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Chapter 1

Introduction

The Horizon Project is aligned with current research community initia-
tives which rethink the Internet architecture to address the current issues
and support emerging requirements. The Future Internet projections lead to
a model in which the infrastructure must support several parallel networks,
each one with its own protocol stack, and its own management framework.
This model assures great flexibility on the network core. The Horizon Project
proposes a virtual router architecture, which supports network virtualization,
in order to enable the creation of a high programmable network core, which
fits well the next generation network requirements and supports innovation
on the network core. Our main goal is designing virtualized infrastructures
with increased openness via a flexible, layered architecture using current vir-
tualization technologies. We consolidate the overall system architecture into
three main approaches, based on the Xen hypervisor, the OpenFlow switch
architecture, and a Xen/OpenFlow combined architecture that integrates
machine and network virtualization techniques.

The main objective of this work package is to establish a solid foundation,
create the environment of the piloting system, and specify the service control
requirements for designing policy-based architectures as the basis for the work
package activities. Specifically, the main objective of the task 4.2, addressed
in this report, is to develop a network management framework for Post-IP
networks that correlates and optimizes each network element in order to form
a global network with self-management properties. The work defines a thin
management layer within virtualized substrates that is autonomic, capable
of situated awareness, learning, inferring, and detecting faults for adaptive
monitoring in order to provide the system self-* properties. Besides, in this
task, we develop the piloting system, the interworking and the integration
of separate self-control functions coming from both the autonomous network
elements and the global network level elements.
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We introduce a general architecture view of the developed modules, which
allows an autonomic and intelligent control of the network. We define the
integration of the developed tools in both Xen and OpenFlow platforms.
Hence, we now present how the designed modules interact with each other in
an efficient fashion. It is worth mentioning that the proposed holistic archi-
tecture design facilitates the understanding of which control and management
algorithms fit better each platform, creating an autonomous platform.

We implemented the first step for integrating the developed modules in
both Xen and OpenFlow, giving the basis for creating the design of a coher-
ent prototype which is secure and presents a high performance. This pro-
totype allows the development of new networks to solve specific problems,
such as the provision of mobility, security, quality of service, etc. The devel-
oped prototype ensures network isolation and conformance with the service
level agreements established between network operators and infrastructure
providers.

We also propose a third architecture, which mixes Xen and OpenFlow
platforms to sum the advantages of both machine and network virtualization
platforms. OpenFlow networks give a wide support for flow migration and
virtual network remapping without packet losses, while Xen provides a more
flexible packet processing due to the use of virtual machines. The idea is to
use OpenFlow to manage flows while Xen provides the platform for control-
ling the network and routing packets. This approach is called XenFlow and
presents many advantages as network virtualization platform. XenFlow is
able to use the features developed for both Xen and OpenFlow, achieving a
flexible and complete network management tool set.

Finally, we present a distributed architecture for management of virtual
networks and a piloting system prototype. The main goal of this architecture
is enabling substrate network to self-manage virtual networks. It is part of
the piloting plane, described in Work Package 3, and it is based on autonomic
networks. The autonomic managers of the network elements have a closed
control loop of monitoring, analyzing, planning, and executing that feeds a
knowledge base for next iterations. In this stage of the project, we also deploy
a testbed to validate our architecture. Our testbed is composed of virtual
machines working as routers over a physical network infrastructure. We de-
veloped a prototype of our architecture with a multi-agent system based on
the Ginkgo platform. The testing scenarios focus on the self-healing of vir-
tual networks, but the distributed architecture for self-management of virtual
networks is generic and could be used to other functional areas in autonomic
computing: self-configuration, self-optimization, and self-protection. Some
experiments were carried out to assess the performance of the recovery pro-
cess.
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1.1 Document Outline

This report is organized as follows. Chapter 2 provides the overall archi-
tecture view for both the Xen and the OpenFlow platforms. It provides a
detailed view of how the proposed algorithms interact with each other as well
as how virtualization management tools are used by the control algorithms.
Auxiliary functions, such as plane separation and secure communication are
also described. Chapter 3 presents the XenFlow architecture design, which is
a hybrid architecture that combines Xen and OpenFlow virtualization plat-
forms. This chapter presents XenFlow architecture and also a performance
analysis that demonstrates the main features of this new platform. The
Chapter 4 presents our self-management system prototype, described in the
report related to the task of workpackage 3.2, in which the concepts of auto-
nomic networks were applied in a virtualized environment through a multi-
agent system. In this autonomic self-management environment, experiments
were performed with a focus on self-management failure, or self-healing, of
virtual networks. Finally, Chapter 5 presents the conclusions and directions
for future work.

6



Chapter 2

Overall Architecture Design

In this chapter, we present the overall architecture design of the developed
prototype for both the Xen and the OpenFlow virtualization platforms. We
show which algorithms concern each platform and how tools interact. We also
provide a view of some modules that were designed to create a consistent tool
set for the network. Both prototypes were implemented and are now under
test to improve the overall performance, guaranteeing a good integration
among modules.

2.1 Xen Architecture View

In the network virtualization paradigm, different virtual routers share a
physical router in order to provide different network services simultaneously.
Key aspects of this paradigm are isolation and performance on packet for-
warding. Isolation ensures independent virtual network operation, prevent-
ing malicious or fault virtual routers interference in the operation of other
virtual networks. Xen [1] is a virtualization platform that can be used to cre-
ate virtual routers, each with its own operating system and protocol stack,
in commodity computers. The Xen platform, however, does not provide
complete isolation and also presents low performance on handling network
input/output (I/O) operations [2].

We now present an architecture design for monitoring and ensuring iso-
lation, security, and high performance in each physical node of virtual net-
works. This architecture is represented in Figures 2.1 and 2.2. Figure 2.1
shows the entities relationship in the proposed architecture for Xen virtual
networks, whereas Figures 2.2 shows the software architecture inside each
physical node. We opted for a modular architecture to guarantee an easy
upgrade of a tool without disturbing other services. Moreover, it is easy to
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add new features to our model. The basis for the developed modules is the
Virtual NEtwork management for Xen-based Testbeds tool (VNEXT) [3, 4],
which aggregates all the proposed control modules.

Figure 2.1: Horizon architecture design using the Xen platform.

Our node architecture is based on a client-server model in which virtual
machines are clients of the server in Domain 0. It is important noticing
that the available services are optional and can be selected according to
the administrator requirements. Also, there are services that run only on
Domain 0, without interfering in the virtual machine.

Most of the client-server functions used in our prototype are based on the
plane separation paradigm [5], in which data forwarding and control mecha-
nisms are decoupled. Thus, control, such as routing, is accomplished inside
the virtual machine (DomU), ensuring flexibility in the design of control
mechanisms, while packet forwarding is performed in a privileged domain,
called Domain 0 (Dom0), providing quasi-native performance. The main ad-
vantage of plane separation is the provision of quasi-native packet forwarding
performance and the main drawback is lower flexibility in packet forward-
ing, because the infrastructure administrator imposes a common forwarding
plane for all virtual machines. Hence, we offer the virtual network operator
the option of using or not the plane separation paradigm. The plane separa-
tion module is responsible for creating a valid copy of the forwarding table of
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Figure 2.2: View of physical nodes using the Xen platform and VNEXT.

the virtual machine inside Dom0. The QoS operator module creates a copy of
the forwarding rules of the virtual machine, such as queuing disciplines and
filtering rules, inside Dom0. Hence, these modules accomplish the transfer
of the data plane from the virtual machine to Dom0. Both modules use the
secure channel module, to ensure a secure communication between DomU
and Dom0.

The monitoring module is also based on a client-server model and pro-
vides a set of monitoring data for Dom0 and for each virtual machine. This
module was described in the technical reports of Work Package 2, as well
as the modules for migration [6], topology discovery, and virtual network
configuration. All these modules compose the basic tool set for controlling
network virtualization.

The ADAGA (Anomaly Detection for Autonomous manaGement of vir-
tuAl networks system) module detects anomalies in the physical and in the
virtual nodes. This module was described in Work Package 3. ADAGA in-
teracts with the monitoring module to obtain data about DomUs and the
Dom0 and performs actions for creating filtering rules to monitor the virtual
networks.

The main modules of the architecture are the resource managers, which
dynamically control the resource allocation to the virtual machines. We
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developed three main modules (MUC/EUC, XTC, and Fuzzy controller),
which were described in Work Package 3. We also added a new module, the
admission controller, which operates in parallel with the resource managers to
locally judge if new virtual networks can be hosted in the same physical node.
This module gives support to global virtual network allocation functions.

Two new modules were added to node architecture, the QoS-Operator and
the QoS-Provider. The QoS-operator allows the virtual network operator to
set QoS parameters inside the virtual network, even if plane separation is
in use. The QoS-provider differentiates the service provided by each virtual
network, allowing the infrastructure administrator to set different privileges
for each virtual network. Hence, these modules give the basis for developing
the QoS parameters, which is one of current requirements of the Internet, as
pointed out in Task 4.1.

In the following, we provide more details about each module, specially
the admission controller and the QoS modules, and how they interact with
each other.

2.1.1 Resource Managers

Our prototype assumes the use of one up to three resource managers,
depending on the resources that the infrastructure administrator wants to
monitor. Each manager defines a different policy and controls a different
parameter in the virtualized system.

The first resource manager module selects a resource policy, according to
the selected controller. There are two options: the Maximum Usage Con-
troller (MUC) [7, 8] and the Efficient Usage Controller (EUC) [9]. MUC
reserves a minimum amount of resources to each DomU and shares the re-
maining resources among all DomUs. Hence, all the available resources are
offered to the system characterizing the maximum usage of resources. There
is no bound of resource usage for the virtual networks. Therefore, this police
allows that a virtual network uses more resources than the amount speci-
fied in the Service Level Agreement. The sharing of the remaining resources
follows a parameter set by the infrastructure administrator to differentiate
virtual networks.

EUC specifies a minimum resource reservation rate and a maximum vol-
ume of resources to be provided in a long time interval to each virtual net-
work. The controller dynamically adjusts the resource reservation parameters
of each virtual network according to the reservation parameters and the net-
work demand. Hence, EUC specifies the maximum amount of resources each
virtual network can use, providing a more precise resource reservation policy
than MUC.
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Both the MUC and the EUC are correlated to the monitoring module,
which provides the required information to perform the resource allocation
control. The resource manager also interacts with the Virtual Network Con-
figuration, to obtain and modify the resource allocation parameters of the
virtual networks. The Virtual Network Configuration module is initially set
by the VNEXT Virtual Machine Server, explained in Work Package 2, which
exports the parameters selected by infrastructure provider during network
creation or management to each physical node, guaranteeing an accurate
behavior in the controller modules.

The Virtual Machine server allows the infrastructure administrator to set
the resources parameters of MUC or EUC for each node in a virtual network
through the graphical interface. The default configuration assumes the same
parameters for all nodes, but it also allows per node configuration.

The second resource manager module is XTC (Xen Throughout Con-
trol) [10, 11]. XTC is a mechanism to control the bit rate that a virtual
machine forwards packets, reducing its impact on Domain 0. Indeed, XTC
dynamically adjusts Xen scheduler parameters to give more or less CPU time
to each virtual network in order to increase or reduce its packet forwarding
rate. The description of XTC and its algorithms can be found at Report 3.1.
As XTC limits the bit rate that a virtual router sends, XTC is only effec-
tive when the plane separation of VNEXT architecture is not used. Like all
VNEXT modules, the actions performed in XTC are done by the Virtual Ma-
chine Server. For this, each physical machine executes a daemon, called XTC
Manager, that can be connected to the Virtual Machine Server through TCP
sockets. The Virtual Machine Server is thus responsible for receiving the user
requests and making the appropriated action by exchanging messages with
XTC Manager. The XTC actions performed by the Virtual Machine Server
can be done using the Graphical User Interface of VNEXT. This module pro-
vides a user-friendly interface of XTC making requests through the Virtual
Machine Server.

The third resource manager is a fuzzy logic controller [12, 13]. This con-
troller presents a complimentary functionality to EUC and MUC, allowing
the infrastructure provider to control other parameters rather than the shared
CPU, memory, and bandwidth in Domain 0, such as the robustness to fail-
ures and the machine temperature. The idea is to provide an efficient control
system for Service Level Agreements (SLAs) in the virtual network environ-
ments. The proposed system verifies the physical resource usage, retrieves
real-time profiles of virtual routers, and guarantees the SLA requirements.
The control is based on nebulous logic and determines the resource alloca-
tion according to the system overload and to the profile of routers. The
control logic punishes virtual networks that exceed the established SLA. The
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punishment depends on the exceeding value and on the system charge.
This controller also uses the monitoring module and generates profiles,

represented by histograms, to compactly store the relevant system informa-
tion. More information about this module is on Report 3.3.

2.1.2 Admission control of new virtual routers

The virtual network admission controller arbitrates the access of new vir-
tual routers to the physical machine. The number of virtual routers hosted in
a physical machine influences the provision of long-term volume reservations.
Indeed, EUC defines two main types of resource reservation (Report 3.1):

• The short-term rate reservation (Rs[n]), which is the rate of resources
that must be met for the virtual network n whenever there is demand
in a short interval Is.

• The long-term volume reservation (Vl[n]), which is an amount of re-
sources Vl[n] = Rl[n]·Il that should be guaranteed during a long interval
Il, where Rl[n] is the average rate of the long-term volume reservation
of network n.

Indeed, the admission control mechanism is non-trivial because different
network profiles may use the same amount of long-term resources. Then,
the difference among network profiles, which include static information, such
as disk and memory sizes, and dynamic information, such as throughput
and CPU consumption, should be considered for calculating the resource
blocking probability. The resource blocking probability is the probability of
a virtual network service request be denied due to an overload in the physical
resource. The key idea of the proposed admission controller is to estimate
the probability of blocking a resource demand before admitting a new virtual
network. The controller estimates a value to compensate demand increases
in the already hosted networks.

2.1.2.1 Monitoring and storage

The proposed admission control stores a set of histograms representing
the physical-substrate resource usage. A new histogram is generated for each
dynamic resource in each monitoring period. A set of histograms of the same
resource models the load variation along a period of time (e.g., a day).

Physical substrate histograms model the behavior of the aggregate re-
source usage of virtual networks. The idea is that networks with different
traffic profiles lead to different aggregate resource histograms, even if the
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short and long term reservations are the same for all virtual networks. Thus,
two networks can have the same Vl and Rc and have completely different
behaviors, which imply in different aggregated resource demands. Thus, the
physical substrate histogram realistically models what is happening with the
physical network resources at each monitoring interval.

A monitoring interval is defined as Kadm ·Il seconds, where Kadm is an ar-
bitrary constant chosen by the infrastructure administrator. To avoid a stor-
age and processing overload, the proposed system randomly selects Krand,
which is the number of long intervals that will not be evaluated after Kadm

long intervals. Moreover, instead of storing all histograms, the admission
controller checks the difference between the current and the last histogram.
For this, the admission controller normalizes both histograms and calculates
the biggest error in the y-axis (em) between the two histograms. If condition
|em| > Eadm holds, where Eadm is a threshold specified by the infrastruc-
ture administrator, then the current profile is stored and a new histogram is
started.

The controller algorithm estimates the blocking resource probability after
a new virtual network joins the physical substrate. This estimated proba-
bility is used as a criterion for accepting or not a new virtual network. The
algorithm inputs are the substrate histograms, the long-term volume reser-
vation of each virtual network (Vl[ ] = Rl[ ] · Il), and the average resource
usage of each virtual network, Ravg[ ].

The admission control algorithm is accomplished in four steps:

• Step 1 - Estimate the aggregate resources usage through a histogram.

• Step 2 - Estimate how a demand increasing would impact in the ag-
gregate resource usage (assuming that the reservations are respected).

• Step 3 - Estimate a probability function to model the new virtual
network resource usage.

• Step 4 - Calculate the resource blocking probability if the new network
were using the physical substrate.

2.1.2.2 Step 1

Step 1 consists of monitoring resource usage and storing histograms as
described in Section 2.1.2.1. Thus, in the end of this step, the algorithm
knows the substrate histograms for bandwidth, CPU, and shared memory of
each monitoring interval.
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2.1.2.3 Step 2

In this step, the proposed algorithm estimates the substrate histograms
if all virtual networks were using all reserved resources. The idea is to ensure
that there will always be physical resources to meet all the virtual networks
requirements, even if there are simultaneous peak demands. Solutions based
on migration [14] are usually slow, because they depend on observing the
resource blocking for a period of time, then searching for a new mapping
between virtual and physical topology, avoiding overcharged physical nodes,
and finally migrating the selected virtual nodes. Besides, these solutions
can cause packet losses, leading to penalties for the infrastructure provider.
Migration-based solutions without the use of an appropriate admission con-
trol may also overcharge physical nodes, causing more losses and oscillations
in the mapping of virtual networks over the physical substrate. Therefore,
it is important to estimate the impact of a new network before admitting it
into a physical node. The key idea of our proposal is to estimate the resource
blocking probability as if the new virtual network was using the physical net-
work and all hosted networks were using fully using their reservations.

The proposed algorithm uses Ravg[ ] and Rl[ ] of each monitored resource
to estimate the demand increases, represent as

∆ =

NH∑

n=1

Rl[n]−Ravg[n], (2.1)

where NH is the number of virtual networks. The ∆ estimates the impact of
a demand increase over the physical substrate. As a basis for this estimate,
we assume that virtual networks will request all reserved resources and that
the demand increase does not change the way resources are required. Thus,
if the function fi(t) models the resource usage of virtual network i over time,
then the estimate of the increased resource usage of this network would be
given by fi(t) + ∆i, where ∆i = Rl[i]− Ravg[i]. Nevertheless, it is irrelevant
for the proposed algorithm the way each network increases its consumption
individually, but the way the aggregated usage increases when each virtual
network is using its whole reservation. After obtaining ∆ (Eq. 2.1), the
controller updates each substrate histogram. First, the histogram is shifted
according to ∆. Assuming that I[i] is an histogram interval with upper
bound Ls[i] and I[i′] is an interval that contains the value Ls[i] + ∆, then

Ls[i
′ − 1] < Ls[i] + ∆ ≤ Ls[i

′]. (2.2)

Furthermore, we assume that Hsub(I[i]) is the number of event occurrences
in the interval I[i] in the substrate histogram and that Nint is the number
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of intervals in substrate histogram. Thus, the shifted substrate histogram,
Hsft, is computed as Hsft(I[i

′]) = Hsub(I[i]). The interval I[Nint] of Hsft is
defined as

Ls[Nint − 1] < I[Nint] < ∞, (2.3)

to maintain a fixed number of intervals. Figure 2.3 shows an example of
histogram shifting when Nint = 10 and ∆ = 1.

After that, the controller calculates a probability mass function for the
shifted substrate histogram (PMFhist), assuming that the values of the x-axis
are given by Ls[s], as shown in Figure 2.4.
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Figure 2.3: Example of substrate histogram shifting, when Nint = 10 and
∆ = 1.
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Figure 2.4: Probability mass function of the shifted substrate histogram
shown in Figure 2.3(b).

15



2.1.2.4 Step 3

The controller estimates the demand of the new virtual network based on
a predefined distribution. For example, an optimistic admission controller
assumes a Poisson distribution, while a pessimistic admission controller as-
sumes a distribution concentrated at peak rates.

The distribution estimated for the new virtual network (PMFnew) is rep-
resented according to the intervals I[n] of the substrate histogram, assuming
that the values of x-axis are given by Ls[ ].

2.1.2.5 Step 4

The controller algorithm estimates the resource blocking probability after
the requesting virtual network joins the substrate for each dynamic resource,
i.e. CPU, bandwidth, and memory. This probability is used as criteria to
accept or not the new virtual network.

The proposed algorithm uses PDFhist to calculate the resource blocking
probability, according to the distribution assumed for the new virtual network
(PDFnew). Considering that

A = {(x1, x2) | x1 + x2 ≥ C}, x1, x2 ∈ [L[0], L[Nint]], (2.4)

is a set of tuples (x1, x2) whose sum x1+x2 exceeds the resource capacity C,
then the controller computes the resource blocking probability by

PB =
∑

∀(x1,x2)∈A

PDFhist(x1) · PDFnew(x2). (2.5)

Therefore, the proposed algorithm estimates the probability of the sum of
the resources used in the shifted substrate histogram and in the new network
exceeds the physical machine capacity.

The new virtual router is accepted if there are enough resources for the
static requirements and if the conditions

N∑

n=1

Rs[n] < C andPB < PL (2.6)

hold for all histograms of all dynamic resources, where PL is the resource
blocking probability accepted by the infrastructure administrator. A small
PL guarantees a low probability of packet losses. Nevertheless, it also reduces
the physical resource efficiency, which reduces the infrastructure provider
profits.
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2.1.3 Plane separation modules

As mentioned earlier, for a higher performance, it is essential to forward
packets through Dom0. However, by separating the packet forwarding from
the routing control, the virtual routers are unable to update their forwarding
tables and their packet filters, because they have no access to Dom0 memory.
Our system monitors tables and filters in DomUs and makes a replica of them
on Dom0 through the data plane manager module. Therefore, the client in
each DomU monitors changes in the forwarding table and packet filters, and
the server in Dom0 maps both the forwarding table and the packet filter built
in each DomU to Dom0.

Every change in the forwarding table or packet filter in DomU must be
immediately updated in its replica in Dom0. For this reason, after every con-
trol message arrival, the data plane manager client checks for changes in the
forwarding table and packet filters in DomU. If any difference is detected, the
client transmits the changes to Dom0 via the secure communication module.
When the data plane manager server receives a message notifying a forward-
ing table change, it searches for the settings of that DomU to find out in
which Dom0 table to insert the change. In packet filter updates, the server
modifies the received rule, inserting rule parameters that specify the char-
acteristics of the virtual network. This procedure avoids that one virtual
router creates rules in the packet filter that influences the traffic of other
virtual routers.

2.1.4 Secure communication module

The secure communication module creates a secure communication chan-
nel between the Dom0 and the DomUs, providing mutual authentication and
privacy in data transfer. A secure communication channel is required because
the data plane aggregates all forwarding tables of all virtual networks and,
then, privacy and authentication is mandatory to guarantee the isolation.
Since it is often used to update the data plane in Dom0, this must be a
light module. Mutual authentication is required to ensure that no opponent
domain can forge the identity of a common domain or of Dom0 to gener-
ate spoiled information in the data plane that corresponds to the attacked
domain.

The secure communication module is composed of two protocols: one
based on asymmetric cryptography for exchanging session keys (Ks), as de-
scribed in Figure 2.5(a), and other based on symmetric cryptography for
securely transmitting data between a DomU and the Dom0, described in
Figure 2.5(b), where kp is the private key, Kp is the public key, E([M ], key)
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(a) Establishment of a session key, Ks = f(Ks1,Ks2).

(b) Message exchange to update data plane.

Figure 2.5: Creating the secure channel between Dom0 and DomU.

is the encryption of the message M with the key for symmetric or asymmet-
ric cryptography, Sign([M ], k) represents message M and its signature with
k, and id is the source node identity. These protocols avoid replay attacks,
in which the opponent domain repeats old control messages to spoil infor-
mation in the data plane of the attacked domain, using sequence numbers
and nonces in the control messages. Nonces are randomly chosen numbers
that should be used just once. Besides nonces, the proposed mechanism also
changes the session key every time a sequence number reaches a maximum
value to increase the robustness against replay attacks. Therefore, we can
affirm that the communication between Dom0 and DomU is secure because
our system checks the authenticity, the privacy, and the non-reproducibility
of data.

2.1.5 QoS Provision

One important advantage of the proposed architecture is the support for
QoS provisioning. Although a virtual router that does not use the plane
separation paradigm can set up a traffic control inside its virtual machine,
a control at this level is not enough to ensure quality of service. A virtual
router has no control over its own traffic while it is being forwarded by Dom0
from the physical device driver to the virtual device driver, which may in-
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clude delays and packet losses. The I/O operations in Xen architecture are
accomplished at Dom0, which is the driver Domain and, as consequence, Do-
mUs do not have complete control of the forwarding operations. In the plane
separation paradigm the data plane is in the Dom0 that offers a fine control
of the forwarding functions and can also offer quality of service. Thus, the
proposed architecture offers primitives for adding QoS rules inside a virtual
network and among virtual networks, as shown in Figure 2.6(a) and 2.6(b),
for packet forwarding through the virtual machine and through Dom0, re-
spectively. Figure 2.6(a) describes in details the QoS modules of proposed
architecture assuming packet forwarding through the virtual machine. Ac-
cording to this scheme, the infrastructure provider can configure priority
access for the physical hardware to some virtual network as well as any vir-
tual network operator can differentiate its own packets being processed inside
the virtual machine.

(a) QoS provision assuming packet forwarding through the virtual machine.

(b) QoS provision assuming the usage of the plane separation paradigm, in which the packet
forwarding is exclusively performed in Dom0.

Figure 2.6: QoS provision inside each virtual network (QoS-operator) and
among virtual networks (QoS-provider) in proposed architecture.

The use of the plane separation paradigm implies that the data plane
of each virtual network, which was previously inside DomU, is placed into
Dom0. Thus, QoS provision must be adapted to work with the plane sepa-
ration paradigm. As a consequence, the QoS provision for both the virtual
network operator and the infrastructure provider must be supplied inside
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Dom0, as shown in Figure 2.6(b). The proposed architecture provides an in-
terface that allows each virtual router configuring its own QoS rules through
the QoS-operator client and QoS-operator server components. These compo-
nents guarantee that one virtual network can configure its QoS rules without
interfering with the QoS rules of other virtual networks.

2.1.6 Analysis

In this section, we analyze both the access control and the QoS modules
when used with the EUC controller. These modules were introduced in this
work package to guarantee a proper architecture for virtual networks, which
gives support to address the requirements described in Report 4.1.

2.1.6.1 Admission control module evaluation

The virtual network admission control for the proposed architecture was
implemented in C++. The proposed algorithm is evaluated under different
traffic patterns through simulations, assuming the use of the EUC controller,
described in Section 2.1.1. We compare our proposal to other proposals of the
literature, namely Sandpiper [14] and VNE-AC (Virtual Network Embedding
Algorithm based on Ant Colony Metaheuristic) [15].

Sandpiper is a system for monitoring virtual machines load in data cen-
ters. When a physical machine is overloaded, which is identified when re-
quests for resources of virtual machines are blocked, Sandpiper looks for a
new virtual machine that is able to host one or more virtual servers of the
overloaded node. The admission control in Sandpiper is based on the current
virtual machine peak load and on the average amount of idle resources in the
new physical machine. If the resource demand peak, which is estimated by
the 95% rate in the cumulative distribution function, is less or equal to the
average amount of idle resources, then the new virtual network is admitted.

VNE-AC is a virtual network mapping mechanism, which is also part of
Horizon project, concerning the global virtual network control. This algo-
rithm is based on the ant colony metaheuristic, which determines an ade-
quate mapping of virtual networks over the physical substrate. The admis-
sion control mechanism proposed in the VNE-AC assumes that resources are
statically attributed to each virtual network. Hence, this admission control
restricts the SLA specification for each virtual network.

We implemented both Sandpiper and VNE-AC admission control to com-
pare them to our mechanism. The Sandpiper peak rate is chosen as pk = 95%,
as suggested by Sandpiper’s authors. VNE-AC reservation threshold is set
as Rl, which is the average rate of the long-term volume reservation (Vl) in
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EUC. We also evaluate the impact of ∆ (Eq. 2.1), which is indicated as ‘Hist’
in the results, to verify the efficiency of this procedure.

In this evaluation, we measure the number of virtual networks that each
mechanism admits to be hosted in a physical router. We assume, for simplic-
ity, that all virtual networks present the same resource reservation param-
eters and that the number of intervals in the histogram for our proposal is
Nint = 30.

For evaluating the results, we also measured the ideal number of virtual
networks in the analyzed physical node in each experiment. This ideal num-
ber is chosen as the maximum number of virtual networks that guarantees
that the blocking probability threshold specified by the infrastructure ad-
ministrator (PL) is not violated. Since pk = 95% for Sandpiper, we selected
PL = 0.05 for fairness. In one hand, if an admission control mechanism
admits less networks than the ideal number, than the physical machine re-
sources are wasted. On the other hand, if the admission control mechanism
admits more virtual networks than the ideal number, then the physical node
is overloaded and the reserved resources are denied for the virtual networks,
generating fines for the infrastructure provider. Hence, admitting more vir-
tual networks than the ideal value is worse than admitting less virtual net-
works.

We run 30 rounds for each experiment, analyzing the output link through-
put in packets/s. We present in the results the corresponding mean value
and the standard deviation.

Traffic pattern impact - In the first experiment, we evaluate virtual
networks whose traffic is modeled by Poisson processes. Each virtual network
demands ≈ 100 Mb/s, which is also the value of Rl. Figure 2.7(a) shows that
all mechanisms admitted the ideal number of virtual networks. Hence, if vir-
tual network traffic presents a small deviation, then all the analyzed mech-
anisms are able to correctly perform the admission control. Figure 2.7(b)
shows that admission control is this scenario is abrupt, because ten networks
cause no blocking probability, while eleven networks cause a 100% blocking
probability.

To evaluate the proposals in environments with a higher variability, we
also simulated virtual networks with a traffic pattern described by an on-
off model. These results are on Figure 2.8. In this experiment, all virtual
networks present the same traffic pattern. The new virtual network traffic
pattern is estimated based on a Poisson process in the proposed mechanism,
but it behaves just as all the other virtual networks, with an on-off traf-
fic. The on-off traffic is generated based on an exponential distribution with
µ = 1/3. Each value generated with the exponential distribution indicates a
time interval in which the traffic will be on or off. The on-traffic is modeled
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Figure 2.7: Admission control assuming virtual networks with traffic modeled
by a Poisson process and maximum blocking probability of 5%.

by a Poisson distribution with λ ≈ 200 Mb/s and the off-traffic is always
zero. Figure 2.8(a) shows that Sandpiper and VNE-AC admits more virtual
networks than the other proposals in the same physical router. Nevertheless,
both mechanisms admit more virtual networks than the ideal number of vir-
tual networks and, by Figure 2.8(b), we observe that the blocking probability
for this number of networks is about 50%. Sandpiper overestimated the idle
resources due to the on-off nature of traffic and allowed the admission of ≈ 10
networks. VNE-AC behaves similarly to Sandpiper, but for different reasons.
VNE-AC does not differentiate the scenario of Figures 2.7 and 2.8, because
real data is not used for predicting the demand. Hence, virtual networks with
different data patterns are equally treated, generating admission control er-
rors. Our proposal admitted the ideal number of networks, guaranteeing a
low blocking probability and an efficient resource usage.

∆ Impact - This experiment evaluates virtual networks whose demand
varies with time. In this scenario, the throughput of the virtual networks
increases with time up to the threshold of the long-term volume reserva-
tion. The admission request for the new virtual network is sent when the
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Figure 2.8: Admission control assuming virtual networks with on-off traffic
and maximum blocking probability of 5%.

demand of the other virtual networks correspond to half of their reserva-
tion. Figure 2.9(a) shows that Hist and Sandpiper accepted all the analyzed
networks, because these mechanisms do not consider the demand increase.
Thus, the blocking probability is of 100% for both mechanisms when the
demands increase up to their reservation threshold in the end of the simu-
lation, as shown in Figure 2.9(b). Both our proposal and VNE-AC consider
the demand variation and achieved a number of accepted virtual networks
close to the ideal number.

Based on these results, the proposed admission control is the only one
that is efficient in all analyzed scenarios, guaranteeing the admission of a
high number of virtual networks, without violating the blocking probabil-
ity threshold imposed by the infrastructure administrator. Sandpiper and
VNE-AC are inefficient when network demand presents a high variability,
overcharging the physical node.
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Figure 2.9: Admission control assuming virtual networks with increasing
traffic and maximum blocking probability of 5%.

2.1.6.2 QoS modules

Finally, we evaluate the QoS components of the proposed architecture.
Figure 2.10 shows the impact of the use of QoS premises by the infrastructure
provider. In this scenario, composed of two virtual networks, it is assumed
that Network 1 hires a small forwarding delay for its traffic. It is also assumed
the following parameters in the output link: Rs[1] = 50 Mb/s and Rl[1] =
400 Mb/s for Network 1 and Rs[2] = 100 Mb/s and Rl[2] = 600 Mb/s for
Network 2. CPU and memory resources are equally divided between the
networks. Network input demands are, respectively, D[1] = 50 Mb/s and
D[2] = 1 Gb/s. We chose a high D[2], because a high volume of traffic
hinders the provision of QoS for Network 1. The traffic of Network 2, which
uses the plane separation paradigm, flows among two external machines.
The traffic of Network 1, which is routed through the virtual machine, is
generated by a different external machine and shares the output link with
the traffic of Network 2.

Figure 2.10 shows the results for the Round Trip Time (RTT) of both
networks with and without the proposed QoS support. In the first scenario,
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Figure 2.10: RTT according to the QoS parameters inter virtual networks,
assuming that Network 1 is prioritized.

called ‘w/o prio’, both networks have the same priority and, in the second
scenario, called ‘prio’, the traffic of Network 1 is privileged. When we give
priority to one virtual network, even without the use of the resource sharing
manager EUC, the RTT decreases by more than 10 times for the privileged
traffic. The use of the QoS support ensures that Network 2 does not ex-
ceed the use of network or CPU, reducing the volume of processed data and
thereby further reducing the transmission delay. Hence, the QoS module
reduces the RTT by more than 18 times when compared to the scenario
without our proposal and without priority and more than 1.8 times when
compared to the scenario with privileged traffic but without the resource
sharing manager EUC.

2.2 OpenFlow Management Architecture

OpenFlow has an architecture different from Xen. In OpenFlow networks,
the control plane is centralized in one node, while the data plane is distributed
over the physical OpenFlow switches.

We developed the tool OpenFlow MaNagement Infrastructure (OMNI),
which is being used as the basis for integrating OpenFlow management mod-
ules [16, 17]. The overall architecture overview is on Figure 2.11.

Due to the centralized nature of the data plane, the proposed architecture
to OpenFlow networks is simpler. First, we do not require any modifications
in the forwarding nodes. We respect the condition of a simple node that is
shared by all virtual networks without even noticing that the network was
virtualized. Hence, all proposed functions are restricted to the controllers
and the FlowVisor.

The original version of OMNI was designed to work with any OpenFlow
controller, providing network view and intra-virtual network management

25



Figure 2.11: Horizon architecture design using the OpenFlow platform.

functions. The OMNI extended version works coupled with FlowVisor to
provide management functions to the infrastructure administrator. Hence,
this extended version runs algorithms for controlling physical resources that
are shared by all virtual networks.

The new OMNI modules added in this work package are described on
the right side of Figure 2.11. In this figure, we observe that all controllers
interact with FlowVisor, which interacts with the OpenFlow network. The
OpenFlow network is composed of OpenFlow switches. Optionally, we can
use agents in these nodes to increase management performance as well as to
add new monitoring functions. Agents could also be aggregated in middle
boxes or even on the infrastructure controller node to provide in an easy way
to perform distributed control functions.

FlowVisor is an interface provided by OpenFlow team to share the Open-
Flow switches among many controllers [18]. FlowVisor offers an interface to
configure physical switch resources, such as memory, queues, etc. It does not,
however, provide control algorithms. Hence, we applied the same controller
algorithms used in Xen to control the resources in OpenFlow, because these
algorithms are platform independent. Hence, we can apply the logic of the
modules EUC, MUC, fuzzy logic, admission control, QoS-operator, and QoS-
provider in OMNI to control FlowVisor resources. We also add the agents
to emulate a distributed control behavior.
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2.2.1 Evaluation of the OpenFlow Management archi-

tecture

We evaluate OMNI to check its response time and operation. We also
compare the number of control packets of OMNI and NOX original applica-
tions to estimate the OMNI control overhead. We deployed an experimental
network using personal computers running OpenvSwtich software [5], an im-
plementation of OpenFlow. OpenvSwitch works as a Kernel module and
assures a high performance in packet forwarding. Our experimental scenario
consists of four OpenFlow switches, a FlowVisor entity and a NOX controller,
as shown in Figure 2.12. OpenFlow switches and the FlowVisor run on Intel
Core 2 Duo computers, with 2 GB of memory. The controller runs on an
Intel I7 computer with 4 GB of memory. On this computer, we also run
Ginkgo agents, an agent for controlling each OpenFlow switch. We present
the results with a 95% confidence interval.

Figure 2.12: Migration of the flow x from path A-B-D to path A-C-D.

Our first experiment evaluates the migration performed by our multi-
agent system. This experiment consists in migrating a flow from the path
composed of A, B, and D switches to the path composed of A, C, and D
switches, as shown on Figure 2.12. The probing traffic is a UDP flow with
1470 bytes of packet size and rate varying from 0.5 to 3 Mb/s. In this scenario,
the throughput of the AB link is upper bounded by OpenFlow at 200 kb/s,
while the other links, BD, AC, and CD, link are bounded by the link capacity
of 100 Mb/s. Therefore, the original path loses packets when the transmission
rate exceeds 200 kb/s. As the UDP flow transmission rate varies, we measure
the packet losses until the agent autonomously trigger the flow migration. In
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order to take the decision of a flow migration, the agent verifies the packet loss
rate of its monitored switch, which must be higher than 200 packets/s, and
also compares the local packet loss rate with loss rates exchanged with other
agents. In that comparison, the local value should be at least 20 packets/s
higher than the others. The packet loss rate and the comparison thresholds
are agent parameters and are set according to each network. Our experiment
is an example of agent usage. The developed agent senses the network at fixed
intervals of 10 s and migrates a flow only after three consecutive observations
where the packet loss rate is above the threshold. Figure 2.13(a) shows that
the agent properly detects the bottleneck link within the flow path and then
migrates the flow to avoid, or reduce, the packet loss rate. Since agents
observe the loss rate on links at fixed time intervals, the time between starting
the agents and the decision of migrating a flow is independent of the packet
transmission rate. The agent triggers the migration on average 29.4 s after
starting up.

Flow instantiation is one of the main causes of control overhead in an
OpenFlow network, because when a packet does not match any flow in a
switch, the packet is forwarded to the controller and the controller sends
a command to the switch. Thus, our next experiments evaluate the con-
trol overhead introduced by OMNI, and the effect of OMNI applications
on flow instantiation. We measure the rate of control packets that tra-
verse an OpenFlow network while new flows are instantiated using either
NOX or NOX+OMNI. ‘NOX’ means a NOX controller running its original
applications for collecting network statistics and for configuring packet for-
warding. ‘NOX+OMNI’ means running all OMNI applications on the NOX
controller. Since the NOX+OMNI flow instantiation mechanism is the same
of NOX, the difference between the two curves is due to the statistic mon-
itoring of NOX+OMNI. Figure 2.13(b) compares the control overhead for
a varying flow instantiation rate. We observe that the difference between
the two systems is negligible for instantiating up to 400 flows/s, as NOX
and NOX+OMNI show almost the same control load. When instantiating
500 flows/s and above, the control load of NOX+OMNI is lower than that
of NOX, but Figure 2.13(c) shows that NOX+OMNI is unable to instantiate
as many flows as NOX. The flow instantiation rate achieved with OMNI is
greater than the rate of NOX+OMNI. Also, the error bar size of NOX+OMNI
increases because of the test instability. Indeed, NOX+OMNI is trying to
process more data than the controller is able to handle. Since OMNI interval
for monitoring each resource is configurable, increasing the interval reduces
OMNI overhead. Thus, OMNI should achieve higher flow instantiation rate
at the cost of increasing the granularity of statistics measures.
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(a) Packet losses before/after running the agents.

(b) NOX and OMNI control load.

(c) NOX and OMNI flow instantiation rate.

Figure 2.13: Results of migration experiment calling migration function by
an agent and comparison of control overload between NOX and OMNI.
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Chapter 3

A hybrid Xen and OpenFlow

system architecture design

Xen and OpenFlow present specific advantages and disadvantages. As
shown in Report 2.2, OpenFlow presents simple flow configuration mecha-
nisms, whereas Xen presents more flexibility in packet processing. Therefore,
we propose a hybrid architecture to sum these advantages, obtaining a more
powerful virtualization platform [19]. The management tools [17, 16, 4, 3]
described in the previous sections also apply to this architecture with a few
modifications.

The deployment of new protocols and services in the core of the Internet
is rejected by most service providers, due to the high risk these changes
represent for proper network operation and high costs involved in changing
hardware platforms. A proposal to couple innovation support and production
traffic is the network virtualization [20, 21]. Network virtualization allows
that different networks, isolated from each other, share the physical substrate.

Network virtualization introduces a new management primitive, the mi-
gration of virtual networks [5]. The migration primitive is used in different
contexts, such as maintenance of physical nodes and remapping the logical
topology over the physical topology. Maintenance of physical nodes often re-
quires shutting down the device. In case of routers, the maintenance period
causes adjacency losses and, consequently, network failures during the con-
vergence of the routing algorithm. The virtual network remapping is used for
traffic management and for green networking, in which virtual nodes are re-
organized considering the energy demand [22]. Migration can also be used to
prevent damages, for instance, under a denial of service attack (DoS). In this
scenario, virtual networks that share the same physical substrate with the
network under attack are migrated to other nodes, preventing the overload
in the input links. The migration of virtual topologies, however, presents
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great challenges, such as the relocation of virtual links and the decrease of
the damages caused by the service downtime during migration.

There are proposals [23, 6] that perform the migration of the logical topol-
ogy in a transparent way to the network edges, without packet losses or bro-
ken connections. The scenarios in which these proposals are valid, however,
are limited. In [23] and [6], the authors assume the existence of a mechanism
for link migration that is independent of the mechanism of node migration.
They also assume that one virtual router can only be migrated from one
physical machine to another in the same local area network (LAN). Other-
wise, tunnels between the physical machines must be created to simulate a
LAN.

Flow migration in the OpenFlow platform is easy. Pisa et al. presents
an algorithm that is based on the definition of a flow path in the OpenFlow
network [6]. This proposal presents zero packet loss and low control overhead.
Nevertheless, OpenFlow migration is not applicable to router virtualization
or flow processing systems. The proposal is limited to switched networks.

This chapter introduces the XenFlow architecture, which is a hybrid net-
work virtualization platform based on Xen and OpenFlow. Our proposal
describes a flow processing system that allows migration of virtual networks,
including the migration of both nodes and links. In this architecture, the
plane separation paradigm is used and then the virtual router is divided into
two planes, the control and the data planes. The control plane, which runs
inside a Xen virtual machine, is responsible for updating the routing table
given the routing protocol decisions. The data plane, which is implemented
with OpenFlow, is responsible for forwarding the packets according to rout-
ing policies. The routing policies are based on defined routes, calculated by
the control plane.

The main advantages of this network virtualization technique are:

• Plane separation with a highly flexible data plane.

• Migration without packet losses.

• Migration is not restricted to local network.

• Mapping of a logical link into one or more physical links.

• OpenFlow data plane, but using distributed network control.

• Node and link migration in the same procedure.

A XenFlow prototype was built to validate the system architecture de-
sign. Experimental results show that the system is robust to migration, in
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the sense that, while migrating, there is no packet loss or routing service
interruption. The system is efficient, as it allows the migration of virtual
routers and links without connection loss or packet forwarding delay. When
we compare XenFlow migration and Xen virtual machine native migration,
XenFlow showed zero packet loss, while Xen native migration lost a signifi-
cant amount of packets and presented a longer downtime during control plane
update.

3.1 Xen and OpenFlow virtualization plat-

forms pros and cons

OpenFlow is a switching technology that enables programming packet
forwarding by associating actions with flows. A flow is defined as a set of up
to twelve fields extracted from the frame header, which include link layer,
network layer, and transport layer data [24]. The forwarding table of an
OpenFlow switch is the Flow Table. The Flow Table relates a flow with one
or more output ports of the switch according to the output actions defined
by the centralized controller. The controller processes the first packet of a
flow and, then, defines the actions. The Nox [25] is an OpenFlow controller
that acts as an interface between the control applications and the OpenFlow
network. As soon as a packet arrives at an OpenFlow switch, the switch
checks if the packet matches any already defined flow. If so, the actions
defined for that flow are applied to the packet. If not, the packet header is sent
to the controller, which extracts the flow characteristics from the packet and
creates a new flow in the Flow Table of the OpenFlow switch. The example of
an OpenFlow network is on Figure 3.1. In OpenFlow networks, the migration
is an easy primitive because it is performed by only reprogramming the Flow
Tables in the switches.

The two main disadvantages of OpenFlow networks are that the control
plane must be centralized and per-hop packet processing is a costly operation.

Xen is a personal computer virtualization platform largely used in and
server consolidation. Its architecture is based on a virtualization layer, called
Virtual Machine Monitor (VMM) or hypervisor. The Xen virtual environ-
ments are called virtual machines, or domains, and present its own resources,
such as, CPU, memory, disk and network access. There is also a privileged
virtual environment, called Domain 0, which has access to physical devices,
and provides access to the Input/output operations from other domains. It
also performs management operations in hypervisor. Figure 3.2 shows an
example of network virtualization based on Xen. In this scenario, a virtual
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Figure 3.1: OpenFlow network virtualization, in which a migration is the
redefinition of the network flows in another set of switches.

router migration is equivalent to migrate a virtual machine. As routers per-
form real-time service, a virtual router migration demands the minimization
of the packet forwarding service downtime.

Figure 3.2: Xen network virtualization, in which a migration is equivalent to
a virtual router migration.

Xen native migration [26] is based on virtual machine live migration.
The virtual machine live migration consists into copying the virtual machine
memory from the source physical machine to the destination one. This mi-
gration is called live because it tries to reduce the virtual machine downtime.
Hence, the virtual machine is running during the first phases of the migra-
tion. As the pages of virtual machine memory in the source physical machine
are changing as the migration procedure is going on, this procedure uses an
iterative copy mechanism of memory pages. In the iterative copy, the mod-
ified memory pages are tagged, and, in the next iteration, they are copied
to destination. This is repeated until the number of modified memory pages
in the last round lower than a certain threshold. At this point, the virtual
machine execution is suspended on the source physical machine, the last
modified memory pages are copied to destination, and the virtual machine
is, then, restored in the destination physical machine. A disadvantage of this
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proposal for virtual router migration is the packet loss during the time that
the virtual machine is unavailable, between suspension and restoring. This
mechanism is limited to a local network, because this approach assumes the
existence of a shared hard disk, and link migrations are performed by sending
ARP Reply packets.

Plane separation can be used in order to avoid packet loss during mi-
gration. Pisa et al. proposes a virtual machine migration to Xen platforms
that makes a copy of the data planes of all virtual routers to Domain 0 [6].
Thus, the data plane migration is performed without affecting the routing
and without downtimes. The solution, however, is restrictive because a vir-
tual router migration is performed only between nodes in the same LAN.
Hence, the migration scope is limited to just one hop from the source router.

3.2 XenFlow architecture design

Our proposed architecture design combines the advantages of per-hop
packet processing and the distributed control of Xen platform with flow pro-
cessing capability provided by OpenFlow platform. The architecture of a
XenFlow network element is shown in Figure 3.3. Each virtual machine hosts
the control plane of a different network. The OpenFlow switch on Domain 0
performs packet forwarding, according to the forwarding rules specified by
the virtual machines. In this architecture, a network element can be defined
as a virtual switch (Layer 2), a virtual router (Layer 3), or a middle box
(Layer greater than 3). The function performed by each network element
depends on the virtual network protocol stack and applications.

In the XenFlow system, as well as in the Xen platform, physical device
drivers are in Domain 0, and, then, all communication between virtual ma-
chines and physical devices must pass through the Domain 0. Thus, the
Domain 0 multiplexes packets from virtual network elements to physical de-
vices and demultiplexes packets from physical devices to virtual network ele-
ments [1]. In XenFlow scenario, the multiplexing and demultiplexing process
is performed by an OpenFlow switch.

In XenFlow, packet forwarding is programmed according to the rules
defined in the OpenFlow switch controller, which is an application running in
Domain 0. This controller interacts with the virtual machines to discover the
forwarding rules created by each data plane. If the virtual machine demands
a per packet processing, the controller will direct all incoming traffic of that
virtual network to the virtual machine. In addition to programming flows,
this controller is also able to set policies to the flows, for instance, specifying
a minimum bandwidth for each flow or for a set of flows [24].
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Figure 3.3: Architecture of a XenFlow network element.

Although OpenFlow presents a centralized network control, in XenFlow, a
virtual network can opt between a centralized and a distributed control plane.
To build a network with distributed control, a virtual router is instantiated in
each physical node that belongs to that virtual network. Each virtual router
interacts with XenFlow controller in Domain 0 to inform the forwarding
rules. To build a centralized control, a middle box containing the controller is
instantiated and the controller must interact with XenFlow controller in each
Domain 0. In this case, there is no need to instantiate a virtual machine in
each physical node, in a model very closer to traditional OpenFlow networks.
Figure 3.4 shows the XenFlow architecture with three virtual networks, in
which there are virtual switches and virtual routers interoperating. The
physical switch data plane is shared using the OpenFlow protocol among
different virtual networks.

Figure 3.4 shows the management entities that are aware of the physi-
cal network topology and are managed by the infrastructure administrator,
which decides when to instantiate or delete a virtual network, as well as
the amount of physical resources that each virtual network receives. These
entities are also responsible for starting network migrations.

3.2.1 Plane separation and route translation into flows

Virtual switch migration is trivial when using OpenFlow switch. On the
other hand, a virtual router migration on Xen platform is a more complex
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Figure 3.4: Example of a XenFlow network composed of virtual switches and
virtual routers.

operation, because turning off a router implies in packet losses. Migration
without packet losses is fundamental in router migration and this goal is
reached in XenFlow due to the use of the plane separation technique.

The forwarding table of each virtual network is computed inside the vir-
tual router, which is placed inside a virtual machine. This information must
be transmitted to Domain 0 to build the correct forwarding rules in the Open-
Flow switch. Figure 3.5 shows how XenFlow performs this task. A daemon
running inside the virtual machine copies the data plane information to a
Nox controller which is inside Domain 0. Then, the controller translates this
data into flows using the Rule Table module, which was developed as a Nox
application, and configure the OpenFlow switch on demand.

XenFlow forwards data packets as follows. A packet that reaches Do-
main 0 is directly forwarded, if it matches any flow in the Flow Table; oth-
erwise, the packet is forwarded to the controller, in order to have its path
defined by the controller. In this case, Nox controller extracts the twelve
OpenFlow fields from the packet, queries a Rule Table to define to which
network that packet belong and which is the corresponding forwarding rule
of that network. After that, the controller inserts a new flow in the Flow
Table of the OpenFlow switch. It is important to notice that the packet
arrives in Domain 0 with the destination MAC address of the virtual router
and this address has to be modified to the next hop MAC address before
being forwarded by the OpenFlow switch. The next hop MAC address is
obtained in the Rule Table. In case that node is only a virtual switch, this
operation is not performed. Hence, this module guarantees the correctness
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when mapping a virtual link into one or more physical links.

Figure 3.5: XenFlow routing, in which packets are directly forwarded by
Domain 0.

3.2.2 XenFlow virtual topology migration

In a XenFlow network, a virtual link can be mapped into one or more
physical links. The packet forwarding is accomplished by a flow table dy-
namically programmed by the Nox controller. Thus, the logical and the
physical topology are detached. Therefore, virtual-node migration in a Xen-
Flow network, shown in Figure 3.6, is composed of three steps: control plane
migration, data plane migration, and link migration. The control plane mi-
gration occurs from the origin physical node to the destination physical node
in a similar way as for the Xen conventional live migration mechanism [26].
After the control plane migration, the data plane migration is accomplished
as follows: the flows related to the migrated virtual router are selected and
they are sent to the destination physical router; in the destination, the flow
definitions are mapped to the currently setting up of the physical and the
virtual router. Thus, it is kept the correspondence of flow input and out-
put ports, taking into consideration the Domain 0 virtual switches in the
source and in the destination of the migration. Then, translated flows are
added to the Flow Table of destination Domain 0 OpenFlow switch. After
data and control planes migration, the link migration occurs in Domain 0
OpenFlow switches, and in the others network switches. The link migration
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creates a switched path between the one logical hop virtual router neighbors
to the destination physical router. In order to do so, flows are defined in
the physical routers in the path between the destination physical router and
the physical routers which host the virtual routers that are one hop distant
of the migrated virtual router. Adding the existing flows to the flow table,
however, is not enough. An automatic mechanism is needed to create, on
demand, new flows on physical routers in the path. This mechanism is de-
ployed through the introduction of new rules on controller Rule Tables of the
nodes in the path.

Figure 3.6: Three steps of the XenFlow virtual topology migration.

3.3 Experimental results

A prototype of the proposed architecture was developed as a proof of
concept of virtual routers migration without packet loss. To evaluate the
performance, we adopted the tool Iperf [27], as a packet generator tool, and
Tcpdump [28] to measure the amount of packets generated, received, and
lost. The packet loss was measured from the comparison of information
collected using Tcpdump on network interfaces responsible for generation and
for reception of packets. To assess XenFlow performance during migrations,
it is compared to the native migration of the Xen virtualization platform.
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The experimental scenario is composed of four machines: two for packet
forwarding and two for generate/receive packets. Two machines perform the
function of forwarding packets, and the prototype was installed in them.
Each machine is equipped with an Intel Core 2 Quad processor and three
Ethernet network interfaces of 1 Gb/s. The machines run the Xen hyper-
visor 4.0-amd64. In one of these physical machines, a virtual machine is
instantiated with one virtual CPU, 128 MB of memory, two network inter-
faces, and Debian 2.6-32-5 operating system, to work as a virtual router.
The experiments use two additional machines, equipped with Intel Core 2
Duo processors, that generate or receive packets, each one equipped with an
Ethernet interface 1 Gb/s, connected to a control network, and two Ethernet
network interfaces 100 Mb/s, to communicate with both physical routers.
The experiments were performed with the virtual router forwarding UDP
packets of 64 and 1500 bytes, which are, respectively, the minimum con-
tent of an Ethernet frame and the most common size of MTU (Maximum
Transmission Unit).

The first experiment measures the control plane downtime during migra-
tion. We send control packets that are forwarded by the virtual machine
to determine the average downtime according to the number of lost control
packets. Hence, the control plane downtime is given by the difference between
the timestamp of the last packet received immediately before the migration,
and the timestamp of the control packet received immediately after migra-
tion. Figure 3.7 shows the control plane downtime for the XenFlow system
and for the native Xen migration, as a function of the transmitted packet
rate. The results show that the average downtime of the virtual router is
always lower than 5 seconds in XenFlow, no matter the packet size. On the
other hand, in native Xen migration, the average downtime of virtual router
ranged from 12 to 35 seconds. This difference mainly occurs for two reasons.
First, there is no writings on virtual machine memory during the migration
using XenFlow, because the packets are sent directly by Domain 0, while
in Xen migration, all packets are forwarded by the virtual machine. Hence,
packet forwarding in Xen generates memory writings and readings while the
virtual machine is migrated. This larger usage of memory leads to a greater
number of dirty pages, which implies in a larger downtime when copying
the last memory pages of the virtual machine. Secondly, XenFlow migra-
tion is performed in two steps. First, the virtual machine is migrated and
then the data plane is migrated using OpenFlow migration, which avoids
packet losses. On native Xen migration, the link migration is accomplished
by sending ARP Reply packets, in order to indicate the interfaces in which
the migrated virtual machine is now available. However, the proper working
of ARP Reply mechanism is conditioned on the expiration of the ARP tables
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entry. This can add a delay in updating the interfaces used to communicate
with the migrated virtual machine.
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Figure 3.7: Control plane downtime.

The second experiment evaluates the total migration time, which estab-
lishes the minimum time between two consecutive virtual network element
migrations. The total migration time considers the execution time of all
operations related with the migration process. Figure 3.8 presents the total
migration time as a function of the transmitted packet rate. The results show
that XenFlow migration presents a greater total migration time than Xen.
It happens because XenFlow migration involves more steps, and one of them
is the native Xen migration itself. Part of the additional time occurs because
of the flow migration, in order to rebuild the data plane in the destination
physical router, and also because of the link migration, which is responsible
for setting up the virtual network new topology over the physical network.
Figure 3.8(b) shows that for 1500 bytes packets, there is an increase in Xen-
Flow total migration time, as the transmitted packet rate increases. This is
caused due to the fact that, when using packets of 1500 bytes, the link of
100 Mb/s is saturated at the rate of approximately 8,000 packets per second.

A primitive for router migration is to have no packet loss. Thus, the
third experiment shows the number of packet losses during the migration in
both systems. Figure 3.9 reveals that, while migrating a router using Xen-
Flow, there is no packet loss. Besides, Figure 3.9 shows that XenFlow zero
packet loss is independent of the forwarded packet rate. On the other hand,
Xen native migration presents greater packet losses for greater transmitted
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Figure 3.8: Total Migration Time.

packet rates. This reflects the forwarding service downtime, as we can see in
Figure 3.7. As the native Xen migration suspension downtime is almost con-
stant, the amount of lost packets in this interval increases with the sending
rate.

(a) 64 bytes packets. (b) 1500 bytes packets.

Figure 3.9: Amount of packet losses as a function of the transmitted packet
rate.
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Chapter 4

Multi-Agent System for

Self-Management of Virtual

Networks

In this chapter we applied autonomic computing techniques for the man-
agement of virtual networks. We present a distributed architecture to enable
a self-management of virtual networks over a substrate network. It makes
part of the piloting plane described in Work Package 3. The autonomic
managers of the network elements have a closed control loop of monitoring,
analysis, planning, and execution which feeds a knowledge base for next iter-
ations. We focus on the self-healing of virtual networks, but the distributed
architecture for self-management of virtual networks is generic enough to be
used to other functional areas in autonomic computing: self-configuration,
self-optimization, and self-protection. In sequence we present some related
work.

A multi-agent system to maintain SLAs (service level agreements) in
events of resource failure and severe performance degradation is presented
in [29]. The agents form groups based on similarity of physical nodes that
are managed by them. The dissimilarity function is also used to choose where
the virtual nodes will be recovered in case of failure. Our architecture is also
based on multi-agent systems and we implement a fast recovery of virtual
networks by restoring the virtual routers from backup memory to reduce the
convergence time of the routing protocol.

In [30], a distributed management architecture is presented with the goal
of self-organizing virtual networks to maintain a good use of physical re-
sources. The algorithm used for self-organization is based on the autonomic
control loop. It monitors the link and tries to minimize the traffic load on
the network through the migration of virtual nodes. We present similar ar-

42



chitecture and we implemented a prototype with focus on the self-healing of
virtual networks to evaluate our proposal.

4.1 Autonomic networks

The autonomic computing manifesto [31] emphasizes that the complexity
has been a major obstacle to the development of IT, because it is growing
beyond human ability to manage it. The autonomic computing is bio-inspired
on autonomic nervous system that is responsible for regulating the body
according to environmental changes without the need for conscious control.
Its goal is to reduce or eliminate human intervention in the management
through properties of self-configuration, self-optimization, self-healing, and
self-protection.

The architecture of [32] is based on distributed autonomic managers. The
autonomic manager performs a control loop over the managed element and
uses a knowledge base to store the collected information. It performs the
activities of monitoring, analysis, planning and execution at each loop, which
feeds the next cycle through the knowledge base.

The scenario of increasing complexity, heterogeneity, ubiquity, connectiv-
ity, and integration is the reason that leads to the need for development of
autonomic networks. The autonomic networks are based on the principles
of autonomic computing. They should be able to perform self-management
from high-level policy sets by administrators or inferred through knowledge
of the application.

The autonomic network should self-configure, self-optimize, self-heal and
self-protect itself to be self-managed. These properties can be obtained with
the inclusion of autonomic managers in network elements to perform these
tasks. The self-management system should be distributed with each auto-
nomic manager responsible for a network resource that is its managed el-
ement. This prevents the creation of a single point of failure and enables
higher scalability.

Managers must act independently, but share common goals. The oper-
ation of individual managers on their autonomic managed elements should
provide a greater autonomic control loop of self-management network ac-
cording to its policies and objectives.

The FOCALE [33] is an autonomic architecture for network management.
It is also build on autonomic managers over managed resources, and the
control cycle is defined by the managers at runtime, by context and high-level
policies. The architecture also defines the use of an MBTL layer (model-based
translation layer) to enable the use of legacy equipment management system.
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To perform the adaptation, the architecture uses techniques of learning and
cognition to compare, based on models and ontologies, if the current behavior
is right or whether it should be replaced. The FOCALE architecture was
applied as a case study in projects like Beyond 3G Networks and Motorola’s
Seamless Mobility.

4.2 Proposal of a multi-agent architecture

The agent-oriented modeling is an interesting paradigm for the develop-
ment of distributed self-managing systems. Agents are autonomous entities
that observe the environment and act on it, and may have some level of cog-
nition, as well as communicate with other agents. They can play the role of
the manager of an autonomic network resource, its managed element. There-
fore, we propose a distributed system to self-manage virtual networks based
on a multi-agent architecture.

In our multi-agent system for self-management of virtual networks the
agents acts on the physical network nodes. Agents are responsible for moni-
toring the resources of the physical and virtual nodes: CPU, memory, stor-
age, network interfaces etc. They must also control the virtual routers, i.e.,
create, destroy and migrate them.

The architecture of agents is based on behaviors, knowledge base, policies
and the dynamic planner, as shown in Figure 4.1. The sensing, cognition and
activities of agents are performed by behaviors.

Figure 4.1: Autonomic manager architecture.
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The knowledge base serves as a repository for all information of the
agents, which can be collected locally by monitoring, or remotely through
communication with other agents. The knowledge base has a common infor-
mation model to enable the agents communication and data interpretation.
The information model, in Figure 4.2, represents the virtual network topolo-
gies and their mappings in the physical network and it is based on the work
[34].

Figure 4.2: Information model of the knowledge base.

We define in the policy file the execution order and parameters of be-
havior, such as the rate of the loop and the agent downtime to be inferred
a physical node failure. The dynamic planner is responsible for interpreting
the policy file, changing parameters of behavior, and controlling the life cy-
cle of the agent. It also has access to the knowledge base and can act upon
information contained on it.

For the multi-agent system works properly it is necessary that the agents
are synchronized to perform some of their actions, e.g., the Execute behavior
should ensure that all agents have sent their physical node costs to be sure
that only one agent will perform the recovery of the virtual router. We
enabled this synchronization through pieces of information in the knowledge
base that controls the behaviors.
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Agents can be organized into neighborhoods, which limits the scope of
dissemination of the knowledge base. Through this selective communica-
tion, agents form situated views on the network. An agent may belong to
several different neighborhoods and propagate information for each one. In
the multi-agent system for self-management of virtual networks there is only
one neighborhood with all members of the network, and all the information
generated by the agent is diffused to the neighbors.

4.3 Implementation

The Figure 4.3 illustrates the testbed built to test the system in a con-
trolled environment. The network core consists of four machines: zeus, atlas,
dionisio, and cronos. The machines zeus and dionisio are also connected
to the hosts apolo, hermes, nix, and artemis by Giga switches. Over the
substrate network two virtual networks with three virtual routers each were
created. The images of virtual routers are in a repository accessible by all
machines of the substrate network via NFS. Both the physical and the virtual
machines have the operating system Debian GNU/Linux with kernel version
2.6.32.

Figure 4.3: Testbed built to validate the multi-agent system for self-
management of virtual networks.

The management of virtual machines for both the creation of the testbed
and the agents operation uses the Libvirt library [35]. It provides an API
for monitoring and control of various virtualization platforms, including Xen.
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The use of Libvirt in the system for self-management of virtual networks is
important for making it independent of virtualization technology.

The agents run on physical machines at the network core: zeus, atlas,
dionisio, and cronos. We use the Ginkgo platform [36] for the implementation
of the agents. It allows the creation of lightweight and portable agents,
which facilitates its deployment in heterogeneous environments. Ginkgo is a
framework that has the basic building blocks for our architecture.

The multi-agent system must perform disaster recovery of virtual net-
works. Failures can occur by problems in virtual routers, in the physical
nodes or even in the physical links. In the first case, the agent responsi-
ble for the virtual router must diagnose and warn others about the failure.
In other cases, the agent may also stop communicating, and therefore the
neighbors must diagnose the failure.

We implement an autonomic control loop for self-healing of virtual net-
works. The loop is controlled by the dynamic planner and is formed by
four behaviors: Monitor, Analyze, Plan and Execute. Our agents regularly
perform these behaviors in sequence. They are described below:

Monitor: Collects data from virtual and physical nodes and feeds the knowl-
edge base.

Analyze: Performs fault diagnosis in virtual routers or physical nodes in
the neighborhood.

Plan: Calculates the cost of the substrate node from the use of its resources.
The physical nodes with more virtual routers running have the greater
costs. It also disseminates this information to other agents.

Execute: Verifies whether all agents in the neighborhood have already sent
their information. If so, the agent in the physical node with lowest cost
recovers the failed virtual routers.

We create a special agent running on a host machine. This agent is
part of the neighborhood and receives information of the other agents. It
executes a behavior to create and update a graphical interface. This agent
contributes to prototype an architecture with hybrid agents with different
capabilities and levels of cognition. In this case it performs a visualization of
the topology and the mappings of virtual networks over the substrate, and
charts with the information collected by the Monitor behavior of the other
agents. The graphical interface is shown on Figure 4.4.
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Figure 4.4: Graphical interface of the multi-agent system.

4.4 Experimental results

The experiments aim to validate the architecture for self-management of
virtual networks and test different approaches to the recover virtual routers
in cases when there are failures on the physical elements. The recovery time
Tr from a virtual network can be set according to:

Tr = Td + Tp + Ti + Tc

where Td is the time of failure diagnose; Tp is the time spent on the
planning action, which involves exchange of information between agents; Ti

is the time of instantiation of virtual machine and Tc is the convergence time
of routing protocol.

We studied two ways to recover the virtual router. One creates a virtual
machine from the image file in the repository, booting the guest operating
system. The other resumes the machine from backup memory file, also in
the repository, generated when the virtual router was operational. In this
case, there is no time involved with booting the guest operating system and
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the convergence time of routing protocol is smaller.
The executions were performed with static and dynamic routing in the

virtual network. Static routing is manually configured in the virtual routers.
For the dynamic routing, the Quagga routing suite [37], running OSPF al-
gorithm, was used.

The first experiment was performed in the testbed without the multi-
agent system. In this experiment migrations of a virtual router with static
routing were performed, while a UDP flow at constant rate of 500Kbps from
apolo to nix passed through the virtual network. The traffic was generated
with Iperf tool. The curves of Figure 4.5 show the flow rate and when it is
at zero indicates losses in the network. All migrations change the mapping
of the virtual router horizon.cronos.b from cronos to atlas and began near
8s.
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Figure 4.5: Experiments without the multi-agent system.

In the first run (curve “Create” in Figure 4.5), the virtual router was
destroyed at cronos and recreated at atlas. In this case, the recovery took
27s mainly due to the time of booting the operating system. In the second
run (curve “Restore” in Figure 4.5) the state of the virtual router was saved
in the network file repository, the virtual router was stopped at cronos, saved
at image repository, and restored at atlas. Even spending more time with the
memory saving, the process took only 45% of the time of the former. The
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next runs use migration services offered by KVM. In the basic migration,
executed in the third run (curve “Migrate” in Figure 4.5), the virtual machine
is stopped, the memory is copied over the network from origin to destination,
and then the machine is restored on destination. This situation is similar to
the second run, except that the copy is made directly from cronos to atlas
and not through an intermediate machine and therefore it is a little faster,
37% of the time of the first run. In these two situations, when the machines
were restored there was a peak in the network. This was because in the
instant that the virtual machine memory was saved, there were packets in
the buffer that have been added to those that were arriving at the instant
that it was reactivated. The forth run (curve “Live Migrate” in Figure 4.5)
was carried out with live migration, where the memory is copied from source
to destination while the virtual machine is running and only when there are
no more modified page, the control is transferred. This is the best way to
migrate a virtual router, because the transmission was interrupted for fewer
time, less than 15% compared to the first run.

The graphs in Figure 4.6 show the results of the experiment with the dis-
tributed management system and the UDP traffic generated with Iperf tool.
The graph 4.6 (a) shows the executions with static routing, and graph 4.6 (b),
with dynamic routing. In each graph the approaches to create the virtual
router from image file, and to restore the virtual machine from the backup
memory file, are being compared. In all runs, a UDP flow at constant rate
of 20Mbps from apolo to nix is going through the virtual network B and the
curves represent the flow rates over time.

After 10s the machine cronos is disconnected from the network. Agents
in zeus, atlas and dionisio diagnose the failure of cronos because they stop
receiving the knowledge base propagation of its agent. In the experiment, the
agents perform the Monitor behavior and the knowledge base dissemination
every 0.5s and when the information about one physical node is outdated
more than 1s, the Analyze behavior reports the problem. So, the time of
diagnosis of failure varies between 1 and 1.5s. Thereafter the agent enters
in the Plan behavior, where it calculates the physical node cost that will be
sent to other agents in the next propagation. The Execution behavior waits
all agents send their physical nodes costs. The cost of zeus and dionisio
are higher because they are running two virtual routers. So who will recover
horizon.cronos.b is the agent in atlas, which creates the virtual machine from
image or restores from the backup memory.

Another experiment with SCP application over virtual network was per-
formed and the results are presented in Figure 4.7. The SCP generates a
TCP traffic. A 1GB file was transferred from hermes to artemis through
virtual network B. For each scenario we performed 10 runs and calculate a
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Figure 4.6: Experiments with the multi-agent system and Iperf.
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95% confidence interval. All executions were carried out in a close period,
when the network conditions were similar.

In this experiment, we performed some executions without the agents
to serve as a basis for comparison. First, we measure the time to send the
file by Path A (zeus → cronos → dionisio) and by Path B (zeus → atlas →
dionisio). As shown in Figure 4.7, the flow rates of Path A and Path B are dif-
ferent. So, we perform executions with live migration of the horizon.cronos.b
from cronos to atlas, 10s after starting the SCP transmission, to serve as a
floor result, because the live migration has the lowest downtime. Next, we
execute the runs with the agent system to perform the recovery of the virtual
network. In these scenarios a failure occurs in physical node cronos, also after
10s. Again, the multi-agent system chooses atlas to recover horizon.cronos.b.
We do 4 scenarios with failure, combining the routing scheme: static and dy-
namic, and the virtual router recovery approach: create the virtual machine
from image and restore the virtual machine from backup memory.
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Figure 4.7: Experiments with multi-agent system and SCP.

There is a considerable difference in recovery time of the virtual network
according to the way the virtual router is recovered. The difference is greater
in dynamic routing, because the convergence time of the routing algorithm.
The recovery by creating the virtual machine took 43.6s in this case, and 26.4s
with static routing in the Iperf experiments with multi-agent system. The

52



time to complete the SCP transmission was 52% and 122% higher in average
from the floor in static and dynamic scenario respectively. The creation of
virtual machine in dynamic routing scenario had a greater variance because
the routing protocol convergence time.

In the approach which the virtual machine state is restored from backup
memory, the type of routing interfered less. In both the static and the dy-
namic scenario, the recovery time was about 3.5s in Iperf experiments with
multi-agent system. The impact on the SCP transmission time was about
5% and 18% from floor in static and dynamic scenario respectively.

The results were favorable to the approach of restoring the virtual ma-
chine from memory backup, especially when dealing with virtual routers to
save the convergence time of the routing protocol. Although this approach is
faster, saving, transmitting and storing the backup memory may cause sig-
nificant impacts on network. This backup could occur in moments of idleness
of the network to cause less impact on its operation. Distributed storage and
memory ballooning can also be used to reduce this overhead.
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Chapter 5

Conclusions and Ongoing Work

In this document, we present the overall view of the architectures devel-
oped in this project. The first architecture is based on the Xen virtualization
platform. We developed a model that integrates the features developed dur-
ing the project, in addition to new control and management modules. This
model uses as basis the virtualization tool developed in work package 2.
The main modules in the Xen architecture are the resource managers, which
deals with the allocation of physical resources to virtual networks according
to the policies previously defined. Hence, we present a controller for observ-
ing the use of shared bandwidth, CPU, and memory in Domain 0, a fuzzy
logic controller to handle the resource consumption inside virtual machines,
and a controller that interacts with Xen scheduler to ensure the bandwidth
provision for virtual machines. To integrate these modules, we modified the
monitoring functions, performed by the measure gather module and ADAGA.
Other modules were also added, such as the admission controller, which eval-
uates if new virtual networks can be hosted in a specific physical node. The
admission controller is the basis for applying global functions that remap vir-
tual networks according to network load or other premises. We also added
QoS modules for our architecture, to accomplish the requirements of a new
architecture for the Internet, as described in Report 4.1.

We performed tests to evaluate the performance of the new modules added
to Xen architecture. These tests show that the developed mechanisms per-
form better than other mechanisms of the literature. In addition, our analysis
shows that the proposed admission control dynamically adapts to different
traffic demands, guaranteeing a precise control of the number of virtual net-
work hosted in the physical device. Hence, we avoid both the overcharge
and the undercharge of the physical node, differently from other proposals
that were analyzed. We also present tests performed with the developed
QoS module. The results show the advantages of providing QoS among vir-
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tual networks, instead of guarantying QoS primitives only inside the virtual
network.

The second developed architecture applies to OpenFlow networks. We
used as basis for our architecture the virtualization tool developed in work
package 2, called OpenFlowMaNagement Infrastructure (OMNI). Since Open-
Flow network control is centralized, we placed the infrastructure control
modules inside a special controller that interacts with FlowVisor for control-
ling physical resources provided to each virtual network. We added control
modules initially developed for the Xen platform to control the resources in
OpenFlow networks, since the proposed algorithms are platform independent.
Another functionality added to OMNI is the agent control, which emulates
a distributed control in the network. The performed analysis shows the ad-
vantages of using agents, as well as the impact of our management system
over the virtualized network.

We also design a third approach that joins the advantages of Xen and
OpenFlow in a different virtualization platform. This approach is a hybrid
network architecture design, which combines the flexibility of the OpenFlow
switching matrix with the distributed control of a network virtualization
based on Xen platform. This approach is called XenFlow and implements
the concept of flow processing, in which a general purpose network node is
able to process any kind of flow. XenFlow provides a robust and efficient way
for migrating virtual topologies. The XenFlow main goal is to achieve the
zero packet loss virtual router migration and to eliminate the need of tunnels
or external mechanisms for migration of links. The presented architecture
design uses the plane separation technique deployed as an application over
the Nox controller, which controls the data plane based on forwarding rules.
These rules are updated by a daemon that runs in each virtual router. The
results show that the XenFlow control plane downtime is up to 30 times lower
than the native Xen migration downtime. The results also show that the total
migration time of XenFlow is greater than the native Xen migration. This
result occurs due to new steps introduced by XenFlow into virtual topology
migration process, when compared with Xen. However, increasing the total
migration time is not a significant factor for the virtual router migration.
It only sets the minimum time between two consecutive migrations. The
results show that a XenFlow virtual router migration occurs without packet
loss, which makes this architecture design appropriate to the scenario of
virtual networks, as opposed to the native migration of the Xen virtualization
platform.

Besides the overall view of the architectures developed in this project
previously mentioned, we presented our self-management system prototype,
described in the report related to the task of workpackage 3.2, in which the
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concepts of autonomic networks were applied in a virtualized environment
through a multi-agent system. We evaluate this autonomic self-management
environment with a focus on virtual network self-managing failures, or self-
healing. We show how this infrastructure was used to build our prototype.

As one of our ongoing works, we intend to develop new applications in
addition to the routing application in XenFlow. In this new context, the
virtual machines are intended to provide services of middle boxes, such as,
load balancer and firewall. Thus, the XenFlow architecture becomes a plat-
form for the implementation of routers and specialized nodes, which can be
migrated to different locations on the network.

56



Bibliography

[1] N. Fernandes, M. Moreira, I. Moraes, L. Ferraz, R. Couto, H. Car-
valho, M. Campista, L. Costa, and O. Duarte, “Virtual networks: Isola-
tion, performance, and trends,” Annals of Telecommunications, pp. 1–
17, 2010.

[2] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, L. Mathy, and
T. Schooley, “Evaluating Xen for router virtualization,” in International
Conference on Computer Communications and Networks (ICCCN’07),
pp. 1256–1261, Aug. 2007.

[3] I. M. Moraes, P. S. Pisa, H. E. T. Carvalho, R. S. Alves, L. H. G.
Ferraz, R. S. Couto, D. J. S. Neto, V. P. Costa, R. A. Lage, N. C.
Fernandes, M. E. M. Campista, L. H. M. K. Costa, and O. C. M. B.
Duarte, “VNEXT: Uma ferramenta de controle e gerenciamento para
redes virtuais baseadas em Xen,” in Salão de Ferramentas do XXIX
Simpósio Brasileiro de Redes de Computadores e Sistemas Distribúıdos
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