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Chapter 1

Introduction

Network virtualization technique allows the execution of multiple virtual
networks over the same physical hardware. This functionality is achieved
through the use of a control and management entity, which is responsible
for multiplexing the hardware access and providing logical slices of resources
to the virtualized systems. The main primitives of a virtualized networking
system are the creation and destruction of virtual networks, the migration of
virtual nodes and the mapping of virtual networks on the physical substrate.
These primitives suit any network virtualization platform, such as OpenFlow
or Xen, which are used in this project.

In the standard version of Xen and OpenFlow, all of the above mentioned
primitives are manually run, which implies scalability and management prob-
lems. Hence, we developed in this work package a piloting plane that is able
to autonomously execute these primitives. Nevertheless, it is important to
know when to use those primitives and also when virtual networks are no
longer working as desired and, consequently, require modifications on their
properties. We developed a knowledge plane that works together with the
piloting plane. This knowledge plane monitors virtual routers, obtain their
usage profile, and proactively detects, using prediction mechanisms, possible
need for updates in the virtual network configuration. The knowledge plane
brings the idea of a plane that takes into account the whole network and re-
trieves knowledge from it. In this plane, information concerning each virtual
network element is stored, allowing management decisions and proactive net-
work maintenance. It is important to notice that, due to scalability issues,
this knowledge plane must be distributed in many nodes. Therefore, each
node keeps a partial view of the knowledge plane, limited to their neighbor-
hood and the surroundings. This partial view is called the situated view of
a node. The main challenges of the knowledge plane are the time scheduling
to take decisions and the information update about each network element.
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The goal of this task is to provide mechanisms to solve these problems.
Once defined the information that must be stored on the knowledge plane,

we can identify the frequency of updates for each “piece of information” and
on which nodes this information must be stored, based on performance and
QoS metrics. Hence, we can define a set of situated views of the context
concerning the piloting plane. Thus, instead of having information about
the whole network, we use only local information to decide which action
should be executed in the network, improving scalability.

We developed for this task a set of mechanisms that distributedly identify
and stores changes in the network state and predicts the evolution of all
the variables involved in the networking process, so that virtual network
anomalies can be detected and corrected. The proposed mechanisms can be
used by both Xen and OpenFlow platforms. For sake of simplicity, we show
the utilization of our proposals only in the Xen platform.

The first proposed approach is based on the development of a dynamic al-
location system that analyzes virtual router profiles and provides a fair share
of resources based on QoS metrics and SLA agreements. The second pro-
posed approach focuses on monitoring and prediction techniques that mon-
itor the environment, provide to the knowledge plane proper and updated
information and also detect router misbehavior. These two approaches to-
gether constitute a framework for detecting the need for updates and also
when SLAs are violated, which may also trigger update alarms.

This report is organized as follows. Chapter 2 details the mechanism to
extract and store virtual network profiles. Also, we describe a QoS controller
implemented according to the obtained profiles and the defined SLAs that
is based on fuzzy logic. Chapter 3 explains in details the monitoring suite
and the predictors used to detect the need for changes in many parameters
obtained from machines. Chapter 4 concludes the report.
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Chapter 2

Dynamic SLA Controller

This chapter defines one of the approaches to detect the need of updates
on a virtual router environment. This approach is based on the develop-
ment of a system that dynamically controls Service Level Agreements (SLA)
and provides Quality of Service (QoS) guarantees in a virtualized network
environment.

2.1 Related Work

The proposed dynamic allocation mechanisms found in the literature are
mainly focused on server consolidation. Sandpiper [1] is a system that mon-
itors virtual machines in a data center and migrates virtual machines to
different physical servers in order to achieve a virtual machine distribution
that maximizes the performance and reduces the misuse of resources. It also
considers the profile generated by each virtual router through the use of time
series to avoid misbehaviors such as denial of service attacks. To determine
the physical resource utilization of each physical server, the authors propose
a volume metric V ol, expressed as

V ol =
1

1− cpu
∗ 1

1−mem
∗ 1

1− net
, (2.1)

where cpu is the processor utilization percentage, mem means the memory
utilization and net stands for network utilization. Meng et al. propose
algorithms that provide the best distribution of virtualized servers in a grid
of physical servers [2]. Virtual servers are instantiated on physical servers
in order to reduce the distance between servers that are exchanging data
with each other, thus optimizing network scalability and providing better
utilization of bandwidth in communication links.

7



Menascé et al. apply autonomic computing techniques to control the pro-
cessor sharing among virtual machines [3]. The authors propose a dynamic
allocation algorithm that is validated through simulations.

Xu et al. propose control mechanisms based on fuzzy logic to optimize
the resource allocation in data centers and also execute performance tests in
virtualized web servers with different workloads [4]. A learning system feeds
the fuzzy controller in order to understand the web server behavior under
different loads.

One important tool that helps the dynamic resource allocation is the mi-
gration of virtual machines, which is used in Sandpiper [1].The migration
primitive enables migration of virtual machines from a physical server to an-
other, allowing preventive maintenance and energy saving obtained through
the re-organization of machines and shutdown of under-utilized servers. Nev-
ertheless, the migration procedure represents a challenge for virtualized net-
work environments due to the packet losses during the period of time where
the machine is suspended. Wanget al. propose a live migration mechanism
without packet loss [5] and Pisa et al. implement this proposal in the Xen
architecture [6].

The dynamic allocation and control of resources is a challenge in the Xen
platform because the I/O virtualization technology is still naive, without
isolation, allowing malicious routers to impact in the performance of others.
Therefore, XNetMon [7] proposes a secure control system for routing traffic
based on data and control plane separation approach to manage the use of
I/O resources by the virtual routers.

Keller et al. analyze QoS requirements in virtualized environments
and propose authoring model to account and guarantee SLAs in virtual
routers [8]. Authors explain the need to use authoring mechanisms and
propose two main implementation models. The first is based on the moni-
toring of network parameters while the second is based on the use of trusted
platforms and cryptographic keys to make systems tamper proof.

This report presents a dynamic controller based on Service Level Agree-
ments (SLA) for virtual networks. The control is based on the generation
and further analysis of router profiles and on the detection and real time
punishment of SLA violations. The proposed system monitors load values
associated with each virtual network and generates real estimative of use
profiles. Those profiles are used to ensure the better router organization to
reduce the overload probability. The load function is based on Sandpiper but
also includes other important parameters, such as system robustness, oper-
ation temperature, and others that can be added if desired. The proposed
fuzzy control system aims at providing easy configuration of the weight of
each parameter. The fuzzy logic is used to map administrator strategies and
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allow them to punish routers that violate SLAs. Besides, the network ad-
ministrator can easily insert new rules and action strategies. The proposed
system supports data/control plane separation and, as a consequence, is fully
compatible with XNetMon.

Results obtained from the prototype show the behavior of the control
system, the generated profiles and the strategy mechanisms. The controller
consumes only a few CPU cycles to execute, allowing the monitoring of many
virtual routers in parallel.

2.2 The Proposed Control System

The proposed control system monitors and guarantees Service Level
Agreements in virtualized networks. The key idea relies on the generation
and analysis of use profiles of each virtual network and on the detection and
real-time punishment of violations. In the violation detection, there are pa-
rameters that consider the level of punishment applied to each virtual router,
according to the current system state and the severity of the violation. The
global state of routers and control domain is also characterized by using a
fuzzy controller, that takes into account the processor, memory, network and
robustness (existence of redundancy and fail-proof mechanisms) when cal-
culating the system load. According to the output of the controller, it is
possible to dynamically modify the punishment strategies and the system
tolerance to violation actions.

The proposed system follows a distributed management model composed
of controller agents. Each agent is associated with a set of physical routers
where virtual routers execute, as seen in Figure 2.1. Each controller agent can
be associated to a given number of domains and the network manager must
decide on how these associations are accomplished. Each physical router has
a control domain where a control and monitoring daemon monitors the al-
location of physical resources, verifies in real time the conformity of SLAs,
and generates the use profiles of each virtual router. Five modules compose
the controller agents. The Strategy and Policy Module (SPM) holds manage-
ment strategies that can be applied over physical routers under its control and
updates the current strategy to be applied on each control and monitoring
daemon. The Service Level Module (SLM) keeps a database that associates
the SLAs with each virtual router. The Knowledge Base Module (KBM)
stores the history, use profiles and the description of violations that have
occurred. This module can be used to estimate future network migrations,
detect the need for updates and re-negotiate contracts, adapting them to
the real profile of each virtual router. The Actuator Module executes within
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the control and monitoring daemons and retrieves the profiles and statistics
of each virtual router. The controllers also have a Communication Module
(Comm), which allows the exchange of information among other controllers
through secure channels. If necessary, the controllers may use those chan-
nels to negotiate actuation domains changes and negotiate virtual elements
migration.

Figure 2.1: The control system architecture. Actuator module of the dis-
tributed controller agents interacts with monitoring and control daemons
running on physical routers.

The described system has three main mechanisms. The first one is the
profile generation mechanism, which provides utilization statistics and SLA
violation detection. This information is stored in the Knowledge Base Module
(KBM) in order to re-negotiate possible misconfigurations in the contracted
SLAs. The second mechanism is the system load estimator, which gives an
output that combines multiple resource status in an estimative within the
[0, 1] interval. The third mechanism is the adaptive punishment mechanism.
Based on the system load and use profiles, the mechanism uses a fuzzy con-
troller that outputs a level of punishment, proportional to the system overall
state. For instance, if the system presents a low load, a medium violation (for
example, overcome in 20% the SLA) generates a small punishment (reduce
in 2% the resource utilization of the machine which violates the SLA). On
the other hand, if the system is overloaded, without available resources, even
a small violation can be punished severely.

10



2.2.1 Generating Router Profiles

The use profile of each virtual router represents the resource consump-
tion pattern of each virtual router. The profiles can be used to detect rule
violation, to estimate the use of resources, and to predict future needs. Pro-
files are generated through the capture of memory, processor and network
utilization over time, to store the recent past and the long past of those
variables. There are two sliding windows with distinct sizes to store those
two time series. The generation of profiles based on probabilistic density
functions is used in Sandpiper [1]. Recent past is used to check SLAs whilst
the long past is used to predict future behaviors and estimate possible future
demands. Behaviors are analyzed by probability functions.

(a) Probability Density Function (PDF). (b) Cumulative Distribution Function
(CDF).

Figure 2.2: processor utilization profiles of a virtual router running RIPv2.

A Probability Density Function (PDF) of the processor utilization by a
given virtual router executing RIPv2 is shown in Figure 2.2(a). It can be
seen that the exchange of control and data messages in this specific router
has generated a processor usage of approximately 0.7% of CPU in 70% of the
measurements from the long past window , which consists in the last two hun-
dred measurements in this scenario. Due to this PDF, we can conclude that
it is acceptable to aggregate a group of virtual routers with similar resource
patterns and make them share the same physical core, without losing per-
formance. The prototype also provides Cumulative Distribution Functions
(CDF) to verify SLAs. Through this perspective, we can think of flexible
SLAs. For instance, we can define that a virtual router can use up to 0.7% of
a given resource for a maximum of 80% of its execution time. Through the
CDF of the short past window, it is possible to determine that the router in
Figure 2.2(b) would fulfill the given SLA. It is important to mention that the
generated distributions can be applied to any router from any machine. The

11



given example just demonstrates which kind of distributions can be obtained.

2.2.2 Strategy and Policy Module

The Strategy and Policy Module stores the current acting strategies and
maps administrative decisions into actions and strategies. We use fuzzy con-
trollers [9] due to its capability to deal with decision making problems that
present uncertainties and qualitative parameters, e.g. the strategies of a net-
work manager or administrator. In fuzzy logic, as mentioned before, a given
element belongs to a given set according to its membership level inside the
interval [0, 1], where µA(x) : X → [0, 1] defines a membership function. We
adopt the Mamdani Imply Method, with Zadeh [10] AND and OR operators
and the centroid method of defuzzification. The fuzzy controllers have small
computational complexity and can parallelize inference procedures enhancing
system performance and reducing the response time of the controller.

The Strategy and Policy Module supports different acting strategies.
Each strategy is composed of a set of inference rules, a set of membership
functions that map input parameters according to the network manager per-
ception (high processor utilization, low memory load, etc.) and a set of
membership functions that regulates the output. There are two strategy
types: The system load strategies and the punishment strategies. These
two approaches and their correlated strategy packets are described in Sec-
tion 2.2.5. Those strategies formalize a computational behavior that reflects
the will and the strategies of the network manager.

2.2.3 Estimating the System Load

The system load is a measurement that determines the load level of the
managed resources. Multiple parameters such as processor utilization , mem-
ory utilization, network utilization, system overall temperature, and system
robustness, which indicates the existence of redundancy mechanisms for disks
and power supplies, can be analyzed to characterize the system state. We
define the set of membership functions µProc,µMem, µNet, µTemp, and µRob,
which associates each of the resources in fuzzified variables. The combination
of the parameters generates an output defined as system load, limited in the
interval [0, 1], which defines the load of the system. This value is used as an
input parameter of another controller, together with delta, which is the dif-
ference between the resources contracted and the resources used, to estimate
the punishment grade of routers that violate SLAs. A block diagram that
represents the system load controller can be seen in Figure 2.3.
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Figure 2.3: Strategy and Policy Module.

The resource use of each virtual router is aggregated to generate the
controller input. An example of a possible configuration that evaluates the
processor use and system temperature can be seen in Figure 2.4. It is im-
portant to remember that the presented curves can be modified according
to each manager needs and qualitative thoughts . Low, medium, high, cold,
warm, and hot are membership functions. In the given configuration, we
have employed three membership functions to map each resource. We can
see that the definition of membership functions represents the mapping of
the network managers’ qualitative decision making. Most of the rules can
be defined as triangular or trapezoidal function. For example, if the proces-
sor use is high and the overall system temperature is high, then the system
overload is also high.

(a) Membership functions for processor
utilization.

(b) Membership functions for tempera-
ture.

Figure 2.4: Membership functions for processor and temperature.
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2.2.4 Strategies Based on Inference Rules

The fuzzy controller strategies are based on the default fuzzy inference
rules of the fuzzy system. Those rules follows the IF → THEN pattern which
represents the current action strategy scheme. The set of rules that defines
a strategy is named a strategy package. An example of strategy package
that calculates the punishment level according to the difference between the
contracted SLA and the current resource use, denoted by delta, and the
system load can be seen in Table 2.1.

Strategy Packet

If Delta (low) and Load (low) Then Punishment (low)
If Delta (average) and Load (low) Then Punishment (low)
If Delta (high) and Load (low) Then Punishment (average)
If Delta (low) and Load (high) Then Punishment (average)
If Delta (average) and Load (high) Then Punishment (high)
If Delta (high) and Load (high) Then Punishment (high)

Table 2.1: Example of a piece of a strategy packet.

The presented strategy packet corresponds to a network manager policy
that establishes that even huge SLA violations is not punished severely, when
the system is lightly loaded, because the system has plenty of resources and
at this moment, giving additional resources to the violating router do not
disturb the others. On the other hand, when the system is overloaded, the
network manager is more rigorous and even light violations are punished
severely. These rules work together with the membership functions that can
be also developed by the network manager. It is possible to easily insert
new rules and strategies and the controller agent must export the strategy
packets to the daemon that must use the defined strategy. We can also
establish different strategies for each resource under control, enhancing the
flexibility of the controller.

2.2.5 Load Policies

After the application of the inference rules, fuzzy values are generated to
represent the level of pertinence of each inference rule and then those values
are mapped into a single controller output, which is a value in the interval
[0, 1] which represents the current system load. In Figure 2.5, we can see two
possible load policies, a conservative and an aggressive one. Depending on
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the network manager profile, we can dynamically change the current domain
policies.

(a) Conservative policy. (b) Aggressive Policy.

Figure 2.5: System charge policies.

Given the configurations and membership functions, it is possible to verify
the relationship among the punishment level, the system load and delta, i.e.,
the level of SLA violation. This relationship can be viewed in Figure 2.6. In
those surfaces, we can see that a given policy defines how the punishment
level variation. Besides, the combination of different inference rules and
membership functions generate different surfaces. In the conservative policy,
we can see that punishments are severe only when delta is high and the system
is overloaded (Figure 2.6(a)) whilst in the aggressive policy, small positive
variations in system load and in delta generate high levels of punishment
(Figure 2.6(b)).

(a) Decision surface for a conservative
policy.

(b) Decision surface for an aggressive pol-
icy.

Figure 2.6: Decision surfaces to different management strategies.
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2.2.6 Controlling the System Overload and SLAs

The developed system is capable of generating use profiles, evaluating if
profiles correspond to established SLAs, generating estimative of the system
load and punishing virtual routers that violate the proposed rules. In the im-
plementation of the prototype, the daemon that executes within each domain
performs the parameter gathering at each given sampling interval, which can
be defined by the network manager. The parameters are used to generate
temporal series that represents the variation in the use of each resource and
the statistics and distributions that allow the verification of profiles and the
compliance with SLAs. All this information is sent to the responsible con-
troller agent. The daemon verifies if each virtual router profile corresponds
to the negotiated SLAs. Moreover, it aggregates the resources used by each
router to estimate the total load of the physical system. If a virtual router
violates the contracts, the system generates a value that represents delta.
The system then uses this delta value and the system load to decide which
is the appropriate punishment level to be applied on the router. In the Xen
architecture, we use the cap control parameter. The cap regulates the num-
ber of CPU cycles each virtual element can use. Thus, varying the cap value,
we can control the use of processor resources of virtual routers. Another
control tool that can be used is the Traffic Control (TC), which allows the
queue control, permitting the management of the throughput of each virtual
router, if they violate SLAs.

2.3 Results

The developed control system is efficient and flexible. We have already
demonstrated system outputs, such as the tested strategy packets, the deci-
sion making surfaces generated by the system and the use profiles of multiple
parameters from virtual routers and physical servers. We have developed a
set of experiments that prove the efficiency and the low overhead induced
by the proposed system. Tests were performed in a physical machine with a
core i7 860 processor with 4 real cores and 8GB DDR3 RAM. The machine
was configured with hypervisor Xen 4.0. The virtual routers were instanti-
ated with 128MB RAM memory and access to one virtual core. The virtual
routers and the control domain execute Debian Lenny Linux with 2.6.32-5-
amd64 kernel.

The design of the control system minimizes the processing overhead of the
monitoring and control daemon. To evaluate the processor overhead of the
daemon, we have instantiated some virtual routers and measured the average
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processor utilization of the control domain according to the number of virtual
routers monitored. The results of Figure 2.7 show the processor utilization in
the control domain according to the number of monitored virtual routers. In
this configuration, measurements and decisions were gathered and evaluated
at each second. The points in the graph represent the average processor
utilization for each configuration, with a confidence interval of 95%. We can
see that the relation between processor utilization and number of monitored
routers is approximately linear and even in situations where the daemon
manages eight routers at the same time, the overhead load is acceptable and
reaches up to 40% of processor utilization of a single core.

Figure 2.7: Processor utilization in control domain when varying the number
of managed virtual routers.

The system presents a good performance considering that it is monitoring
multiple variables from multiple routers at the same time and that the system
is managing the SLAs of each router. We can estimate that a control domain
with the same configuration as the one used in this experiment can manage
up to 20 virtual routers at the same time, by dedicating only one single core
to this task.

The second experiment evaluates the controller efficiency and the effects
of the punishment mechanism. We selected one of the virtual routers. The
SLA of this router defines that the router can use up to 85% of processor of a
single core to execute packet forwarding. Next, we create a packet flow that
is forwarded by the router. When the flow is forwarded, the router violates
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the SLA and the control system regulates processor utilization through the
cap mechanism. In the experiment, the punishment system is enabled when
the router is already violating the SLA. It is important to remember that the
sampling interval can be regulated by the network manager.

Figure 2.8: System stability under different system loads. Faster convergence
to the contracted SLA due to more rigorous punishment when the system
load is high.

In the proposed scenario, we defined three background environments. In
the first one, there is one monitored router and a virtual router that does
not use resources, so the system keeps a low load. In the second environ-
ment, there is the monitored router and five more virtual routers that are
consuming a moderate amount of resources. In this scenario, the load was
medium. The third case has one the monitored virtual router and seven ex-
tra virtual routers, both using almost all of the available resources. In this
case the system load is characterized as high. The characterization of the
scenario comprises the low, medium, and high load outputs. Those values
were obtained considering a set of membership functions and inference rules
that were on the system. In each configuration, the system generated a dif-
ferent load output, depending on the background environment. We selected
three specific environments from all the environments tested, to demonstrate
the different behaviors of the system for each possible system load output.
Results shown in Figure 2.8 demonstrate that the system converges to ensure
the router SLA. Depending on the load level of the system, the punishment
level varies. We can see that in the low load environment, the system takes
up to 40 seconds to reach the SLA. There is plenty of resources and so the
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SLA violation does not harm other routers. When we use the controller in
the medium load scenario, the punishment level is intensified and in less than
15 seconds the abuse is contained. In the high load scenario the punishment
is severe and the system limits resources within 5 seconds. We can see that
the proposed controller is efficient and fulfills the established requirements,
acting conservatively way in low load scenarios and acting aggressively in
critical situations.

Figure 2.9: processor utilization of a virtual router that violates a SLA for
a given period, with medium system load.

The third experiment evaluates the controller efficciency for transient mis-
behavior, when a given virtual router violates the SLAs for a given period
of time and then it starts to respect the contracts. The virtual router for-
wards packets at a high packet rate and uses 100% of its processor. After
60 seconds, the router forwards packets at a lower rate and consumes up to
80% of its processor, respecting the SLA. In this result, the system load is
controlled and is classified as medium. Figure 2.9 shows that without the
controller the virtual router can use whatever it wants to, possibly harm-
ing other routers. When the controller is active, the virtual router suffers a
gradual caps reduction until the machine starts respecting the SLA.

2.4 Dynamic SLA Controller Conclusions

We have developed an efficient fuzzy controller for SLA control of virtu-
alized network environments, where isolation prerogatives represents a huge
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challenge. The results show that the developed system is efficient and it is
compatible with existent resource control techniques. The network managers
can easily insert rules that reflect their particular qualitative decision making
strategies. The results obtained show that the system can control the SLAs
in an efficient manner by punishing routers that violate rules according to
the system load and the level of violation. In the experiments, the system
has successfully limited the SLAs adaptively. When there is plenty of re-
sources, the system applies light punishments and at critical moments the
system applies severe punishments. The results also show that the controller
adequates the resource use in less than five seconds. In a low load environ-
ment the system converges within 40 seconds. Besides, the monitoring and
management generate only a small overhead in the control domain (5% of
a single processor for each virtual router managed). Later, the system will
aggregate decision algorithms based on the migration of virtual routers to
ensure proper resource allocation with broader possibilities.
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Chapter 3

Mechanism to predict the need
for update of local information

This chapter describes ADAGA, an Anomaly Detection for Autonomous
manaGement of virtuAl networks system, which provides mechanisms for
collecting and analyzing data in virtual network environments. Through
ADAGA, monitoring managers observe the monitored systems in the net-
work, such as servers and routers, physical or virtual. The main objective
of the proposed system is to send alarms to report possible anomalies at
the network equipment. This study characterizes the anomalous behavior
as short-term changes in the observations that are inconsistent with past
measures.

ADAGA uses time series to predict the actual value considering the past
of the series and to compare with the new observation. ADAGA considers
that all time series initiat at zero. For that, the initial value of each series is
decremented of all its observations values, what allows zero error during the
initialization and no influence of the initial condition on future predictions.
The correct predictor initialization is an important configuration, because it
impacts the performance of the whole system [11].

The predictor analysis is based on the false positives and false negatives
values when predictor parameters are varied. This report analyzes the be-
havior of the monitored systems, describes anomalous situations, and shows
the impact on the emission of alarms when an anomalous situation happens.
The experiments are performed on a real router and the anomalies were ar-
tificially generated to simulate an overload in the router. The results show
that ADAGA system detects anomalies presenting average false positives and
negatives rates.

This chapter is organized as follows. Section 3.1 discusses the works re-
lated with the autonomous management and anomaly detection. Section 3.2
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describes the developed system and its modules. Section 3.3 presents the
test bed scenario of the experiments with the implemented prototype and
the results obtained. Finally, Section 3.4 concludes this work and presents
directions for future work.

3.1 Related Work

Anomaly detection-based virtual network monitoring and management is
not a topic well exploited. Anomaly detection techniques are commonly used
in security such as intrusion detection systems [12] and have also been used
in autonomous systems for network management, which are triggered by the
detection of an anomaly and the emission of an alarm. Anomalies can be
classified in three types [13]: anomalies in network operation, which consist
of network equipment failures or configuration changes; anomalies caused by
a flash crowd, which usually happens when a particular location information
is requested by many users at the same time, such as the distribution of a
new version of an operating system or a viral video; and anomalies caused
by network abuse, such as denial of service attacks and port scanning. The
proposed system considers all of these anomalies because they are significant
for the users’ satisfaction of autonomous virtual networks management.

Brutlag [11] uses time series and predictive mechanisms for anomaly de-
tection in computer networks. The author focuses on the analysis of network
traffic anomalies from a router to generate alarms. Results for single pa-
rameter configuration of the predictor are presented with initialization at
zero, without any data pre-processing in series. In ADAGA, we pre-process
the received data in order to obtain zero error at start up. Moreover, the
key difference between ADAGA and Brutlag’s system is the multidimensional
analysis, where the calculations of time series are applied to different network
characteristics such as memory and processor utilization, network traffic, and
system load. In virtualized scenarios, because of low network isolation not
only the network traffic impacts the network performance, but also processor
and memory utilization. Thus, all of these ADAGA monitored metrics are
important in virtualized scenarios [14]. Besides, the network management op-
erations such as virtual machine migrations, impact the network equipment
operation [6].

Lucena and Moura analyze network traffic focusing on packet-flow based
observations [15]. The authors define flows by a 4-tuple (source IP address,
destination IP address, source transport port, and destination transport
port). The flow approach defines various types of anomalies, such as Denial
of Service (DoS), configuration failures, and flash crowds. In the ADAGA

22



system, the flows are not grouped in the conventional way. The system brings
together the packages by services, because our purpose is to manage the net-
work from the point of view of their function, considering that the pluralistic
network approach considers one virtual networks per service on the Future
Internet [16]. Therefore, in the ADAGA system, the groups of packages are
made taking into account protocol number and destination transport port,
because they are packet characteristics which define the flow service.

Several works related to anomaly detection present observation intervals
of the order of units or tens of minutes [11, 15, 17, 18], which reduce process-
ing and storage required. Measuring ranges of this magnitude, however, do
not allow a quick reaction to important anomalies that happen in a short pe-
riod of time. The ADAGA system offers observations spaced approximately
by 15 seconds, and, therefore, allows quick detection and reaction to anoma-
lies. The experiments with the prototype present satisfactory results, since
the process of collection and analysis is accomplished in real time and the
analysis of 40 different characteristics takes 10−4 seconds with a Intel Core
i7 950 processor.

Besides the sampling interval, another important characteristic of intru-
sion detection systems is the packet sampling rate. Systems that require per-
packet processing have high processing and storage loads if they evaluate all
packets. For this reason, several works perform packet sampling [18, 19, 20].
Nevertheless, packet sampling introduces distortions, noise, and smoothing
on the observations [21]. Recent proposals address this problem through
tagging potentially anomalous packets for further analysis in other network
equipment [22] or through filters more efficient than random sampling [23].
Because the ADAGA system does not process packet by packet, but uses
the statistics collected, it does not perform sampling and all packets are
considered. So ADAGA does not receive these disruptions.

Following the chain of autonomous management processes described by
Dobson et al. [24], i.e., collection, analysis, decision, and acting, the anomaly
detection requires discovering the root cause of the anomaly. The root
cause is obtained from the most recent observations of the network [17, 25].
ADAGA does not address discovering the root cause of the anomalies, but
sends the latest observations with all collected data to be processed in other
root-cause discovering mechanisms.

3.2 ADAGA System

The ADAGA (Anomaly Detection for Autonomous manaGement of vir-
tuAl networks) system provides mechanisms for collecting and analyzing data
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Figure 3.1: ADAGA system architecture.

in a virtual network environment and gives support to the autonomous man-
agement of virtualized networks. The proposed system aims at detecting
anomalies on virtual networks and also activating anomaly fixing mecha-
nisms. Figure 3.1 presents the architecture of ADAGA, as well as the mod-
ules interconnection and the communication among the monitored systems
and manager.

An ontology to represent and organize the knowledge of the network at
any given moment is defined in Subsection 3.2.1. The network administra-
tor selects the relevant characteristics that must be monitored . Each of
the characteristics defined for monitoring is organized into a time series, as
defined in Subsection 3.2.2. All the defined time series have an associated
prediction mechanism, as described on Subsection 3.2.3, which is responsible
for measuring the deviation of the current measure in this characteristic past,
generating alarms described on Subsection 3.2.4. The virtualization module
is responsible for generating graphics in the time series evolution and of the
predictor error, as the graphics presented on the Subsection 3.3.1.

3.2.1 Data Collection and Representation

The ADAGA system performs the data collection from network equip-
ment through remote data requests on the eXtensible Markup Language
(XML) format. The monitoring manager enquires monitored systems that
can be either physical or virtual elements in the network. Each monitored sys-
tem executes the monitoring agent that, upon receiving the requests, invokes
several specific agents to obtain specific data such as processor utilization,
memory utilization, and network state from the monitored system, as well
as the Figure 3.1 presents.
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Figure 3.2: Representation structure of network components in ADAGA sys-
tem.

The observation metric is fundamental in a network monitored sce-
nario [26]. Our prototype collects observations through available tools of
Linux operating system, which is the base-system used in ADAGA, and of
Xen [27], which is the chosen virtualization platform. Figure 3.2 presents a
simplified representation structure for the network elements in ADAGA.

The network elements modeling considers multi-core processors, RAM
mechanisms, i.e., physic and virtual memory, and several network interfaces.
The network equipment model includes identification and location data of
equipment and connection with different processors, memory and network
interface models. Each characteristic represented at the model participates
in the anomaly detection as distinct time series. In the ADAGA system, the
calculations described on Subsection 3.2.3 are independently applied for each
model characteristics.

We claim that an effective anomaly detection system must be able to
detect an anomaly by only analyzing the data statistics instead of the real
collected data. This feature enables the proposed system to have a more ef-
fective processing and storage, in addition to avoiding problems with privacy
of the data packets.

3.2.2 Time Series

According to Brockwell and Davis [28], time series are a set of observations
st, each one of them performed in a specific instant t ∈ T , where T is the
finite group of the measurement times. The difference between a time series
and a common group of values is that, on the time series, the order among
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the observations is important. There are two types of time series considering
the observation process. In discrete time series, the observations have defined
times and are performed in specifics moments of time. On continues time
series, the observation is performed continuously during an interval of time.
In this work, discrete time series are used.

We define the set T by the sequence of observation times. We also con-
sider that sampling interval between the observations follows the Poisson
distribution with center in 15 seconds. According to Paxson [29], a fixed
sampling interval may cause distortions in the observations because it can
be synchronized with an unpredictable event and it is unable to correctly
observe periodic behaviors on the network. These problems reduce detection
accuracy or hide the anomalies.

In time series, at any given specific time t, it is possible to predict the
next value st+1 of the series based on the history of the series (s1, s2, . . . , st).
Based on this prediction and on the real value observed at the time t+ 1, it
is possible to define the predictor error as

εt = |ŝt+1 − st+1| . (3.1)

If these errors are bigger than the tolerance defined to the prediction,
ADAGA triggers the alert generation module, as described on the Subsec-
tion 3.2.4.

In ADAGA, the time series management module is responsible for feeding
and controling the time series on-the-fly with the received observations. This
module defines the monitored characteristics of each router, the predictor
parameters of each characteristic and the insertion of new values on the
characteristics time series.

3.2.3 Prediction Mechanisms

Prediction mechanisms determine the next value of each time series. Two
prediction mechanisms are considered: the simple and well used predictor
called Exponential Smoothing and Holt–Winters Seasonal, which considers
the trend and the seasonal components of time series.

Exponential Smoothing

The prediction mechanism Exponential Smoothing is a simple algorithm
to calculate the next value in a time series, which is based on the moving
average of the history of the series [11]. In order to calculate each next value
ŝt+1, the current measured value st and the prediction calculated for the
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current value ŝt are
ŝt+1 = αst + (1− α) ŝt, (3.2)

where α ∈ [0, 1] and ŝ1 = s1.
The α parameter is the weight of the current value in relation with the

history of the series. Therefore, the bigger the α value, the smaller the in-
fluence of the past of the series on the calculation of the predicted value.
According to the analysis of Lucena and Moura [15], on the computer net-
works scenario, appropriated values for the α parameter must be lower than
0.1.

Due to the recursions performed as from t ≥ 2, the influence of the past
of the series is reduced throughout the time, following the expression given
by

ŝt =

[
t−2∑
j=0

α(1− α)jst−j

]
+ (1− α)t−1s1. (3.3)

Therefore, Figure 3.3 shows that the influence of each past observation on
the prediction calculation declines exponentially, except by the first value.
Thus, the initial condition strongly impacts the results, as it is observed on
Figure 3.3(a). Hence, to reduce the impact of the initial condition on the
prediction of values, this work applies a conversion on the values of the series
such that

∀st, st = st − s1. (3.4)

Therefore, the initial configuration will be ŝ1 = 0 without prediction error,
as presented on Figure 3.3(b).

Holt–Winters Seasonal

The Exponential Smoothing mechanism is not suitable for time series
presenting periodical behaviors, called seasonality, because it assumes linear
serie values and approximates the next value with the moving average of
the series history. The Holt–Winters Seasonal mechanism is a predictor well
adapted to seasonal time series. Brutlag [11] defines a model of seasonality
for the behavior of computer network, which consists of a greater activity
during the morning than during the night.

The Holt–Winters Seasonal decomposes the time series in tendency, sea-
sonality and noise. Each one of these components is handled as a variation of
the Exponential Smoothing method. There are two methods for aggregating
these components into a predicted value: additive and multiplicative [30].
These components are aggregated with the additive method when the statis-
tic variation of the period does not depend on the series. In case it depends,
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(b) Collect data with the proposed trans-
formation applied.

Figure 3.3: Influence of the past observations in the prediction of the t = 50
observation for the transmitted packet time series.

the components are multiplied. Lucena and Moura [15] claim that, computer
networks, the additive composing of the components presents better results
and, thus, the next value prediction is

ŝt+1 = Rt + Tt + Pt+1−m, (3.5)

where Tt represents the tendency of the time series, Pt+1−m the periodic
component, where m is the seasonality period, and RT the series aggregated
noise. Then, the prediction equations of each one of these values are given
by

Rt = α (st − Pt−m) + (1− α) (Rt−1 + Tt−1) (3.6)

Tt = β (Rt −Rt−1) + (1− β)Tt−1 (3.7)

Pt = γ (st −Rt) + (1− γ)Pt−m. (3.8)

where α, β, and γ ∈ [0, 1] represent the smoothing constants for each com-
ponent of the predicted value. Similarly to the Exponential Smoothing mech-
anism, these parameters represent the weigth of the past series on the pre-
dicted value calculation. The bigger the constant values, the smaller the
influence of the past component on the prediction.

3.2.4 Alarm Generation

Alarm generation occurs when the predicted error is bigger than the calcu-
lated accepted error. The accepted error is recalculated for each new collected
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observation and defined by
εt = δΨt, (3.9)

where δ is an amplification constant of the error acceptance and Ψt is defined
according to the predictor mechanism. Brutlag [11] claims that optimum
values of δ belong to the interval [2, 3]. ADAGA uses δ = 2, because we
propose a sensitive system and δ = 2 generates a smaller acceptance error.

For the Exponential Smoothing mechanism, Ψt is the standard deviation
of the values considering the observation window and the next value predic-
tion. For the Holt-Winters Seasonal mechanism Ψt is

ΨHOLT
t = γ(|st − ŝt|) + (1− γ)(ΨHOLT

t−m ). (3.10)

The ADAGA system proposes an alarm control with the cumulative emis-
sion of alarms. Then, not all generated alarms are emitted to remove punc-
tual alarms of the system. The implementation of this method in ADAGA
uses a hysteresis in order to define the emissions of generated alarms. If the
system detects an anomaly during the observations, this one is not emitted
immediately. Only after the accumulation of η generated alarms, one alarm
starts to be emitted. The value of η is defined by the network administra-
tor. If the system stops detecting anomalies before η generated alarms, the
anomaly is not reported and the alarm accumulation counter is set to zero.

An alarm emission means a report sending to the decision system and
acting on the network. This report consists of a group of the latest 15
observations of all characteristics of the network element which generated
the alarm, the information of predictor value, the real observed value, and
the characteristic that generated the alarm.

3.3 Evaluation

The ADAGA system was evaluated to determine its capacity to detect
anomalies. The evaluation considers false positives and false negatives rates.
False positives mean that alarms were wrongly emitted because there was no
anomalies and false negatives are characterized by observations at moments
with anomalies that do not generate alarms, including, therefore, the alarms
accumulated during the period of alarm generation hysteresis.

A developed prototype analyzes the ADAGA system. We observe the
testbed scenario performed to this report in the Figure 3.4. The monitor-
ing manager executes the analysis mechanism of ADAGA, which consists
of the management of the time series, predictions and alarms generation.
The monitored system has mechanisms to collect information about its ex-
ecutions. The information collection is periodic and the collecting interval
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Figure 3.4: Testbed scenario for analysis of false positive and false negatives
in ADAGA.

follows the Poisson distribution with center in 15 seconds [29]. On the per-
formed tests, the monitored system is a wireless network router used in a
real network.

After, approximately, two days of monitoring, two nodes started two con-
secutive uploads of a 15 gigabytes file to the router using the Secure Shell
(SSH) protocol. These uploads aim at turning the router inaccessible for
remote access. The objective is to cause an anomaly that must be detected
by ADAGA and, as a consequence, send the alarms. Besides, we evaluate the
impact of each characteristic on the detection of this anomaly. As we expect,
time series of network characteristics, such as network traffic in the recep-
tion interface and the flow at TCP port 22, detect the anomaly while other
characteristics, e.g., number of running processes and memory utilization, do
not. We observe variables like the system load, that presents a particular be-
havior i.e, a lot of peaks, detect the anomaly. The system load is influenced
by the file transfer because the performed upload induces network and disk
I/O load in the router.

3.3.1 Results

The series evolution of observations of the TCP packet receiving in SSH
service are presented in Figure 3.5. Subfigure 3.5(a) shows the results for
the Exponential Smoothing mechanism and Subfigure 3.5(b), for the Holt-
Winters Seasonal mechanism. At the top of the graphs, there are the real
observations, in solid line, and the mechanism predicted values, in dashed
line. From this graph, we observe that the Exponential Smoothing mech-
anism predicted value easily follows the real value evolution, which makes
anomaly detection more difficult, even for anomalies of this magnitude. Dif-
ferently, the Holt-Winters Seasonal mechanism has higher difficulty in follow-
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ing the observed values, showing better anomaly detection efficiency. When
a predictor is able to follow abrupt changes, it will have low efficiency for de-
tecting anomalies, which are abrupt changes. The bottom part of the graphs
presents the values directly connected with the anomaly detection. The solid
line represents the prediction error of the mechanism, obtained according to
Equation 3.1 and the dashed line shows the accepted prediction error that
is calculated by Equation 3.9. For the best view in the report, these graphs
exhibit only briefly near the anomaly generated.

In Figure 3.6, we observe the historical evolution of two characteristics
monitored by ADAGA, i.e., the average load of the monitored system in
the five minutes before each collection of data, in Subfigure 3.6(a), and the
percentage of the processor utilization, on Subfigure 3.6(b). From the graph-
ics analysis, we observe the characteristics, such as the system load, that
suffers influence of network traffic anomalies. This influence confirms the
importance of the multidimensional monitoring of the network equipment.
Anomaly signals in several characteristics are useful to trace the cause of
anomalies, functionality which is not available at the ADAGA yet, but is
an object of study in future works. Characteristics such as the processor
utilization are not influenced by the generated anomaly as shown on the
Figure 3.6(b).

From analysis of graphs on Figure 3.5, we wait that the rates of false
positives and false negatives of the Holt-Winters Seasonal mechanism would
be better than the rates of the Exponential Smoothing mechanism. Indeed,
by the graphs on Figure 3.7, we notice the improvement on the rates of false
positives and false negatives. In Figure 3.7, we observe the percentage of
false positives and false negatives of several parameter configurations of the
prediction mechanisms as we change the η parameter, which represents the
quantity of alarms accumulated before the report emission. Each one of the
presented curves represents a configuration of parameters of the predictive
mechanisms. In the case of Exponential Smoothing, the evaluated values of
α were 0.05, 0.10, and 0.15. The same values were applied to the parameters
α, β, and γ of the Holt-Winters Seasonal mechanism and it resulting 27
curves, that are represented on Subfigures 3.7(c) and 3.7(d). All graphs
of Figure 3.7 are considered from an observation window of 2000 samples.
The tests performed for others sizes of observation window presents similar
results in the induced anomaly detection and are not in this report for the
sake of brevity.

In the analysis undertaken in this report, the false positive rate is calcu-
lated over all the collected observations, trying to get the amount of alarms
that were emitted in moments without anomalies. The false negative rate
was obtained considering the alarms that were not emitted during moments
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(a) Exponential Smoothing mechanism.

(b) Holt-Winters Seasonal mechanism.

Figure 3.5: Temporal evolution of TCP packet receiving in SSH service for
each mechanism. Observation window of 2000 samples and α, β, and γ are
equal to 0.1.

with anomalies over all collected observations in this moment.
Based on the adopted definition, we attest the low effectiveness of the Ex-

ponential Smoothing mechanism, because, although it has low false positives
rates (Figure 3.7(a)), it is not able to detect the generated anomaly. Nev-
ertheless, all the parameters configurations evaluated on the Holt-Winters
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(a) Average load of the system in five minutes before each
observation.

(b) Percentage of processor utilization on the router.

Figure 3.6: Temporal evolution of two characteristics not directly related
to network traffic for the Holt-Winters Seasonal mechanism. Observation
window of 2000 samples and α, β, and γ are equal to 0.1.

Seasonal mechanism presented a good effectiveness, with false positive rates
lower than 2.5%, and false negative rates appropriated with the defined accu-
mulation of alarms. On the interval where the anomalies happen we collected
40 samples. Therefore, a false negative rate equal to 2.5% of the errors ac-
cumulation value means that for all observations where there was anomalies,
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(c) False positives of Holt-Winters Sea-
sonal mechanism.
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(d) False negatives of Holt-Winters Sea-
sonal mechanism.

Figure 3.7: Analysis for the TCP packet receiving in SSH service character-
istics of each mechanism, when α, β, and γ parameters change. Observation
window size is 2000 samples.

the system could detect the anomalies with the Holt-Winters Seasonal mech-
anism. In fact, that is the case, because, for instance, for the value η = 5, we
have the expected false negatives rate about of 12.5%, value that concentrates
a big part of the analyzed curves.

In order to have a more detailed analysis, we observe the false positive
rates in Table 3.1 and the false negative rates in Table 3.2 for all the parame-
ter configurations evaluated for the Holt-Winters Seasonal mechanism. The
rows are the false positive and negative values for each value of α and the
columns presents the values of false positives and negatives for each value of
γ, grouped by the values of β. From these tables, it is possible to conclude
that there is a big similarity of the results for the different configurations.
Nevertheless, we observe a minor gain for values of smaller β. As seen on Sub-

34



β 0.05 0.10 0.15
α \ γ 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15
0.05 1.69 1.34 2.19 1.64 1.49 1.81 1.44 1.85 1.59
0.10 1.33 1.19 2.20 2.35 1.85 2.28 1.55 1.93 2.42
0.15 1.80 1.59 1.65 2.28 1.74 1.88 2.01 1.68 2.32

Table 3.1: Comparative table of false positive rates for the α, β, and γ con-
figurations presented in the Figure 3.7(c) with η = 5. Values are expressed
in percentage.

β 0.05 0.10 0.15
α \ γ 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15
0.05 15.0 12.5 7.5 10.0 15.0 12.5 7.5 15.0 10.0
0.10 12.5 15.0 25.0 0 12.5 15.0 15.0 10.0 15.0
0.15 7.5 12.5 15.0 12.5 10.0 15.0 15.0 10.0 20.0

Table 3.2: Comparative table of false negative rates for the α, β, and γ con-
figurations presented in the Figure 3.7(c) with η = 5. Values are expressed
in percentage.

section 3.2.3, the β parameter is related with the series tendency. Therefore,
the more the predictor accepts drastic changes on the time series tendency,
i.e., β big, the quicker the predictor is able to adapt itself to the anomaly
and, as a consequence, the smaller are the rates of success.

3.4 ADAGA Conclusions

In this chapter, we describe the ADAGA, an Anomaly Detection for Au-
tonomous manaGement of virtuAl networks system. Our system aims to
collect and analyze data from virtual networks. The major advantages of
ADAGA are multidimensional monitoring, lower monitoring interval, which
is responsible for lower reaction times, and avoidance of sampling strategies
for packet processing. Because the system does not consider the data packets
as a whole, but only its statistics and counters, the overhead is minimal. The
ADAGA system provides two mechanisms for time series prediction that are
explored in the literature. Nevertheless, the results show that the Exponen-
tial Smoothing mechanism is not suitable for computer network predictions,
because these networks presents seasonality that is not accounted by this
mechanism. The results also demonstrate that the multidimensional analysis
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performed by ADAGA is an important ally to the autonomous management,
since several characteristics of the monitored equipment can trigger alarms
at the same time, which facilitates to trace the root cause of anomalies, that
is object of our future work. The analysis of false positive and false nega-
tive results that the mechanism Holt-Winters Seasonal has excellent efficacy,
because it detects the network anomalies with low false positive rates and
with false negative rates expected considering the hysteresis system for alarm
emission of ADAGA.
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Chapter 4

Conclusion

All the presented results allow users and agents to be aware of the need of
updates or virtual elements. The knowledge plane comprises information re-
garding all environment variables and detects the need to take decisions and
pilot the networks. The two approaches presented in this report fulfill those
requirements related to the need of updates. The first approach monitors
and manages the use profile and SLAs to maintain QoS in networks and to
estimate the need of SLA updates to obtain each virtual router demands. By
generating the use profiles, it is possible to detect violations and guarantee
SLA constraints. The proposed architecture also fills the knowledge plane
with the use profiles and their associated time series sliding windows. When
there are violations, they are reported to the knowledge plane as well. The
second approach monitors several parameters and use advanced algorithms
and estimators to predict the future behaviors of machines, to detect possible
changes and, then, to trigger alarms to force the system to keep the infor-
mation refreshed in the knowledge plane. The proposals work together with
existent tools developed earlier in the Horizon project and allow an effective
manner to proactively monitor routers and detect the need for updates.
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