to list all the supported services.
This service is called getServicesList and returns an xml with the list
of the available services without the required parameters.

• getSanityTest - This service tests the connectivity between SAVE and
the physical infrastructure and between SAVE and the network opera-
tor.

3.7.5 Using SAVE

SAVE is available online in the Horizon Project page. The corresponding
code and manuals are available for installing and using the developed system.
More information about the developed functions is found in the web site.
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Chapter 4

Piloting plane control with
multi-agent systems

We propose on the Horizon Project to use autonomic networks to deal
with the virtual network management problem. Autonomic networks repre-
sent a specific topic in the area of autonomic computing, a term coined by
IBM, intended to deal with complexity by enabling systems to self-manage.
Today, it is also advocated the approach of pluralism of architectures for the
future Internet over the one-size-fits-all TCP/IP [37]. This new approach de-
fines that network providers should be divided in service and infrastructure
providers [38] and proposes the use of virtualization [39]. Users request net-
work services from the service providers, which instantiate virtual networks
over the substrate provided by the infrastructure providers. Each virtual
network can have its own protocols and configurations, in accordance with
the objectives of the service running on it, and must have isolation, i.e.,
the operation of virtual networks does not cause interference between them,
although they are on the same infrastructure.

4.1 Background

4.1.1 Multi agent Systems

Multi-agent systems [40] are composed of intelligent entities, called agents,
which have the capabilities needed to make the network autonomic. As shown
in [40]: (1) they are able to communicate, (2) possess their own resources,
(3) perceive their environment, (4) have a partial representation of their en-
vironment, (5) have a behavior which aims at realizing their goals.

Thanks to such properties, multi agent systems can constitute a good tool
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to provide the autonomic scheme by guaranteeing the different characteristics
which seem necessary to reach an autonomic behavior. In the following, we
describe in more detail multi-agent systems characteristics:

• Decentralization: The multi-agent approach is decentralized by defi-
nition and this decentralization aims at overcoming the incapacity of
the classic Artificial Intelligence to operate in the current systems that
are more and more distributed and decentralized. No agent possesses
a global vision of the system and the decisions are taken in a totally
decentralized way;

• Reactivity: One of the basic attributes of an agent is to be situated
(situatedness, [41]). That is, an agent is a part of an environment and
it reacts according to what it perceives of this environment. The reac-
tivity characteristic is very important in a context of highly dynamic
networks, in which the decisions have to suit current conditions.;

• Proactivity: The agent is capable of setting goals and realizing them
by executing plans, interacting with other agents, etc. In this case,
the agent has more knowledge of its capabilities and on those of the
other agents and is able to set up a strategy allowing it to evolve in its
environment and to reach its objectives;

• Sociability: The multi-agent approach provides the ability to distribute
the intelligence among different agents composing the system. This
implies that an agent can handle some tasks individually but cannot
do everything by itself. It needs to cooperate with the other agents and
to rely on their help to get better results;

• Adaptability: In order to provide more flexibility, researchers are in-
terested in using learning techniques (e. g., genetic algorithm [42],
reinforcement learning [43], etc.) to face unexpected situations. If we
return to the autonomic networks, using agents having learning capac-
ity can be very beneficial and allows for a more effective adaptation to
the evolutions of the networking domain.

4.1.2 Norms

According to [44] a norm has a general structure of a group of agents.
Thus, a norm consists of four components: the addressees’ agents, the action
to be performed by them and, finally, the circumstances under which the
action must be carried out [44, 45, 46]. Moreover, [44] classifies norms as one
of two kinds: rules or (r-norms), and social norms or (s-norms).
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Rules represent explicit agreements among agents, and are created by an
authority. Rules are subdivided into two further classes as follows. Formal
rules are those that include legal sanctions such as laws and regulations, and
informal rules that are not in written form but communicated orally and
include informal sanctions.

Social norms are norms accepted not through agreement but through
mutual beliefs, and are also divided into two classes: conventions, which
concern the whole society or social class and have social sanctions, such as
approval or disapproval; and group-specific norms, which concern a group of
agents in a society.

[44] also explains the conditions under which either rules or social norms
ought to be fulfilled by the members of a group; these conditions cause a norm
to be enforced and can be described, as follows: (i) promulgation condition
refers to the fact that norms must be issued by an authority; (ii) accessibility
condition states that all members of the group acquire the belief that they
ought to comply with the norm; (iii) if many members of the group fulfill
the norm, or at least are disposed to do so, it is said that the pervasiveness
condition is satisfied; (iv) the motivational condition is met when at least
some members sometimes fulfill the norm because they believe it is true and
that they ought to do so; (v) the sanction condition refers to the existence of
social pressure against members that deviate from the norm, and, finally, (vi)
for a rule, the acceptance condition is the conjunction of the promulgation
and accessibility conditions, whereas for a proper social norm to be accepted,
only the accessibility condition is needed. Thus, contrary to rules, s-norms
do not need to be issued by an authority, but they have to be recognized
as norms for all the members in a group. In this work, we consider rules as
mechanism to regulate the agent’s behaviors.

4.1.3 Self-Organization

The approach of self-organizing systems has increased its relevance and
is used to deal with complex domains. The use of this approach enables
the development of decentralized systems that exhibit certain dynamicity
and adaptability to couple with previously unknown perturbations [47]. Ac-
cording to principles of self-organization, each component of the autonomic
system obtains and maintains only local information available in the envi-
ronment, in a decentralized way and without any external control, being
restricted only to local interactions. It is based on these interactions that
the system exhibits it macroscopic behavior, which may be observed from a
global point of view. The multi-agent system paradigm has been considered a
promising solution for the building of self-organized systems [48]. According
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to [47] self-organization systems can be classified, as follows:

• Strong self-organizing systems: are those where there is no explicit
control, whether internal or external.

• Weak self-organizing systems: are those where there is a re-organization
through actions of center or planned internal control.

Additionally, the behaviors of a self-organization system can be charac-
terized by the following properties (mandatory or optional):

• Absence of an explicit external control - This is a mandatory property
that indicates that the system is autonomous, which defines change
and that its organization is based exclusively on internal decisions and
does not follow any external control to perform a (re-) organization.
This property refers to the ‘self’ of self-organization.

• Decentralized control - A self-organizing system can work under decen-
tralized control. In this case, there is no internal central authority or
centralized information flow. In this way, the access to global infor-
mation is limited by local interactions, which are governed by simple
rules. This property is generally not mandatory, as we can see it in
natural self-organizing systems, such as the bees.

• Dynamic Operation - This mandatory property is associated the evo-
lution of the system. Considering that the organization evolves in-
dependently of any external control, this property implies in the self-
organization process.

4.2 State of art

Telecommunications Network Management systems are a type of system
that can be categorized as large, complex and unpredictable. Current re-
search focuses on policy based management and autonomous systems, using
a variety of languages and technologies. The three main Autonomic Network
Management systems are ANEMA [49], FOCALE [50], and Pronto [51]. We
describe, critique, and compare them with our piloting approach.

In ANEMA, the high-level objectives of the human administrators and the
users are captured and expressed in terms of Utility Function policies through
a set of mechanisms. The Goal policies describe the high-level management
directives needed to guide the network to achieve the previous utility func-
tions. Finally, the ‘behavioral’ policies describe the behaviors that should be
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followed by network equipment to react to changes in their context and to
achieve the given ‘Goal’ policies.

To demonstrate the capacities of the ANEMA architecture, they ex-
plained how it should be instantiated in a multiservice IP network and how
the proposed utility-based analytical models were used. The results con-
firmed that the proposed model allows specifying the optimal feasible state.
However the result state is still not the optimal one. They also implemented
a simulator of the system and perform a set of simulations based on several
proposed scenarios.

One problem to be solved in ANEMA is how the autonomic routers diffuse
the information to others routers on the environment. Another issue that
is not so clear is how deep the coupling between the stock router and an
autonomic one is. The ANEMA focuses on the self-configuration and a little
on the self-optimization aspect, thus is not a complete autonomic solution,
as our piloting approach. Neither they use biological inspired solutions.

On the other hand, FOCALE, Foundation Observation Comparison Ac-
tion Learn rEason, propose the use of information and ontological modeling
to capture knowledge relating to network capabilities, environmental con-
straints, and business goals and policies, together with reasoning and learning
techniques, to enhance and evolve this knowledge. Also, to deliver full au-
tonomic network management capabilities FOCALE introduce decentralized
processes and algorithms into the network infrastructure modeled on vari-
ous biological processes found in the nature world. As ANEMA, FOCALE
uses policy-based network management system, incorporating translation/-
code generation processes that automatically configure network elements in
response to changing business goals and/or environment context.

FOCALE have as a base element an AME (Autonomic Management El-
ement) which handles a managed resource, be it single device or network,
which is the same idea of our piloting agent. Also, FOCALE is based on the
MAPE control loop described by [52], and used by our solution, the Monitor,
Analyze, Plan and Execute loop, but reduced to a maintenance control loop
and an adjustment control loop.

Finally, Pronto specifies a Policy-based service definition language to de-
scribe services and the system model through service definitions. The lan-
guage merely allows those services to be described by a network engineer,
but it is responsibility of the management system to use the policies within
the service definition to construct and manage individual services.

Policies can also be applied to a pluggable and automated management
software component known as a Domain Expert. These components trans-
form policies at a high level of abstraction into corresponding lower-level
policies. A QoS Domain Expert instance with dynamic behavior will be used
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if congestion is detected, the Domain Expert will modify the low-level policies
to reduce the Committed Information Rate (CIR) of each service.

Basically, the Pronto solution specifies a domain specific policy language,
which defines desired parameters of each network device. There isn’t an
autonomic module or agent for each network element, but a virtual device,
which controls the configuration of the associated network device. Here,
the term virtual device is not the same as we use in our piloting network.
The authors didn’t describe the whole architecture, so we don’t know if it is
centralized or distributed, or how the policies are diffused to others devices
to couple with unpredictable situation. They do not use agents or biological
inspired solution.

4.3 A Self-Organizing and Normative Pilot-

ing System

In order to provide autonomy to the virtual networks, we developed a
multi-agent self-organizing and normative piloting system. The idea is to
adjust the network flow and routes in an autonomic way, without any explicit
central control, maintaining the quality of service defined in the SLA and
controlling the agent behaviors through norms. So, the virtual networks
devices have a piloting agent responsible to capture and diffuse information
among neighbors and act in the configuration and management of the router
under a local perspective.

The piloting system operates mainly in the core network, i.e. the routers,
as Figure 4.1 shows. Initially, agents are assigned to each router, and imme-
diately retrieve information from the router they belong, like the routes they
attend. After this step, the agent will be aware of the norms (i. e., SLA and
QoS requirements) that need to couple and the normative regulation system
can prohibit access to the network to those agents that violate the norms.
Essentially, agents can play the following conducts: (Abiding) always abides
by the norm; (Violating) may violate the norm; (Friendly) always consents
to interact with others agents; and (Hiding) will avoid interact with those
that violate norms.

To complete the information relevant to the piloting system, agents make
contact with the others agents on their neighborhood using the behaviors
defined in Section 4.3.1. The neighborhood in the piloting system is defined
as the node (router) connected by a link, or just one hop. For example, in
Figure 4.1, the Router #3 has as neighbors the Routers #2, #4 and #5.
Thus, for each router in the neighborhood will be requested its routing table
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Figure 4.1: Neighborhood.

according to the routing table of the requester, its capacity to meet QoS,
its current load and its average load. The latter information is requested
randomly or just before a decision-making, i.e., after exceeding a threshold
load. Being aware of the neighboring node ability will enable the agent to
delegate or ask for routes in the inability to meet a particular request, or
provide services in accordance with the requirements of quality requested.

4.3.1 Agent Behaviors

The piloting agent behaviors are:

• Collect Behavior: This behavior is responsible for collecting and
storing data from the local and the neighborhood routers, the latter
executed by the behavior Request Information Behavior.

• Analyze Behavior: This behavior analyzes the data collected and
checks if they are in accordance with the quality policies required. It is
also responsible for activating the decision behavior, described below.

• Decision Behavior: This behavior is composed of mechanisms and
algorithms of decision making restricted to the data collected locally.
It is possible to extend this approach to define different mechanisms
for decision in accordance with the needs of the piloting system.
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• Response Information Behavior: This behavior is responsible for
serving the information request from the neighboring agents; routing
tables, current and average load are sent. This behavior can be ex-
tended to address the need of other types of information in accordance
with the piloting system.

• Request Information Behavior: Behavior responsible for requesting
the local information necessary for analysis and decision making of the
piloting system.

• Create Router Behavior: This behavior comes into play when after
the decision process, the action to be taken is to create a new virtual
router to meet the actual demand of the network. Thus, this behavior
contacts the network simulation engine requesting the instantiation of
a new virtual router.

• Create Piloting Agent Behavior: Complementing the previous be-
havior, this behavior is instructed to ask the agent platform the instan-
tiation of a new piloting agent to control the new virtual router.

• Delegate Route Behavior: This behavior is responsible for dele-
gating the adherence to a particular flow to a virtual router in the
neighborhood. It can be activated either after creating a new virtual
router, as the perception of a neighbor with load available to meet
current demand.

• Inform Route Behavior: Behavior used to communicate to the
neighboring router, which is a flow generator, which the route was
modified to conform to the actual quality criteria, and therefore the
router needs to update its routing table.

4.3.2 Acting on a QoS Failure or Malfunction

Essentially, this is a feature of the self-configuration and self-healing auto-
nomic piloting system. When answering a particular request for data traffic,
the router and therefore its pilot agent will know which conditions and QoS
must be satisfied. So, monitoring the router performance, like quality require-
ments, which can be configured at runtime by the network administrator,
initializes the agent actions. Thus, once the agent detects a non-fulfillment,
or the inability to meet quality concerns by the router, it considers whether
they have enough information from their neighbors to be able to make a deci-
sion. If the agent finds that the information is outdated and that the problem
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is yet just a trend, it will request updated information from its neighbors,
however, always monitoring the current performance of the router. After ob-
taining these data, the agent uses their algorithms and behaviors for deciding
on their actions to solve the current problem in a decentralized approach.

Thus, the agent analyzes the routing tables of its neighbors verifies if it
also serves the route that currently requires higher quality and it also checks
if the neighbor has available load to provide. In a positive case, the agent will
delegate this data stream to the neighboring router, performing a piloting
action at runtime. However, if no neighbor is able to meet such demand, the
agent will instantiate a new virtual router, associate a new piloting agent
and then delegate the flow to the new virtual router. After that, the agent
must communicate with the other neighbor from where the flow is coming,
to change the route.

In case of malfunction, the agent can replicate all the routes it serves
to a new virtual router, and trigger an alarm for a human intervention to
address the occurrence of the error, as this would be outside the scope of
agent autonomy.

4.4 Piloting plane simulator

We have implemented a simulation environment for the scenario previous
described. We also have implemented the solution presented in Section 4.3.
See Figure 4.2 for a screenshot of the simulator. The aim of the simulation
environment is to provide users with the functionality to experiment with
agent-oriented pilot plans.

Following the architecture outlined in Section 4.4.1, each node represents
a virtual device. Internally the simulator maintains three different types of
data:

• the virtual devices and the current value of their observed properties;

• the routes; and

• the routers that compose the virtual network.

Each time the simulation clock is incremented, the virtualization envi-
ronment is consulted, and the properties values of each device are updated.
Therefore, each agent is responsible for managing its local data using the
API explained in Section 4.4.2. Once the multi-agent system decided to in-
stantiate or change the virtual network, it executes the solution outlined in
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Figure 4.2: Simulation Environment GUI

Section 4.3, and wait for the new set of virtual routers/routes. The differ-
ence between the new set of routers/routes and the older one is computed
and used to instantiate a new virtual network using the API. In reality, the
algorithm may behave in different ways. To illustrate these different behav-
iors, the simulator offers the ability to modify the different agent’s behaviors
(see Section 6.2) and simulation parameters, such as: amount of data and
data transfer rate. For example, if an agent has a Violating behavior and
there is a rule defining that “if the data transfer rate is below a threshold,
the agent has to reject the requests to transfer data”, such agent can violate
such rule. Otherwise, if the agent has an Abiding behavior, it will fulfill the
rule, i.e., it will not transfer data and a new virtual router must be defined.

4.4.1 Architecture Overview

The architecture of our proposed simulation environment is composed of
three elements: (i) a user interface; (ii) a normative multi-agent system; and
(iii) a virtualization environment, as shown in Figure 4.3. The user interface
provides users with the functionality to visualize the network and control
simulation parameters. The multi-agent environment implements the algo-
rithms as presented in Section 4.3. Finally, the virtualization environment
provides access to virtual devices and means to instantiate and re-instantiate
virtual networks. The communication between the user interface and the sim-
ulation environment is performed via a standardized programming interface
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Figure 4.3: Simulator Architecture

(see Section 4.4.2). The advantage of the programming interface is to decou-
ple the normative multi-agent system from the virtualization environment.
Therefore, the simulation environment can be easily portable across multiple
virtualization environments (e.g., Xen [53], OpenFlow [54]).

4.4.1.1 GUI

The graphical user interface allows users to experiment with the proposed
pilot system. The user interface provides users with the functionality to visu-
alize the network topology, devices and routes. In addition it allows users to
control some simulation parameters like the: max number of virtual routes
that can be instantiated in each simulation and the behaviors that agents
may assume. The GUI was implemented in Java using the JUNG library to
represent the network topology. JUNG [55] (Java Universal Network/Graph
Framework) is a library that provides a common and extensible language for
the modeling, analysis, and visualization of data that can be represented as
a network. The JUNG architecture is designed to support a variety of rep-
resentations of entities and their relations, such as directed and undirected
graphs, graphs with parallel edges, and so on. It also provides a mechanism
for annotating graphs, entities, and relations with metadata. This has facil-
itated the creation of the functionalities that examine the relations between
devices as well as the properties attached to each device and relation.
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4.4.1.2 Ginkgo

The agents were implemented using the Ginkgo platform [56], through
the construction of several behaviors. Using those behaviors the agents can
exchange information among neighbors, store, analyze and decide what to
do to attend the imposed QoS requirement, for example. The Ginkgo Dis-
tributed Network is an agent platform based on autonomic networks. It has
the building blocks for the development of a piloting system for computer net-
works. The framework allows the creation of lightweight and portable agents,
which facilitates its implementation in heterogeneous environments: routers,
switches, hosts, wired and wireless networks. The agents play the role of the
autonomic manager of autonomic computing. With distributed managers
near its managed elements, monitoring can be done locally. The platform
also allows the formation of clusters of agents in neighborhoods. Neighbors
exchange information and get a situated view of the network. Thus, besides
the local environment, the agent is aware of other network places. This in-
formation is stored in the knowledge base that has an information model to
facilitate communication between agents. Other data repository is the policy
file, which contains rules of the application. In our pilot system, rules are
interpreted as norms. The behaviors described in Section 4.3.1 are realized
as Gingko behaviors. They feed the knowledge base, perceive and predict
threatening events and perform changes on the managed virtual devices. In
Gingko agents also may have a dynamic planner that, with information in
the knowledge base and the rules in the policy file, changes parameters of
the behaviors and controls the life cycle of the agent. This makes possible to
develop the properties of self-configuration, self-healing, self-optimizing, and
self-protection in the network, which promote the self-management.

4.4.1.3 OpenFlow

For the virtual network, the OpenFlow system was used. The OpenFlow
provides an open protocol to program the flow table in different switches and
routers. A network administrator can partition traffic into production and
research flows. Researchers can control their own flows – by choosing the
routes their packets follow and the processing they receive. In this way, re-
searchers can try new routing protocols, security models, addressing schemes,
and even alternatives to IP. On the same network, the production traffic is
isolated and processed in the same way as today.

In order to connect the OpenFlow system and the Ginkgo platform we
used the Beacon controller, which is a Java-based OpenFlow controller, built
on an OSGI [57] framework, allowing OpenFlow applications built on the
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platform to be started, stopped, refreshed, installed at run-time, without
disconnecting switches. Beacon has the following features that helped us on
the development of the simulation environment:

• Cross-platform - Runs anywhere Java runs (including embedded de-
vices, e. g., switches and routers);

• Dynamic - Code and resource bundles can be started, stopped, re-
freshed, installed at runtime, including dependent bundles, without
disconnecting switches;

• Embedded J2EE Web server [58]- Jetty [59] is optionally embedded
enabling a fully capable enterprise web server;

• Unit testing - Support for JUnit [60] unit testing;

• Maven [61] - Beacon can be built using Maven, and exported to Maven
and P2 repositories.

• Performance - Beacon has been tested and shown to service 250,000
L2 switch Packet-In requests per second in single threaded mode on a
2.4 GHz Core 2 processor using 512MB of RAM. Widening the thread
count to 3 increases performance to 340,000 Packet-Ins/s.

4.4.2 Programming Interface

The programming interface defines how to integrate the simulation envi-
ronment with any virtualization environment. This section provides a com-
prehensive description of the proposed programming interface. The aim of
the interface is to allow the simulation environment to perform tasks such
as: (i) obtaining the available physical devices and routes; (ii) getting the
instantiated virtual network; (iii) observing values of devices properties; and
(iv) reconfiguring the virtual network. Figure 4.4 provides an overview of
the concepts that compose the interface.

The Device concept represents the physical network devices, such as
routers. Each device has a unique ID, a name and a set of Property ele-
ments. A property is a pair of name and value uniquely identified by an ID.
The routing tables are represented by the Route concept. A route maintains
the linked devices and is identified by an ID. A virtual network is a sub set
of the set of routes that compose the physical network.

In order to manage the virtual network, the programming interface pro-
vides a function that supports the piloting system to manage the virtual
network by adding and removing routes and devices, accordingly. Therefore

61



Figure 4.4: API Class Diagram

the setVirtualNetwork (addRoutes, removeRoutes) function receive as input
two parameters: (i) the addRoutes parameter is a list of routes that will be
part of the virtual network; and (ii) the removeRoutes parameter is a list of
routes that will be removed from the virtual network. The following are the
six functions that can be used to obtain information from the network:

• devices = getDevices() returns all devices that are part of the virtual
network as descriptors used to refer to the devices in subsequent calls.

• device = getDevice(deviceID) returns the device descriptor identified
by the deviceID. When the device does not exist it returns an invalid
descriptor. The deviceID is only a symbolic link and must be managed
by the virtual environment plugin.

• value = getPropertyValues(deviceID, propertyID) returns the value of
the property identified by the propertyID from the device identified by
the deviceID. When the property and/or device do not exist it returns
an invalid descriptor.

• routes = getRoutes() returns the routing table of all devices as route
descriptors. The routes are used to compute new virtual networks.

• routes = getRoute(deviceID) return the routing table of a given device
identified by the deviceID.

• routes = getVirtualNetwork() return the set of routes that defines a
virtual network.

More information about the use of the developed simulator and the cor-
responding demonstrator is given in Section 6.
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Chapter 5

An Architecture for Adaptation
of Virtual Networks on Clouds

Virtual networks (VN) are a new research topic advocated to increase
flexibility, manageability and isolation in the Internet. However they intro-
duce many open issues to become practical in real scenarios. On the other
hand, cloud computing provides elasticity, where availability scales up on de-
mand, with resources being offered frequently as virtualized services over the
Internet. The use of virtual networks as a mechanism in cloud computing can
provide traffic isolation, improving security and facilitating pricing. Also, it
allows us to act in cases where the performance is not in accordance with
the contract for services between the customer and the provider of the cloud.
This chapter shows an architecture for the deployment of clouds over virtual-
ized networks. This architecture, conceived within the scope of the Horizon
architecture, was used to build a software infrastructure. This infrastructure
was used to build a prototype on a testbed where experiments with virtual
networks using the multi-agent system (Annex J - Report 4.2) were made.
With this infrastructure we completed our initial testbed described in the
previous task.

The proposed infrastructure allows the creation of virtual networks on
demand, associated with the execution of workflows, isolating and protect-
ing the execution environment. Also, it provides performance monitoring of
virtual networks by acting preemptively in the case of performance dropping
below the stated requirements. The management acts autonomously chang-
ing routes without interruption of services. To validate the proposed archi-
tecture, we built a prototype on a testbed, which we used to execute image
processing workflows utilized in e-Science applications. We show results of
real workflow executions in our testbed to evaluate the network performance,
the overheads involved when using virtual routers, how virtual network links
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behave with data flow transmission, and how the adaptation provided by the
virtual network management system can benefit the workflow execution.

5.1 State of art

Virtual networks are a new research topic advocated to increase flexibility,
manageability and isolation in the Internet. However they introduce many
open issues to become practical in real scenarios. These perspectives and
research challenges are presented in [62]. In this chapter we explore the
interfacing between infrastructure and service providers. Our scenarios use
real services and a workflow application running in computational resources
connected by virtual networks. The virtual network management system
provides an interface to adjustments required by the workflow manager.

The implementation of virtual networks, its performance issues and trends,
are addressed in [63]. We use its virtual machine approach to construct our
virtual networks. Although our focus is not on performance, we could eval-
uate our results and assess if they are factual.

In [64], the authors present a resource management framework for VN-
based infrastructure providers. In this work, an architecture called Local
Resource Manager (LRM) was developed to monitor and control virtual
resources in a physical machine and to provide an interface with external
clients/agents to do a high-level management. They extend the Xen tools to
enable a fine grain, self-adjusting virtual resources control. The evaluation
was performed with an implementation of a mechanism for dynamic adjust
of CPU resources based on the application requirements of QoS. In our work
we are not interested in isolating and controlling the resources in the hosts
of the computer environment, but the ones of the network that interconnect
them.

Hao et al. [65] propose mechanisms to migrate virtual machines in clouds
within different networks. As stated by the authors, this demands network
reconfiguration to offer uninterrupted services for the cloud users, which is
achieved through network virtualization. However, the authors do not eval-
uate performance issues when reconfiguring the virtual network.

This work contributes to the decision on how to reallocate data paths
among different virtual networks in order to achieve an acceptable perfor-
mance in a cloud computing infrastructure, as the one proposed in [65]. This
reconfiguration is important in the virtual network management in order to
efficiently use the available links by allocating virtual networks according to
the current network usage needs. Such actions can help in obeying SLA con-
tracts, giving priority to flows from users or applications with more strict
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requirements.

5.2 Workflow Management System

Our architecture is based on Service Oriented Computing (SOC) [66],
and allows users to establish connections among services, organizing them as
workflows. In order to enact real workflows in our experiments, the manage-
ment of the service compositions in our infrastructure is made by the GPO
(Grid Process Orchestration) [67], a middleware for service workflows execu-
tion in the grid (Figure 5.1). The GPO allows the creation and management
of application flows, tasks, and services. The GPO uses workflows built with
the GPOL (GPO Language) [67]. The GPOL is based on concepts of service
orchestration from WS-BPEL [68], with the inclusion of specific directives for
grids, such as state maintenance, potentially transient services, notification,
data-oriented services, and groups. The language includes variables, lifecy-
cle, fabric/instance control, flow control, and fault handling. Additionally,
it allows the user to start task executions, service executions, and workflow
executions in sequence or in parallel. The scheduling service is responsible for
distributing the workflow services to be executed in the available resources.
To accomplish this, the scheduling service may implement different algo-
rithms with different optimization objectives, and decide which one to use
depending on the application or current environment characteristics. Infor-
mation about the available resources in the grid can be obtained through the
resource monitor (RM). The RM operates in a distributed manner, main-
taining one instance on each computing resource and providing on demand
information for other services. Our middleware provides the monitoring of
workflow executions. The GPO monitors the execution times of each section
specified in the GPOL workflow, including the time spent on each opera-
tion invoked in the process, registering them in a log file exclusive for each
workflow.

Figure 5.1: The Workflow Management Architecture.
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The integration between the GPO and management of virtual networks
is done through the Virtual Network Interface Service (VNIS). Using the
VNIS, the workflow manager requests the network to be used for workflow
execution. During the workflow execution the RM monitors the performance
of virtual network links and can identify problems such as miscommunication
or underperforming. In such cases, the GPO notifies the VNIS, requesting
improvements in the performance of a link or the entire network when it is
appropriate. VNIS offers functions to create a new VN, request an allocated
bandwidth increase in the specific virtual link or an entire VN, provide infor-
mation in real time from VN, and to release the VN associated with running
a workflow.

VNIS is the operational element that receives requests from the workflow
management but that is not directly connected with the management of vir-
tual networks. The interface between VNIS and the virtual networks is made
by the Virtual Network Management System (VNMS) [69]. This modular de-
sign allows our system to use various alternatives for management of virtual
networks. For each system we can use a specific version of VNMS without
changing the other components. This flexibility allows our system to operate
clouds in several domains simultaneously and transparently to the user. In
this version of our testbed we are using VNMS to integrate our Workflow
Management System with the Multi-Agent System presented in Annex J.

The system was implemented and deployed using the architecture pro-
posed in Figure 5.1. Therefore, our experiments comprise the virtual net-
works, the workflow specification in GPOL, the workflow emulation using the
emulator service over the GPO middleware, including workflow data trans-
fers over different configurations of the virtualized network along with the
adaptation provided by the VNMS component.

The main components of the proposed architecture (GPO, RM, SS, VNIS,
VNMS) were modeled as services and implemented in Java [70]. The choice
of transient services ensures scalability. For each workflow execution, an in-
dependent and exclusive VNIS instance is created. This instance is respon-
sible for getting information and requesting actions from the virtual network
created to support the workflow execution.

5.3 The Median Filter Application

The use of real applications in our testbed is essential, but there exist
limitations to implement all the necessary services for all workflows and de-
ploy them on all available resources. Such limitations include personnel and
software requirements, which can be conflicting, making it not possible to
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experiment the necessary service-resource combinations to evaluate perfor-
mance and strategies of network virtualization. To contour this situation, we
created an emulation service which mimics many aspects of the workflows
execution [71]. Using our emulator service we built emulation workflows
which present a quite similar behavior to the real application workflows. In
this work we used the median filter workflow to perform virtual network
evaluations.

(a) Median filter (b) Workflow example

Figure 5.2: The median filter application.

The median filter is an image processing application [72] that can be
executed in parallel by splitting the image into pieces and merging the results
back into one single image. The median filter algorithm (Figure 5.2(a))
substitutes the value of a pixel by the surrounding values on its neighborhood.
Figure 5.2(b) shows the file is divided into 5 parts, the slices files processed
on parallel way, and the slices files merged on the final filtered file [67].

5.4 The Integrated Management of Resources

The management of our infrastructure works at two independent levels,
which complement and interact when necessary. At the level of virtual net-
works, our multi-agent system based on the autonomic control loop and the
knowledge base self-manages the virtual networks. If a failure occurs, it is
diagnosed and repaired automatically. In addition, this level of management
is also responsible for maintaining SLAs (Service Level Agreements) in its
domain. If performance degradation is detected on any of the components
of the virtual network, our multi-agents find alternative routes or use other
routers to comply with the contract.

On the other hand, at the level of workflow management the execution
of the services is followed step-by-step, measuring system performance from
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the user’s perspective. For example, if the transfer time between computing
resources is below the expected time, the manager can use VNIS to request
more bandwidth in an attempt to keep the average performance in the ex-
ecution of the workflow. This can occur even if the bandwidth is within
the contract, because the overall performance of the workflow execution, in
general, has higher priority over the contract at the network level. From the
perspective of the user what really matters is the overall performance of the
application as a whole.

However, to ensure the overall performance it is important to monitor
at all levels of infrastructure. Our infrastructure performs such monitor-
ing and can react quickly, independently and simultaneously at all levels of
management.
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Chapter 6

Demonstrators

The Horizon project produced many tools concerning network virtual-
ization and autonomous network management and control. Some of the
developed tools were already described in previous reports, as well as their
demonstrations. Now, we provide a view of the demonstrators of the last
developed tools and the integration among them.

Accordingly, when projecting a new virtual network, the administrator
should design the autonomous control and test it using the developed agent
simulator (Chapter 4). Based on these results, the administrator can develop
his own agents using the Ginkgo platform associated to some of the devel-
oped tools. For instance, if the network virtualization platform is OpenFlow,
then the administrator can program his agent using the agent platform pro-
vided in OMNI [35, 36]. Instead, if he uses a KVM platform, he could use
the tools developed in this work package and presented in Report 4.2. An-
other more generic option would be to use the designed common interface
for network virtualization (Chapter 3), so that the developed mechanisms are
platform independent. The virtual network administrator could also think
about network adaptive mechanisms, such as the ones described in Chap-
ter 5. This mechanism allows the creation of virtual networks on demand
and the execution of workflows, which provides isolation and protection in
the execution environment. These mechanisms are easily integrated with the
agent platform for a better performance.

Another important area is the development of the physical infrastruc-
ture, which provides the substrate for creating virtual networks. In Horizon
Project, we developed management and control functions to develop testbeds
using different virtualization platforms, such as Xen, OpenFlow, and KVM.
We also developed a hybrid virtualization platform, which provides flexibil-
ity for the per-packet processing functions, besides supporting an easy flow
management, which simplifies the migration of nodes and links.
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In the next sections, we describe demonstrators of some of the developed
tools and we show how they interact together.

6.1 Using SAVE in the developed testbeds

We now present some steps to understand how to create and manage a
virtual network using the tools developed in Horizon.

6.1.1 Developing and managing a Xen testbed

A simple testbed consisting of a few nodes is enough to demonstrate
all the features developed for Xen testbeds in Horizon Project, as show in
Figure 6.1.

Figure 6.1: Testbed for creating and managing virtual networks using Xen
and VNEXT.

The following steps allows the creation of a virtual network and the mon-
itoring of a virtual node.
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1. Build the testbed, having in mind that the controller, which repre-
sents VNEXT, and the NFS server must be connected to all physical
machines.

2. Install VNEXT server in the controller and the client on the physical
machines.

3. Open the management interface of VNEXT and connect to the testbed,
as shown in Figure 6.2, by clicking in ‘Server’ and then in ‘Connect’.

Figure 6.2: First, connect VNEXT graphical interface to the Xen testbed.

4. Verify whether all physical machines are connected and whether they
are connect as described in Figure 6.1. Figure 6.3 shows the answer of
VNEXT if all steps were correctly performed.

5. Click on ‘Network edit mode’ to deploy your virtual network. First,
draw your virtual network, as described in Figure 6.4. After selecting
the number and the position of the virtual nodes, draw the virtual links
between them. Finally, click on the ‘Deploy’ button.

6. Repeat the previous steps to create more virtual networks.

7. Monitor any physical or virtual router by clicking on its representation
on the visualization area of VNEXT. Figure 6.5 shows the data available
for the selected physical router on the right-side menu. The left-side
menu shows other options for managing physical and virtual nodes.

The developed live migration can be demonstrated by creating a flow
between two external virtual machines. Hence:
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Figure 6.3: Physical topology view using VNEXT.

Figure 6.4: Create a virtual network by selecting the virtual topology and
then requesting VNEXT to deploy the specified virtual network.

1. In the developed scenario (Figure 6.1), we can instantiate a video flow
from the traffic generator to the traffic receiver, as shown in Figure 6.6.

2. Then, select the ‘Migration’ menu, in which it is possible to select
the source physical machine, the destination physical machine, and the
virtual machine to be migrated, as shown in Figure 6.6. After selecting
the correct virtual machine, the administrator presses the ‘Migration’
button and VNEXT performs all action required to migrate the virtual
machine and the virtual links without losing packets.

By using this procedure, the administrator observes that the video stream
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Figure 6.5: Menu for managing virtual routers, which is available by clicking
on the virtual node to be monitored.

Figure 6.6: Instantiating a video flow between two external machines that
uses a virtual network with three virtual nodes. The selected node will be
migrated during the video flow.

is not affected by the virtual machine migration, which means that this op-
eration is completely transparent to the end users.
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6.1.2 Developing and managing an OpenFlow testbed

An OpenFlow network can be created using a set of interconnected phys-
ical devices or by creating a virtual network in a single machine, using ma-
chine virtualization techniques. Both methods can be used for performing
this demonstration. We assume in this test a simple topology, as described
in Figure 6.7.

Figure 6.7: Testbed topology for the OpenFlow network running OMNI.

For performing a simple test of monitoring:

1. Create an OpenFlow network with the selected topology.

2. Configure FlowVisor, specifying the new virtual network.

3. Install and run the controller node with the OMNI version of Nox.

4. Open a browser and access the OMNI home page, shown in Figure 6.8.

5. The network visualization is done by clicking on the ‘Topology’ button.
In the opened page, the administrator can visualize how the OpenFlow
switches are connected and also how the spanning tree is configured in
this network. Figure 6.9 shows a picture of this interface.

6. The network monitoring is performed by the service ‘Statistics’, avail-
able on the top menu. In this service, the administrator receives a list
with all switches in the network, as shown in Figure 6.10.

Each entry on this list is a link to the monitoring information about
the switch, which includes the ports statistics about forwarded and lost
packets and also the flow list with the corresponding monitoring data.

The migration in OpenFlow networks using OMNI is even simpler than
the migration in Xen networks using VNEXT. Let’s assume again that the
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Figure 6.8: OMNI home page, which provides access to all management
functions.

Figure 6.9: Network topology view using OMNI. This service is provided
when the administrator selects the ‘Topology’ button in the Web interface.

traffic generator machine starts a video stream to the traffic receiver machine.
To perform the migration and observe that the packets are not lost, the
administrator do the following steps:

1. Start the video stream between the two machines.

2. Search for the video flow in the OpenFlow network. To do so, the
administrator selects the ‘Flows’ button in the top menu, which opens
the interface shown in Figure 6.11.

3. In this interface, type the UDP or TCP port used by the video in
the ‘Port TCP/UDP Source’ field and start the search. OMNI will
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Figure 6.10: Monitoring the virtual network using OMNI. This service is
provided when the administrator selects the ‘Statistics’ button in the Web
interface.

Figure 6.11: Interface for searching for a specific flow in an OpenFlow network
managed with the OMNI tool.

answer this request with a link to the video streaming flow. Click on
the ‘Logical Topology’ button, in the bottom of the page, as described
in Figure 6.12. This will open a new interface, containing the physical
network and the path which is being used by the flow, as show in
Figure 6.13.

4. Click on the button ‘Select Path’ and then select the new flow path in
the network.

5. After selecting the new path, click on ‘Create Path’ to perform the
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Figure 6.12: Flow description after a flow search. The Logical Topology
button provides a graphical visualization of the flow.

Figure 6.13: Visualization of the selected flow and interface to perform a
migration.

migration without packet losses.

Again, the migration is transparent to the end user and no interruptions
is observed in the video stream.

6.1.3 Using SAVE with Xen and OpenFlow

SAVE performs all the previous services with equal commands to both
interfaces. This is the main advantage of SAVE, because the administra-
tor does not need to reprogram the mechanism when changing the testbed.
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Moreover, the administrator could use simultaneously two different testbeds
using the same interface, because the underlying infrastructure is transparent
to the virtual network operators in SAVE.

To perform the same virtual network management actions in both plat-
forms using SAVE, a small set of functions are used:

1. Instantiate topology - Create the virtual network on the physical in-
frastructure, with the specified number of nodes and links, besides the
specification of all dimensions. This function connects to the virtualiza-
tion platform manager, in this case OMNI or VNEXT, and instantiates
the virtual network by automatically performing all the required steps
in each virtualization platform.

2. Get processor - Monitor the processor usage in the specified node.
Other functions could be used to perform other monitoring actions
in all the specified dimensions.

3. Modify topology - This function migrate a set of nodes and links as
required by the infrastructure provider. Hence, this function calls the
migration functions of OMNI and VNEXT and returns the received
value.

Therefore, SAVE provides an easier and general way to manage virtual
networks and virtualized physical testbeds.

6.2 Piloting plane simulator

In order to demonstrate the piloting system with the driving simulation
environment, we implemented a virtual network in OpenFlow and their re-
spective piloting agents in Ginkgo. For the sake of simplicity, we used a
linear topology to demonstrate the application of the simulator and the pro-
posed piloting plane. In Figure 6.14, we have the initial representation of the
topology used. After the instantiation of the network elements, the agents
begin the process of data collection. For this scenario, we have as a neighbor
of router #1 the router #2 and vice versa. Therefore, the router #1 will run
the Collect Behavior for collect its routing and cargo information, as well as
the Request Information Behavior to request relevant data from the router
#2, which responds through the Response Information Behavior. The router
#2 performs the same collect process.

To begin the simulation process, the Client requests a stream service
from the Stream Server, which is attended by a route composed by two
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Figure 6.14: Virtual Network Topology.

virtual routers in the network. This stream request must meet certain criteria
of quality of service (QoS), agreed in the Service Level Agreement (SLA).
Initially, the routers are idle, and promptly attend to the requested stream
with the required quality. We can observe in Figure 6.15 that the router #2
is in accordance with the QoS criteria.

When starting transmission, the piloting agents verify the service quality
attendance. However, to generate a disturbance in this scenario, we started
a massive data transfer from the File Server to the Backup Server. Notably,
this transfer will compromise the router #2, which becomes overloaded and
unable to meet the quality required by the stream service, which initiates a
process of quality norm violation. Figure 6.16 shows the router #2 overloaded
and so violating the QoS norm.

Thus, the piloting agent realizes this disorder, and as a way to solve it
starts searching for neighbors who have load available and meet the same
segment of the route. However, as can be seen, no neighbor is able to meet
this request. Thus, the piloting agent of the router #2, communicates with
the Beacon controller, using the Create Router Behavior, to request the
instantiation of a new virtual router on the network. After the construction
of this new router #3, the piloting agent runs the Create Agent Behavior
to allocate an agent to the router #3. Then the route in question, from
router #1 to the Stream Server, is delegated to the router #3 through Route
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Figure 6.15: Router #2 respecting the QoS criteria.

Figure 6.16: Router #2 violating the QoS norm.

Delegate Behavior, and finally the Inform Route Behavior informs the router

80



#1 about such modification in the route, as we can see in Figure 6.17.

Figure 6.17: Final Topology.

Through the Figure 6.18, we can view the information being displayed
on the interface of the simulation environment. It is important to note that
between the period of non-compliance of quality criteria and its solution, the
piloting agent of router #2 is violating the norms of quality. Also, in the
same figure we also note the fall of the QoS attendance of the transmission,
and their improvement after the creation of router #3.

6.3 Adaptive environments

We performed real workflow executions in our testbed to evaluate the
network performance in three aspects:

1. The overheads involved when using virtual routers.

2. How virtual network links behave with concurrent data flow transmis-
sions.
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Figure 6.18: Virtual Network fulfilling the QoS norm.

3. How the execution of workflows can take advantage of the adaptation
provided by the virtual network management system.

The evaluations presented in this section are useful for the development
of advanced management algorithms for the virtual network substrate. In
addition, the experiments can provide background for the development of
autonomic management agents capable of switching flows across network
links when abnormal behavior is observed.

6.3.1 The Testbed Infrastructure

We deployed a testbed to execute our experiments using the virtual net-
work. The infrastructure is composed of a network substrate, a set of soft-
ware tools for creating on demand virtual networks, a computational grid,
and a workflow management system. The testbed receives as input a set of
workflows used to evaluate different strategies of network virtualization.

Our infrastructure uses the Globus Toolkit (GT) [73] deployment, an
OGSA (Open Grid Service Architecture) [74] implementation. In the OGSA,
all resources (physical or virtual), are modeled as services, bringing to the grid
the concepts offered by Service Oriented Computing (SOC). Our base system
is a GT version 4 deployed on 4 resources: Apolo, Artemis, Hermes, and Nix,
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Figure 6.19: Network substrate.

Table 6.1: Resources in the testbed.
Name Processor Clock Cores RAM

Apolo Pentium 4 3.00 GHz 2 2.5GB
Nix Core2 Quad Q6700 2.66 GHz 4 8 GB

Hermes Core2 Quad Q6700 2.66 GHz 4 8 GB
Artemis Xeon 3040 1.86 GHz 2 1 GB

all with Debian Linux connected by the network substrate. This substrate
is one of several possible customizations for our main network substrate.
Resources characteristics are summarized in Table 6.1.

Each virtual network created in our testbed uses two virtual routers.
These virtual routers are located at the real hosts Zeus and Dionisio, as
shown in the Figure 6.19. For example, to bring virtual network A to op-
eration, it is necessary to instantiate the virtual routers horizonzeusA, at
the real host Zeus, and horizondionisioA, at the real host Dionisio. We in-
stantiated 4 virtual networks to perform the experiments. Figure 6.19 also
shows Apolo and Artemis connected by the virtual network A (IP 10.10*).
Similar instantiations were made for the virtual networks B (IP 10.20*), C
(IP 10.30*), and D (IP 10.40*). The paths for each virtual network can be
mapped in one of two possible physical paths between the real hosts Zeus
and Dionisio: a 100Mbps link and a 1Gbps link.

Merely summarizing what has already been detailed in Annex J/Re-
port 4.2 for the developed multi-agent system, the main tools used to build
our testbed are qemu, KVM, and libvirt. Qemu [75] is a processor emula-
tor which can also be used as a virtualization platform. The Kernel-based
Virtual Machine (KVM) [76] is a full virtualization hypervisor based on the
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machine emulator qemu. We use the KVM to create our virtual routers
because it provides good performance in full virtualization, supports Sym-
metric Multi-Processor (SMP), memory ballooning, and live-migration of
virtual machines. Furthermore, it allows VM networking by bridges, routing
or private networks adding versatility to our testbed. KVM is free software
under the GPL and open-source, and it allows the use of external tools to
control it. The management of our virtual networks is made through Libvirt
[77]. The Libvirt is an API to access the virtualization capabilities of Linux
with support to a variety of hypervisors, including qemu, KVM, and Xen,
and some virtualization products for other operating systems. It allows local
and remote management of virtual machines. With Libvirt it is possible to
use the same code to request information regarding the performance of a
virtual link independent of the hypervisor running in the virtual routers.

6.3.2 Virtual Network Overheads

We start by evaluating the overhead introduced by the virtual routers
when compared to the transmissions without them, i.e., in a switched gigabit
Ethernet network. In this scenario we measured the times taken to execute
a simple workflow which performs a median filter in an image. It uses 3
services and performs 2 data transfers, as shown in Figure 6.20.

Figure 6.20: Workflow used in the virtual network overhead evaluation.

The workflow receives a user submission in Apolo and sends the image
to be processed in Nix (transfer 1 - T1), where the median filter is applied
to the image. After that, the image is copied back to Apolo (T2), where
the resulting image is shown to the user. We executed this median filter
workflow for images of 10, 000 × 10, 000 pixels. We compare executions of
the workflow in a gigabit Ethernet network with the execution in our testbed
using the gigabit links available from the virtual routers. Figure 6.21 shows
the execution times of each workflow step averaged over 5 executions with
confidence interval of 95%. In the next graphs, the label “LRC” refers to the
data transmission using the substrate network directly, without any virtual
element. (LRC is an acronym to Laboratório de Redes de Computadores –
Computer Networks Laboratory).
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Figure 6.21: Results for images of size 10,000 x 10,000 in all available net-
works.

Figure 6.21 presents the execution times of the workflow services in all
available networks in our testbed: 4 virtual networks plus the LRC gigabit
network. We can observe that both data transfer services (scp-AtoN and
scp-NtoA) double their times when using the virtual network to transfer the
10, 000 × 10, 000 pixels (287 MB) images. This impacts the final execution
time of the workflow, which is increased by 23% (curves “Execution Time”).
Therefore, the 4 virtual networks present similar behavior with some over-
head over the LRC network.

The overhead introduced by the virtual routers when there were file trans-
fers was expected [63]. This is caused by several factors, such as:

• Complexity in the packet forwarding through virtual machines;

• Multiplexing packets to virtual machines through bridges;

• While in the LRC network the data path between Apolo and Nix has
a single hop, the virtual network transfer passes through 3 hops, intro-
ducing queue/propagation overheads to the data stream; and

• Zeus and Dionisio introduce overheads when processing the incoming
data and forwarding it to the destination.
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In this work we focus on the management of the flows through the avail-
able virtual networks, therefore we accept this overhead as part of the virtual
network infrastructure.

6.3.3 Virtual Network Performance

In the previous section we evaluated the performance of a 1Gbps link in
a virtual network with a single data flow. In this section we add a 100Mbps
link, and we analyze the performance of both links using up to 3 data flows.
Each data flow is a transfer of a 15, 000 × 15, 000 image file (644 MB). For
such evaluation, we consider 4 routing scenarios (A, B, C, and D), as shown
in Table 6.2.

Table 6.2: Scenarios used to evaluate the virtual network performance.
100 Mbps 1 Gbps

Flow 1 Flow 2 Flow 3 Flow 1 Flow 2 Flow 3

A X X X

B X X X

C X X X

D X X X

In each scenario, we measured the time taken to send all combinations of
3 flows, with each one being the data transfer of a 15, 000 × 15, 000 image
file. The flows are as follows (Please, refer to Figure 6.19 to understand the
topology of the network).

• Flow 1: TCP data transfer from Nix to Apolo using the virtual net-
work 10.10.∗.

• Flow 2: TCP data transfer from Hermes to Apolo using the virtual
network 10.20.∗.

• Flow 3: TCP data transfer from Artemis to Apolo using the virtual
network 10.30.∗.

Figure 6.22 show results for scenario A (all flows routed through the
100Mbps link), where Single is the control measurement, i.e., the time taken
for transferring each flow alone. We can note that the transmission of flows 1
and 2 concurrently (labeled “1+2”) remains a little below the double of the
control time, as expected. The same happens when only flows 1 and 3 and
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Figure 6.23: Scenario B.

when flows 2 and 3 are transmitted. When the 3 flows are transmitted, all
of them have the performance significantly worsened by the concurrency.

When we consider scenario B (Figure 6.23), the control for flow 1 drops,
as expected, since it is now in the gigabit link. Note that flow 1 has a
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similar transfer time with all combinations of flows, since it is always alone
in the 1Gbps link. However, we can observe some overhead in flow 1 when
increasing the number of flows due to processing concurrency in physical
machines where virtual routers are instantiated. Flows 2 and 3 perform
similarly to the control transfer when transmitted only with flow 1. When
flows 2 and 3 are transmitted together, they share the 100Mbps link, what
worsens their performance. By comparing scenarios A and B we note that
changing flow 1 from the 100Mbps brings benefits to all flows.
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Figure 6.24: Scenario C.

In scenario C (Figure 6.24) we observe that flow 3 is not affected by flows
1 and 2, since flow 3 is the only one in the 100Mbps link, except in the case
where all flows are sent together. This makes it clear that the concurrency in
the physical machines where virtual routers are instantiated is also a limiting
factor for the virtual network overall performance. In the “1 + 2 + 3” case,
flows 1 and 2 affect each other when sharing the 1Gbps link, making their
performance to be closer to the flow 3 alone in the 100 Mbps link.

When all flows are routed through the 1Gbps link (scenario D), the results
in Figure 6.25 show that any combination of 2 flows results in a higher transfer
time when compared to the control measurement, as expected. When all the
3 flows are transmitted, the concurrency makes the transmission time even
higher. However, it is important to note that the transmission time of all
flows together is smaller than the sum the transmission time of all flows
alone. In addition, the transmission of the 3 flows concurrently in the 1
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Figure 6.25: Scenario D.

Gbps network, i.e. scenario D, is faster than combinations in scenarios A
and B. However, when compared to scenario C, scenario D presents similar
performance when all 3 flows are being transmitted. Therefore, scenarios C
and D are valid options for transmitting the 3 flows in the fastest manner
in our testbed. These results can help in the development of adaptation
strategies for executing workflows over virtual networks.

6.3.4 Network Adaptation

In this section we present results on how VNIS/VNMS could adapt the
routing of flows during the execution to achieve a better performance. We use
the same scenarios as in the previous section to refer to different distribution
of virtual networks over the links.

We executed the median filter workflow splitting a 15, 000×15, 000 image
file (644 MB) in 3 pieces, sending them to be processed in parallel on different
resources, and receiving the 3 pieces back to generate the final resulting image
(Figure 6.26).

The workflow steps are as follows.

1. Apolo breaks the image in 3 pieces.

2. Apolo transfers in parallel one piece to Nix using the virtual network
10.10.∗, one piece to Hermes using the virtual network 10.20.∗., and one
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Figure 6.26: Workflow used in the virtual network adaptation evaluation.

piece to Artemis using the virtual network 10.30.∗. At this moment,
all flows are routed through the 100Mbps link.

3. Nix, Hermes, and Artemis execute the median filter on their image
pieces.

4. Apolo gets all the pieces back from Nix, Hermes, and Artemis. Here
the flows are routed through different paths, using different scenarios
as in the previous section.

Upon the execution of the workflow, the VNIS/VNMS can choose how
to distribute the data flows in the virtual networks depending on the work-
flow’s requirements. For example, if the transmission time for the first three
transfers in the 100Mbps link is above the workflow requirements (given by
SLA, for instance), the VNIS/VNMS can choose to migrate some networks
to the 1Gbps link. Figure 6.27 shows potential gains of such adaptation when
executing the workflow. We can observe that, if the VNIS/VNMS chooses to
move from scenario A to scenario B, it would improve the transfer times for
the returning image pieces (Transfers 4-6). As a consequence, the workflow
execution time would also be reduced. However, if the workflow require-
ments are tighter, the VNIS/VNMS could choose to move to scenario C or
D, achieving a data transfer time for the returning image pieces closer to the
non-virtual network.

Figure 6.28 shows the time taken by each transfer and median filter pro-
cesses. We can observe that transfers 4 to 6 show the same transfer time
pattern achieved in the four scenarios. For example, Transfer 4 is moved to
the 1Gbps link in scenario B, having a transfer time close to the one pre-
sented by flow 1 in the previous section. This would be useful when there
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is a priority flow in the network, which could be routed alone through the
1Gbps network. In scenarios C and D the transfer times for all transfers are
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similar, corroborating the experiments from the previous section by showing
that both options are valid to more efficiently transfer three data flows.

6.3.5 Adaptation with Flow Priority

In this evaluation we present results of a case study on flow priority.
We consider two workflows: (i) the workflow W1 from Figure 6.29 for a
20, 000 × 20, 000 image (1.2 GB), which is split for processing; and (ii) a
higher priority workflow WP from Figure 6.20 with a 10, 000× 10, 000 pixels
image (287 MB).

Figure 6.29: Workflow to apply three filters sequentially to the image file.

The case study was performed as follows. First, W1 starts its execution,
splitting the image file and sending its pieces to Nix, Hermes, and Artemis
using the 1Gbps link provided by the virtual network (Please, refer to Fig-
ure 6.19 to understand the topology of the network). After the processing,
WP is submitted to execution in Apolo to be processed in Hermes. At this
point, the network will experience concurrency among 4 data flows: T2, T4,
T5 from W1 and the first data dependency from WP (T1) in the gigabit link.
At this moment, the GPO requests priority to the VNMS through the VNIS.
The objective of the VNMS now is to satisfy the higher priority from WP .
To achieve this, it must reconfigure the virtual networks to provide a faster
transfer for T1 from WP .

We analyze 3 possible actions to be taken by the VNMS:

• Action 1: Take no action. Simply allow all flows to go through the
1Gbps link.

• Action 2: Reconfigure the network so that flow T1 from WP can use
the 100Mbps link exclusively.
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• Action 3: Reconfigure the network so that flow T1 from WP can use
the 1Gbps link exclusively, i.e., changing all the other flows to the
100Mbps link.

Results for data transfers in this concurrent workflow execution are shown
in Figure 6.30. In the Action 1 case, the executions of the whole workflows
(i.e., including all the processing times – not shown in the figure for the
sake of cleanliness) take 206, 038ms for W1 and 70, 605ms for WP . Action 2
has shown to be the worse option for the priority workflow, since it worsens
the data transfer time for its data dependencies (WP/T1 and WP/T2). In
addition, in this case the total execution times for W1 and WP are 216, 825ms
and 81, 368ms respectively. On the other hand, when Action 3 is taken,
data transfer times from the priority workflow WP are shorter, making the
execution time of the whole workflow to drop to 50, 598ms.

This adaptation case study shows that, when a priority flow arrives, the
best option is to route it through the gigabit link alone, as expected. How-
ever, as a second option, routing it through the gigabit link along with other
3 flows may still be better than routing the priority flow alone in the 100Mbps
link.
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Chapter 7

Conclusions and future works

The Horizon Project is focused on a new automatic piloting system which
includes intelligent mechanisms to learn the context and adapt protocols
to the current situation. The key idea of this research project is to intro-
duce a new intelligent architecture adapted to virtual networks. The project
is divided into four work packages: the context-aware post-IP architecture
(WP1), the virtual network environment (WP2), the piloting plane (WP3),
and the piloting of the virtual networking environment (WP4), which is the
main focus of this report. The objective of the WP4 is to create the envi-
ronment for the piloting system to supervise the work carried out in WP2
(Virtualization) and WP3 (The Piloting plane). Besides, the WP4 specifies
the service control requirements establishing the basis for the WP activities
in a form of policy based architectures or prototype applications. In this con-
text the package was divided into three tasks: Internet service requirements
analysis and case study (Task 4.1), overall system architecture design and
testbed (Task 4.2), and test and optimization of the Horizon architecture
(Task 4.3).

This deliverable presents the results of the Task 4.3. This Task, based on
the requirement analysis produced by Task 4.1 and on the integration design
specified in Task 4.2, has the objective of designing the overall virtualized and
autonomous infrastructure with the piloting system. It is also responsible
to realize an improvement on the virtual routers management and on the
agent behaviors created in the Ginkgo platform. The contribution of this
deliverable is the provision of a set of testbeds which can interact with each
other and provide virtualization and autonomous management functions.

The management of virtual networks represents a challenge for the fu-
ture Internet. Network operators should be capable of managing differ-
ent substrate networks with different management interfaces. SAVE, pre-
sented in Chapter 3, proposes a solution to this challenge and allows net-
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work operators to simply operate virtual networks, despite of their inner
particularities. SAVE categorizes network nodes in three possible config-
urations. Forwarding elements are nodes specialized in just forwarding
packets, processing elements are nodes with specialization in processing
operations, and hybrid elements combine packet forwarding with extra pro-
cessing. The three node categories represent any possible configuration of
network element. Nodes can be controlled by network primitives such as in-
stantiating, monitoring, and migrating operations. Besides, their parameters
can be defined in terms of processor, memory, bandwidth, topology, and traf-
fic dimensions. SAVE adds a new layer between network operators and the
virtual networks, thus network operators must know how to operate SAVE
and SAVE automatically allows the management of the different virtualized
substrates under the control of the operator. In order to prove the confor-
mity of our mapping algorithms, we developed experiments to verify if virtual
elements with different dimension requirements could be attended. Results
show that the mapping algorithms ensure high conformity to Xen virtual
nodes, guaranteeing the requirements of nodes. Also, we developed a proto-
type of SAVE in the Xen and the OpenFlow platforms, which is integrated
with OMNI and VNEXT and allows a simple network management.

This last work package also improved the multi-agent system developed
in Horizon. Chapter 4 presented a conceptual piloting system based on self-
organizing and normative multi-agent system, which taking advantage of the
intelligent decisions performed by piloting agents, needed to govern and adapt
the virtual network in response to changing context. Besides the piloting
system, we have implemented a simulation environment which supports users
to test and analyze different normative and organizational configurations of
the piloting multi-agent network.

In addition, in the Chapter 5 we presented our self-management system
prototype, described in the report related to the task of work package 3.2, in
which the concepts of autonomic networks were applied in a virtualized envi-
ronment through a multi-agent system. In this autonomic self-management
environment, experiments were performed with a focus on self-management
failure, or self-healing, of virtual networks. Besides, in the Chapter 5, an ar-
chitecture for the deployment of clouds over virtualized networks, conceived
within the scope of the Horizon architecture, was presented. This infras-
tructure was used to build a prototype on a testbed where experiments with
virtual routers and the Ginkgo platform were made.

Besides the work presented here is within the definitions of the Horizon
Project, it is also aligned with the new paradigm of Networks as a Service
(NaaS). The network virtualization can bring benefits to cloud computing as:
aggregate traffic isolation, improving security, and facilitates pricing. This
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new mechanism permits, for example, to act in cases where the performance
is not in accordance with the contract for services between the customer and
the provider of the cloud.

We show how our infrastructure (network substrate, software, prototypes)
can manage and adapt virtual networks on cloud environments. Our infras-
tructure allows the creation of virtual networks on demand, associated with
the execution of workflows, isolating and protecting the user environment.
The virtual networks used in workflow execution had its performance mon-
itored by our manager which acts preemptively in the case of performance
dropping below stated requirements.

To validate the proposed architecture, we built a prototype on a testbed
to provide insights on how the virtual network management system can act
to offer a better quality of service to the user. The results of image pro-
cessing workflow executions showed that the management and adaptation of
virtual networks are able to improve the data transfer times for the executed
workflows.

Therefore, this report showed the last remarks about the algorithms,
mechanisms, and tools developed within the context of the Horizon Project.
We provided also demonstrations steps and results, which allows a visual
observation of some of the achievements of this project.

7.1 Project Objectives

Project Horizon presented four main objectives, which were developed
during the last 30 months. Now, we review these objectives, highlighting the
solutions presented.

7.1.1 Objective 1

The first objective of Horizon Project was to outline the transition path
from the today’s real networks to virtual networks and define solutions for
securing and controlling this network. This objective was achieved by the
development of different testbeds with management and control support.
Virtualization is the key for building a flexible network core that supports
different innovative solutions. Our testbeds provides a conceptual proof that
it is possible to build a network core completely based on network virtualiza-
tion technologies. Indeed, we observed that we do not need the adoption of a
single network virtualization platform, but of a single programming generic
interface that can be used with any virtualization platform.
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We also developed control algorithms that ensure security and quality of
service for the virtual networks. We developed different algorithms that deal
with several aspects of resource sharing in virtualization platforms. We even
developed solutions that consider different management policies, in order to
allow the infrastructure provider to choose the best solution depending on
the service to be offered.

7.1.2 Objective 2

The second objective was to design and to test a piloting system associ-
ated with the virtualization paradigm to control the real resources distributed
between the different virtual networks. This automatic piloting system con-
trols the quality of service and manages the security of both global and indi-
vidual networks. The objective is achieved by testing the algorithms defined
in the first objective using the piloting system. Indeed, we design a piloting
system that controls resources with a local and a global view. Hence, we
control resource in the context of a node, assuring that each virtual node
receives the agreed resources. We also guarantee that physical nodes will not
be overcharged, by applying an access control of new virtual networks. In
the global view, we developed mechanisms for detecting network failures and
also for mapping new virtual networks in the physical substrate.

7.1.3 Objective 3

The third Horizon’s objective was to introduce an intelligence-oriented
network to define the different behaviors to automatically pilot the network.
The idea was to introduce multi-agent systems with different behaviors to
provide self-configuring, self-healing, self-optimizing, and self-protecting fea-
tures in the network environment.

We developed multi-agent systems that work in different virtualization
platforms. These multi-agent systems were implemented to provide the proof
of concept when detecting and correcting network problems. Our agents per-
form adaptive services and are able to detect failures in the packet forwarding,
solving the problems in the best way.

7.1.4 Objective 4

The fourth objective of Horizon was to optimize the quality of service and
the security of the different virtual network using the piloting system. Indeed,
the developed piloting system presents many algorithms and behaviors to
deal with these issues. This optimization is based on precise monitoring
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functions, which provides the usage profile of virtual and physical nodes,
besides providing specific measures required by the control algorithms.

The fourth objective is accomplished by the integration of the piloting
system and the virtualized testbeds. By developing the testbeds and testing
the control systems, we were able to optimize and integrate the developed
solutions.

7.2 Future Work

Horizon Project results in many important contributions to science in the
area of network virtualization and network autonomous control and manage-
ment. The results respected and extended all the promised tasks. Neverthe-
less, the developed areas are still in progress and present many challenges
that must be solved. Indeed, the work developed in Horizon also indicated
some new steps that could be developed in new research initiatives. In the
following, we present a summarized list of the topics that could be addressed
in the future:

• Extend SAVE to other virtualization platforms. Other high level func-
tions could also be added, including a graphical interface control;

• Integrate the developed testbeds by using the concepts of federation;

• Provide public access to the testbeds, by designing an access control
entity;

• Design other security tools, different from network isolation, related to
the provision of virtualized networks with autonomous control;

• Extend the set of autonomous functions for managing and controlling
virtualized environments;

• Extend the agent simulation environment in order to enable the piloting
agents to execute new behaviors and adopt new normative con-ducts.
In addition, we intend to enable users to apply different self-organizing
strategies and verify the system behavior in face of the application of
such strategies; and

• Adapt all the developed agents to work with SAVE and, consequently,
to interact with all developed testbeds.
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7.3 Project impact

Horizon project introduced new concepts and tools, which include new
virtual environments, network autonomic behavior, and piloting systems.
All these results have a strong impact on innovation, dissemination, global
standardization, and the implementation of future networks.

The Horizon project team developed an innovative autonomic-driven ar-
chitecture. Moreover, this architecture allows that virtual networks activities
in the area of protocol architecture are tested and used. Hence, our platform
offers benefits in network virtualization that include increased flexibility, se-
cure use and deployment, higher scalability, and more economically viable
implementations.

Besides the technical achievements, the Horizon project also provided a
competitive technological edge for France and Brazil in the Internet of the
Future area thereby fulfilling the citizen’s expectations about innovation in
research areas of universities and enterprises. Hence, by its expertise and
teamwork, this consortium contributed to a better collaboration between
academia and industrial partners.

A final important remark about Horizon impact is that the project strength-
ened research in France and Brazil. Indeed, many professionals took part
into Horizon and learnt about brand-new research areas. The project also
increased the interaction between different teams inside each country and
also between countries, forming new partnerships that will be repeated in
other research experiences.
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ferramenta para gerenciamento autônomo de redes OpenFlow,” in Salão
de Ferramentas do XXIX Simpósio Brasileiro de Redes de Computadores
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