
Horizon Project
ANR call for proposals number ANR-08-VERS-010
FINEP settlement number 1655/08

Horizon - A New Horizon for Internet
WP3 - TASK 3.2: Piloting System

Institutions

GTA-COPPE/UFRJ
PUC-Rio
UNICAMP
Netcenter Informática ltda
LIP6 Université Pierre et Marie Curie
Telecom SudParis
Devoteam
Ginkgo Networks
VirtuOR

Abstract

This deliverable is composed of two parts. The first part presents the Piloting
Plane concept, a networking plane that implements the notion of piloting of
the management systems, as well as its initial design in the Horizon project.
The piloting concepts are realised in the Horizon architecture with the help of
Piloting Agents (PAs), which support the federation and distribution of self-
piloting Autonomic Piloting Systems through its negotiation activities/tasks.

The second part shows the results obtained with a self-management sys-
tem prototype, built to validate Piloting Plane presented on the first part.
The prototype proposed is an intermediary between the control and manage-
ment entities and the context of network and services. The piloting concepts
of the system are realised with the help of multi-agents based on the Ginkgo
Distributed Network Piloting System. Details about the testbed built to
evaluate the proposed system are also presented.

Contents

1 Introduction 4

2 Autonomic Piloting Systems 7
2.1 Architecture . 8
2.2 Definition of Piloting within Horizon 10
2.3 Related Work . 12
2.4 Interaction of piloting, management and virtualization planes . 14
2.5 The responsibilities of the PP in the Horizon Architecture . . 14

3 Piloting Plane Functions and Requirements 16

4 Preliminar Piloting Plane Design 18
4.1 Dynamic Planner . 21
4.2 Behaviours . 23

4.2.1 Federation Core Behaviour 25
4.2.2 Distribution Core Behaviour 27
4.2.3 Negotiation Core Behaviour 28
4.2.4 Piloting Core Behaviour 29
4.2.5 APS Behaviours . 31

4.3 Intra- and Inter- system views 31
4.4 Interfaces of the APS . 32

5 The Piloting Agents 36

6 Testbed 40
6.1 Tools . 41

6.1.1 qemu . 41
6.1.2 KVM . 42
6.1.3 libvirt . 42
6.1.4 Ginkgo Distributed Network Piloting System . . . 43

6.2 Preliminary Experiments in the Testbed 43

1

7 The Multi-Agent System 46

8 Results 50

9 Conclusion and Next Steps 52

2

List of Figures

1.1 A multi-agent model to virtual network management. 6

2.1 A general view of autonomic architectures. 9
2.2 The piloting-oriented architecture. 9

4.1 Deployment of the APSs in the Horizon architecture. 20
4.2 Design of the Autonomic Piloting System. 21
4.3 General autonomic control loop of the dynamic planner. . . . 23
4.4 Interfaces of the APS. 33

5.1 Intelligent agents forming the Piloting Plane. 36
5.2 Outline of Agents Architecture. 37
5.3 Each Agent has its own Situated View of the Network. 37
5.4 Outline of the Piloting system. 38

6.1 Testbed. 40
6.2 RTT between hosts of the virtual network B. 44

7.1 Agents in physical routers managing virtual routers. 46
7.2 The information model of the agents. 47
7.3 The rules of the policy file. 49

8.1 Utilization of the physical links. 50
8.2 The traffic loss in the virtual network, measured on the hosts. 51

3

Chapter 1

Introduction

Computer networks have become pervasive in society. Its services and
technology have multiplied and they have become essential for the global
economy. The management of them by humans is high costly and prone to
failure. The simple automation of management through software components
may worsen due to the wide variety of systems and protocols.

Autonomic networks [1, 2, 3] were proposed to deal with the problem of
increasing complexity of telecommunications. They represent a specific topic
in the area of autonomic computing [4], a term coined by IBM, intended to
deal with complexity by enabling systems to self-manage themselves. This
concept is bio-inspired by the autonomic nervous system that carries out
the regulation of body in the face of changes in the environment without a
conscious control. In the scenario of networks, simple tasks of configuration,
optimization, disaster recovery and security are achieved by the network it-
self, leaving administrators free to more complex tasks such as setting policies
and goals.

Autonomic networks are also within the context of cognitive networks
[5], whose design is based on tools of artificial intelligence and cognitive sys-
tems. The term “cognitive networks” was inherited from cognitive radios,
although the cognitive networks extrapolate to different kinds of networks.
An essential part of the cognitive networks is the knowledge plane [6], a
system which enables the network to assemble itself given high level instruc-
tions, reassemble itself as requirements change, automatically discover when
something goes wrong, and automatically fix a detected problem.

Nowadays is also advocated the approach of pluralism of architectures for
the future Internet over the one-size-fits-all TCP/IP [7]. The new approach
defines that network providers should be splitted in service and infrastructure
providers [8] and proposes the use of virtualization [9]. Users request network
services from the service providers, which instantiate virtual networks over

4

the substrate provided by the infrastructure providers. Each virtual network
can have its own protocols and configurations, in accordance with the objec-
tives of the service running on it, and must have isolation, i.e., the operation
of virtual networks does not cause interference between them, although they
are on the same infrastructure. To allocate resources for such networks in
an optimal, robust and secure way is a challenge due the complexity of the
problem [10, 11, 12].

The Horizon project aims to define and validate a new network architec-
ture based on the principles of pluralism and the knowledge plane. To achieve
these objectives, it is necessary to have a piloting plane where the decisions
are made. This report presents the results obtained with a self-management
system proposed by us, which is within the piloting plane, being an inter-
mediary between the control and management entities and the context of
network and services.

Our purpose is to apply the Piloting Plane concept, a networking plane
that implements the notion of piloting of the management systems, as well
as its initial design in the Horizon project, in a scenario of virtual net-
works through a multi-agent sytem. The piloting concepts are realised in the
Horizon architecture with the help of Piloting Agents (PAs), which support
the federation and distribution of self-piloting Autonomic Piloting Systems
through its negotiation activities/tasks. Figure 1.1 illustrates some ideas that
we intend to explore during the work, such as specialized agents to a role,
like power and performance control; the existence of a hierarchy of agents;
and the management based on service level agreement (SLA). At the current
stage, the main issue addressed is to have the agents in the network core
performing actions in accordance with changes in the context.

This report is organized as follows. The Chapter 2 shows the autonomic
piloting sytems concepts. In Chapter 3 we discuss about piloting plane func-
tions and requirements. The preliminar piloting plane design is presented in
Chapter 4, while the piloting agents architecture are showed in Chapter 5. In
Chapter 6, we show how the testbed, which contains the substrate and virtual
networks used to validate the self-management system, has been built. The
tools used for the testbed and the development of some preliminary experi-
ments are also presented in this chapter. Chapter 7 contains the description
and the models of the system in terms of multi-agents. The results of the
final experiments are shown in Chapter 8. Chapter 9 presents the conclusions
and the next steps of this work.

5

Figure 1.1: A multi-agent model to virtual network management.

6

Chapter 2

Autonomic Piloting Systems

Autonomic Piloting Systems, as initially defined in the IBMmanifesto [13],
have been defined as management systems of a single system. In networking,
Autonomic Piloting Systems have to perform different management tasks
covering various nodes, links and services. Due to the existence of several
management standards, different protocols and different vendors, managing a
network is much more complex than managing a single isolated system. Thus,
it is not practical to devise a single autonomic control loop that autonom-
ically adjusts all the FCAPS (fault, configuration, accounting, performance
and security) aspects of a network. This means that we need to define one or
more autonomic loops for each of those management aspects in order to sim-
plify the design of each control loop. However, the operation of the network
management system will depend on the interaction of all those control loops,
which must ensure, amongst other key aspects that the network operates
within normal parameters set by the business goals of the operators. Also,
the decisions of a control loop may go against the objectives of another one.
As an example, an autonomic security component may use a heavier encryp-
tion scheme to improve the security of the network, however this encryption
scheme may require too much processing and bandwidth, reducing the maxi-
mum throughput of the network to a level below the performance dictated on
the SLA. In networking, two sub-networks having different managers must
interconnect. This requires that the protocols as well as the configuration of
the network (i.e. security policies, QoS and SLAs) are compatible. If they
are not, either a re-negotiation and re-configuration process is required, or
translation services (gateways) must be installed in the border of the two
networks. In order to solve those problems we are introducing a new sys-
tem or plane, the Piloting Plane (PP), enabling cooperation of the various
autonomic control loops ensuring their decisions are not orthogonal. This
cooperation, or piloting, ensures that the overall optimization goals of each

7

autonomic component and control protocol are aligned with the goals and
SLAs defined for the entire network, Piloting also means that autonomic
management domains run by different operators or administrators are able
to automatically adjust their configuration to accommodate the federation of
networks. The need for a Piloting Plane (PP) arises from the deployment of
several autonomic control loops with different administrators or management
goals, which would not be able to interoperate without a set of translation,
negotiation, federation and deployment functions. Thus, piloting deals with
the meta-management of Autonomic Piloting Systems, that is, the deploy-
ment and reconfiguration of autonomic management control loops in order
to allow their interoperation. This is achieved based on a set of high-level
goals, defined for each of the managed network domains that form the piloted
network. The PP ensures the interoperation of management systems, even
though those systems use different set of high-level goals and management
standards. This process may be accomplished through the negotiation of
new SLAs and policies, the deactivation of conflicting management systems
followed by the activation of other management systems, or the migration
of such systems or parts of them within the piloted network. The entire
piloting process is piloted by Piloting Policies, which dictate what are the
compromises that each of the managed domains are willing to make for the
sake of interoperability.

2.1 Architecture

The architecture of a virtual network environment can be composed of
four planes:

� The Data plane forwarding the data.

� The Control plane where lies all the control algorithms necessary for
monitoring the throughput, the security, the mobility, the reliability,
etc.

� The Management plane in charge of all management features.

� The Piloting plane for feeding in real time the control planes.

However, one of the main changes, in relation with classical architectures,
is the fusion of the control and management planes in just one plane to get
a three planes autonomic architecture. A general view of these autonomic
architectures is illustrated in Figure 2.1. The new paradigm in this archi-
tecture is the Piloting plane. This system could be seen as an aggregation

8

Figure 2.1: A general view of autonomic architectures.

Figure 2.2: The piloting-oriented architecture.

of two specific sub planes: a knowledge plane and an orchestration plane.
Unfortunately, the definitions of these two planes are not sufficiently precise.
In our vision, the knowledge plane must be able to recover very often and
very quickly the knowledge useful for feeding the control and management
algorithms. In the same way, the orchestration plane is related to the con-
ductor indicating in real time the tempo to his musicians. The reason of this
integration (Figure 2.2) is the impossibility to dissociate these two planes
during the implementation. The orchestration plane needs to have knowl-
edge bases associated with the piloting intelligent process to be efficient. A
first implementation of this piloting plane was described in reference [14]
where the piloting plane is proposed as a meta-control plane. The papers [2]
and [15] are describing more in details some parts of this architecture and
finally reference [16] describes some examples.

First let us explain a little bit more in details the functions of these dif-
ferent planes. The data plane is in charge of transporting the data from
one sender to one or several receivers. Since future home network is one of
the scopes of this paper, we can assume that some home network elements
may be virtualized (Internet box, set-up-box, etc.). For example, a physi-
cal Internet box can run several virtual boxes. Several virtual networks can
be supported over a same physical network. In the same way, physical ac-
cess points may support several virtual access points as well as controllers,
boxes, and so on may support virtual instances. The management and con-
trol plane provides all management and control algorithms: failure detection,

9

diagnostic, security management, routing, flow control, security control, mo-
bility, etc. Indeed, several algorithms for the same task could be available
in the nodes. In this case, a choice is necessary depending on the context
and the need of the network and the services. Information and knowledge
need to have a syntactic presentation to permit the connection between dif-
ferent machines coming from various manufacturers. The Protégé platform
supports two main ways of modelling ontologies via the Protégé-Frames and
Protégé-OWL editors. Protégé ontologies can be exported into a variety of
formats including RDF(S), OWL, and XML Schema. Protégé is based on
Java, is extensible, and provides a plug-and-play environment that makes
it a flexible base for rapid prototyping and application development. The
Piloting System has to drive the network through the control algorithms.
For this purpose, the Piloting plane has to feed the management and control
algorithms. As a summary, the Piloting plane has to orchestrate the Manage-
ment and Control plane which configures the Data plane itself. Currently, in
traditional home networks the values of the parameters are selected through
information collected directly by the algorithms themselves. The advantage
of the Piloting plane is the possibility to react in a short response time and
in real time if necessary on the behavior of the management and control al-
gorithms through the management and control plane. This piloting process
aims to adapt the home network to new conditions and to take advantage
of the piloting agent to alleviate the global system. A distributed intelli-
gent agents system permits to achieve an adaptive control process due to
the following two points: (1) each agent holds different processes (behaviour,
dynamic planner and situated view) allowing to take the most relevant deci-
sions at every moment; (2) the agents are implicitly cooperative in the sense
that they use a situated view taking into account the state of the neighbours.

2.2 Definition of Piloting within Horizon

The purpose of the Piloting Plane is to govern and integrate the be-
haviours of the network in response to changing context and in accordance
with applicable high level goals and policies. It supervises and integrates all
other planes behaviour insuring integrity of the Future Internet management
operations. The Piloting Plane can be seeing as a control framework into
which any number of components can be plugged into or out in order to
achieve the required functionality. The Piloting Plane would also supervise
the optimisation and the distribution of knowledge within the Knowledge
Plane to ensure that the required knowledge is available in the proper place
at the proper time. This implies that the Piloting Plane may use either

10

very local knowledge to deserve a real time control as well as a more global
knowledge to manage some long-term processes like planning. The Piloting
Plane would host several Autonomic Piloting Systems (APSs). It is made
up of one or more Piloting Agents (PAs), and a dynamic knowledge base
consisting of a set of data models and ontologies and appropriate mapping
logic. Each APS represents a set of virtual entities, which manage a set of
virtual devices, sub-networks, or networks using a common set of policies
and knowledge. The APSs access a knowledge base, which consists of a set
of data models and ontologies. APSs can communicate and cooperate with
each other, by the use of Behaviours, which act as stubs in the APS commu-
nication. A Piloting Plane can be federated with other Piloting Planes. The
Piloting Plane acts as control workflow for all APSs ensuring bootstrapping,
initialisation, dynamic reconfiguration, adaptation and contextualisation, op-
timisation, organisation, closing down of PAs. The Piloting Plane provides
assistance for the Service Lifecycle Management, namely during the actual
creation, deployment, activation, modification and in general, any operation
related to the application services and/or management services. The APSs
enables the following functions across the piloting plane:

Federation: the Federation enables a set of domains (APS Domain or Pi-
loted Domain) to be combined into a larger domain (Piloted Domain
or two-combined Piloted Domain) guided by common high level goals,
while maintaining local autonomy. APS Federation: each APS is re-
sponsible for its own set of virtual and non-virtual resources and ser-
vices that it governs as a domain. Federation enables a set of domains to
be combined into a larger domain (Piloted Domain) guided by common
high level goals, while maintaining local autonomy. Piloting Federation:
two Piloted Domains federate to make a larger Piloted Domain. Here,
the federation should take into account the different goals of two differ-
ent Piloted Domains which would be combined and decide if federation
will be possible.

Negotiation: in Horizon, negotiation can take place between autonomous
entities with or without human intervention. APSs and PAs are the
main entities that can be engaged in negotiations to achieve their goals.
Each PA advertises a set of capabilities (i.e., services and/or resources)
that it offers for use by other components in the Piloting Plane. The
APSs performs negotiation between the APSs for the fulfilment of a
specific SLA, defined by the operators of the managed piloted domains.

Distribution: the APSs provide communication and control services that
enable tasks to be split into parts that run concurrently on multiple

11

PAs within the Piloting Plane.

Governance: each APS can operate in an individual, distributed, or col-
laborative mode (i.e. in federation). The APS collects appropriate
monitoring data in order to determine if the virtual and non-virtual
resources and services that it governs need to be reconfigured. High
level goals, service requirements, context, capabilities and constraints
are all considered as part of the decision making process.

System Views: the APSs are responsible for managing the system views
that are stored and diffused using the knowledge plane. APSs will fetch
the information required for their operation from the PAs as well as the
services and resources through interfaces defined in the following.

2.3 Related Work

The autonomic concept was proposed to overcome the growth of complex-
ity of current and future networks. There are some new concepts that deal
with the autonomic aspect and the generic self-* properties. The idea is to fa-
cilitate the management and/or the control of networks regarding the growth
of complexity. D. Clark in his paper Knowledge plane [6] recommends the
construction of a new generation of networks able to ”self-manage” them-
selves given high-level objectives without any human intervention. Clark’s
proposal of a knowledge plane in fact can be seen of a junction of the manage-
ment, piloting and knowledge planes of the Horizon project. In the project
we decided to separate those three planes in order to better tame the com-
plexity. Other autonomic architectures like Focale proposed by Motorola [17]
extend the knowledge plane concept by introducing high-level goals. Strass-
ner’s inference plane is another proposal for the piloting of networks. Other
architectures were proposed through European FP7 program but again the
objective is different from Horizon:

� The ANA Project aims at exploring novel ways of organizing and using
networks beyond legacy Internet technology [18]. Their focus is mostly
in protocols, not in management and piloting.

� The HAGGLE project deals with an innovative paradigm for autonomic
opportunistic communication [19]. This project aims at developing
a cross-layer network architecture exploiting intermittent connectivity
by supporting opportunistic networking paradigm. In this project the
needs for piloting are on the device level, while in Horizon we are dealing
with the piloting of networks.

12

� The BIONETS project aims at a novel approach able to address the
challenges of pervasive computing [20]. Learning from nature and
society will allow to overcome heterogeneity and to achieve scalability
via an autonomic peer-to-peer communication paradigm.

� The CASCADAS project has the objective of developing Component-
ware for Autonomic, Situation-aware Communications and Dynami-
cally Adaptable Services [21]. The project wants to propose an inno-
vative architectural vision based on self-organized distributed compo-
nents for autonomic and situation-aware communication.

� The Ambient Networks (AN) [22] is a FP6 project which envisaged
the development of a software-driven network control infrastructure for
wireless and mobile networks that will run on top of all current network
physical infrastructures to provide a way for devices to connect to each
other, and through each other to the outside world and to provide
seamless service provisioning and roaming.

� 4D is a new architectural model for the Internet, where tasks are di-
vided into 4 planes: Decision, Dissemination, Discovery and Data [23].
In 4D, the data plane is a simple plane, which only acts based on
the configurations received by the decision plane. Decisions are taken
based on the information recuperated by the Discovery plane, which
constructs a view of the physical resources. Next, the decisions are
sent to the Data plane using the Dissemination plane. The paper does
not present any hard data, simulation or implementation to show the
benefits of their architecture, however the authors argue that the main
advantage of such an architecture is in the centralization of decisions
into one single plane, removing the problems of multiple layers deal-
ing with similar issues. 4D has two main differences with regards to
the planes in Horizon. First, it fuses the management, control and
piloting planes into one, however it does not describe a framework or
design patterns to make the design of autonomic networks a tractable
task. Second, it does not deal with the fact that we cannot rely on
one single management entity, once each domain will be operated by a
different organization. The piloting plane, however, accounts for this
fact, allowing the negotiation and federation of different management
domains.

13

2.4 Interaction of piloting, management and

virtualization planes

An Horizon autonomic management architectural model consists of a
number of distributed management systems described with the help of four
abstractions - the four planes: Virtualization Plane (VP), Management Plane
(MP), Knowledge Plane (KP), and Piloting Plane (PP). Together these dis-
tribute systems form a software-driven network control infrastructure that
will run on top of all current virtual networks and service physical infrastruc-
tures to provide a way for devices or attachments to connect to each other,
and through each other to the outside world and to provide seamless service
provisioning. The PP will interact with the management plane through Be-
haviours, defined in Section 4.2. Each APSs will control one or more PAs.
Each APSs will deal with the piloting issues related to the interoperation of
the PAs overseen by the PA. For supporting these tasks, the APSs will require
information from the virtualization plane, using some interfaces to fetch the
required information. Further, APSs will aid in service deployment, starting
up or closing down network and user services in the Horizon architecture.
The APSs defines constraints on the deployment of new services, such as the
set of virtual routers or networks where the service will be installed, as well
as some of its execution parameters.

2.5 The responsibilities of the PP in the Hori-

zon Architecture

The role of the Piloting Plane is to govern, dynamically adapt and opti-
mize autonomic control loops in response to changing piloting–aware context
and in accordance with applicable high-level goals and policies. It supervises
and it integrates all other planes’ behaviour, ensuring integrity of the man-
agement and control operations. Besides adapting the configuration of PAs,
the Piloting Plane may also bootstrap and close down PAs when needed.
The Piloting Plane can be thought of as a control framework into which
any number of components can be plugged into in order to achieve the re-
quired functionality. The need for a Piloting Plane (PP) arises from the
deployment of several autonomic control loops with different administrators
or management goals, which would not be able to interoperate without a
set of translation, negotiation, federation and deployment functions. Thus,
piloting deals with the meta-management of Autonomic Piloting Systems,
that is, the deployment and reconfiguration of autonomic management con-

14

trol loops in order to allow their interoperation. This is achieved based on a
set of high-level goals, defined for each of the managed network domains that
form the piloted network. The PP ensures the interoperation of management
systems, even though those systems use different set of high-level goals and
management standards. Ontology translation and mapping techniques be-
tween different data models based on the common information model can be
used to create the common language upon participating entities that can ne-
gotiate, federate etc. This process of interoperation of management systems
may be accomplished through the negotiation of new SLAs and policies, the
deactivation of conflicting management systems followed by the activation
of other management systems, or the migration of such systems or parts of
them within the piloted network. The entire piloting process is governed by
Piloting Policies, which dictate what are the compromises that each of the
managed domains are willing to make for the sake of interoperability.

15

Chapter 3

Piloting Plane Functions and
Requirements

The PP collaborates with all the other planes and as such it requires the
following key functions and requirements:

� Take into account high-level goals (represented as policies, for example)
and customer needs. It does not consider low-level technical details or
high-level business details.

� The knowledge required for intra- and inter- domain piloting must be
timely disseminated by the Piloting Plane and related components of
the architecture.

� Depending on the service to be provisioned, the reaction time of the
APSs must be constrained within certain boundaries in order to achieve
the defined SLAs.

� The Piloting Plane must have interfaces to interact with the PAs (i.e.
to cope with environment changes and conflicts).

� It should provide support for the PAs to define their dependencies on
other components and services, as well as their expected operational
conditions (e.g. based on policies describing their required services and
virtual resources).

� The cooperation of the APSs from different domains requires the use
of open protocols and standardized information and data models.

� The Piloting Plane must be aware of the state of virtual resources using
the specific interface between virtualisation plane and piloting plane,
and the information stored on the Knowledge Plane.

16

� Solve conflicts arising from orthogonal goals on different PAs. Thus, it
must be capable to reach a compromise, allowing the overall system to
achieve its purpose.

� It acts as control workflow for all PAs ensuring bootstrapping, initial-
isation, contextualisation, closing down of PAs. It also controls the
sequence and conditions in which one PA invokes other PA in order to
realize some useful functions (i.e., an piloting is the pattern of interac-
tions between APSs).

� Enhancement and evolution: The Piloting Plane would allow relevant
number of components to be plugged into or out in order to achieve the
required functionality and without interruption of normal operation.

17

Chapter 4

Preliminar Piloting Plane
Design

The piloting plane concept in the Horizon approach is composed by sev-
eral Autonomic Piloting Systems (APSs). Each APS will be responsible for
the interaction of several subordinated PAs. APSs will interact among them-
selves whenever necessary, in order to guarantee end-to-end SLAs and SLOs.
The Piloting Plane governs the execution of the APSs. It acts as control
workflow for all APSs ensuring bootstrapping, initialisation, dynamic re-
configuration, adaptation and contextualisation, optimisation, organisation,
closing down of PAs. It also controls the sequence and conditions in which
one PA invokes other PA in order to realize some useful functions (i.e., a
piloting is the pattern of interactions between PAs). The Dynamic Plan-
ner is responsible for those tasks. Finally, each PA will interact with the
Knowledge plane to fetch information regarding the controlled Behaviours
(see Section 5). This information will vary for each PA, and will compose
the situated view of the PA. The Situated View defines the information that
is needed for the operation of an autonomic component and from where it
must be collected. The Piloting Plane is made up of one or more Autonomic
Piloting Systems (APSs): one per domain. Each controlled PA will have its
associated Behaviour. The Behaviour is a wrapper for the PAs, providing the
interfaces and functionality needed for the interaction with the PA. There is
one APSd for each piloted domain, which will communicate with the APSs
of other piloted domains to reach agreements, allowing the operation of the
network as a whole. A federation of the Piloting Plane with other Piloting
Planes is possible using communication between APSs. In this case, APSs
from two or more administrative domains negotiate their federation. The
aspects of federation, negotiation and governance will be treated in detail in
Sections 4.2.1 to 4.2.3. A policy-based management system abstracts the be-

18

haviour and dynamic decisions of a system from its functionality. Therefore,
the functionality of a system may stay the same, but its behaviour, specifi-
cally with respect to changing contextual conditions, may be varied. Policies
are used in the Piloting Plane as a means to adapt its behaviour with respect
to changing contextual conditions, for example, changing business objectives,
network resource availability or domain membership. As the piloting plane is
concerned with the piloting of distributed management systems, its policies
are directly associated with the requirements of those management systems,
or PAs in the case of Horizon. Essentially, the behaviour of the components
of the Piloting Plane, namely the PAs, is dictated by the capabilities of the
distributed PAs. For example, a single PA may be deployed using a APS.
The behaviour of this deployment may need to be dictated by the “owner” of
the PA who will define the policies with which the PAs should be deployed,
and the behaviour of the APSs with respect to any coordination with the
deployed PA. Other types of policies the APSs should enforce are those del-
egated to it by the PA to perform negotiation, federation or distribution on
its behalf. For example, a PA may inform its associated APSs that infor-
mation regarding its resources should not be exposed to other PAs unless
some strict authorisation requirements are met. APSs can also control PAs
that act directly on each virtual networked element. One example for this
organization is the handover process for the application continuity. In this
case, the handover decision can be controlled by the PAs, while the definition
of the parameters for the handover decision, i.e. the maximum number of
clients to be accepted on each virtual network, the authentication process
being employed, is defined by the high-level goals dictated by the APS.

This organization is shown in Figure 4.1. The high-level APS controls the
lower-level PAs setting the policies and SLAs for those components. The PAs
act on the virtual resources using interfaces, deploying services and executing
FCAPS functions of the virtual resources and nodes. Finally, the lower-level
PAs control the near real-time decisions required for the operation of control
protocols. As defined before, the Horizon architecture has several levels of
policies, mapped into the policy continuous. The piloting plane uses Piloting
Policies, which are high-level policies that control the deployment and fed-
eration of autonomic control loops. In a sense, Piloting High-level Policies
are policies that act upon the inter-domain aspects of the autonomic man-
agement domains, controlling when and how two APSs may federate. They
may also dictate how the process to resolve conflicts will be carried out by
the APs, as well as the deployment and distribution of the PAs in the net-
work. Meanwhile, the APS high-level policies will focus on the management
of a single domain. The APSs receive the Piloting High-level Policies as well
as the APS High-level Policies from their corresponding administrative par-

19

Figure 4.1: Deployment of the APSs in the Horizon architecture.

ties. Those policies are then processed and relevant information from this
processing is stored in the System View, and are accessed to the required
components as requested. For example, the policies required for the federa-
tion of two APSs will be requested from the System View by a Federation
Behaviour, while the policies related to security would be requested by the
self-security autonomic APS Behaviour. The design of the APS is outlined
in Figure 4.2. It enables all components in the system managed by the Pi-
loting Plane to have plug-and-play behaviour. APSs comprise three types of
functional elements (FE):

Dynamic Planner FE: acts as a workflow engine for execution of the Be-
haviours in a APS. This process is necessary to decide what behaviours
have to be achieved. The action of the Dynamic Planner will be dic-
tated by policies.

Behaviours: perform the specific/individual piloting actions required to be
performed by a APSs and also represent specific management tasks on
the network. The main behaviours are Distribution, Federation, and
Negotiation. Those Behaviours are described in detail in the following
sections. Behaviours act as stubs for the PAs. They also perform inter-
nal functions specific to the APSs (core Behaviours), i.e. negotiation
among Behaviours.

Situated View FE: is the ”local window” of APSs into the Knowledge

20

Figure 4.2: Design of the Autonomic Piloting System.

Plane. This view is realized by the knowledge plane and has two parts.
The Intra-System View provides an overall, composite view of the sys-
tem as seen by the components within a single APS. The Inter-System
View provides an overall, composite view of the APSs as a whole, that
is, it provides a view of the entire Piloting Plane. The respective roles
of these components are outlined in more details below.

4.1 Dynamic Planner

The Dynamic Planner acts as a workflow engine for the execution of the
Behaviours. Such control includes the following tasks:

� Define the sequence and conditions on which the Behaviours must be
bootstrapped for activating a PA (a deployment of the PA components
defining their dependencies on other Behaviours; how and where to
bootstrap them). It acts as control workflow for all PAs ensuring boot-
strapping, initialisation, contextualisation, closing down of PAs. It also
controls the sequence and conditions in which one PA invokes other PAs
in order to realize some useful functions (i.e., a piloting is the pattern
of interactions between PAs).

21

� Monitor Behaviours, checking that the operation of an individual Be-
haviour does not conflict with others.

� Forward the advertised high-level policies for each piloted PA and core
Behaviour, which were provided by the operator or the owner of the
network. Those policies are not processed by the APS, since it is not
its function to implement policy refinement.

� Identify conflicts in the initialization and reconfiguration of Behaviours.
The Dynamic Planner will then start negotiation Behaviours to recon-
figure the deployment plan.

� Trigger the initialization and closing down of Behaviours with a plug-
and-play, unplug-and-play approach

� Trigger the dynamic reconfiguration of Behaviours.

� Facilitate the interaction between Behaviours. As an example of inter-
action, the negotiation Behaviour uses the Dynamic Planner to commu-
nicate with other Behaviours in order to solve configuration conflicts.
Then, it is up to the Dynamic Planner to trigger a reconfiguration
Behaviour.

The Dynamic Planner will be configured by policies, which will help the
DP select the Behaviours (and hence which service and/or PA) that must be
bootstrapped, the service or PA’s parameters and SLAs.

The autonomic control loop of the Dynamic Planner (see Figure 4.3) is
realized by the use of policies. Those policies define rules based on events
and conditions that must be met by the virtual resources. Whenever those
conditions are met, the Dynamic Planner executes the actions defined by the
policy, which comprises the bootstrapping of one or more Behaviours. Those
policies can be changed on the fly, allowing the DP to reconfigure itself and
to adapt to changes in the SLAs of the network. Those policies are called
in the Horizon architecture high-level piloting policies. More specifically, the
DP will use the distribution policies part of the piloting policies to identify
where to instantiate or migrate PAs. Policies will also be used to decide
which PA or core Behaviour should be bootstrapped and when. The APSs
will also use policies to enforce SLAs and goals into the PAs.

The Dynamic Planner also acts as a mediator for the federation of the
PAs. Whenever the Dynamic Planner enforces a new configuration on the
PAs, those may refuse it due to their self-governance. In this situation, the
PAs will signal this rejection using the appropriate interfaces, and the DP

22

Figure 4.3: General autonomic control loop of the dynamic planner.

will bootstrap a core Behaviour, responsible for conflict resolution, which will
propose an alternative configuration.

4.2 Behaviours

Behaviours are sub-components of the APS, which implement a certain
piloting task. As an example, the APSs could implement Behaviours for the
negotiation of high-level policies, the distribution of tasks, the creation and
destruction of services and virtual routers. Behaviours interact with each
other when necessary, i.e. the federation Behaviour may interact with a QoS
Behaviour if the required QoS couldn’t be met when two networks are joined.
The lifecycle of a Behaviour is controlled by the Dynamic Planner, which
identifies, starts and stops the Behaviours necessary to accomplish a certain
piloting task. We tentatively distinguish two types of Behaviours functional
elements (FEs): the core Behaviour FEs - required for the proper operation
of the Piloting Plane and the PA management Behaviours FEs, related to
the control and management of the data plane. The core Behaviour supports
the operation of the dynamic planner, implementing the tasks necessary for
the proper cooperation of PAs and core Behaviours. Some examples of core
Behaviours are listed below:

Distribution Behaviour FE: sends and receives required data to different
self-management piloting Behaviour FEs.

Negotiation Behaviour FE: this FE implements algorithms to mediate
between the PAs in a APSs so that the PAs can agree on common goals.
After the negotiation is complete the PAs should take autonomous and
local actions under their corresponding administrative domain, con-
verging to these negotiated goals. Negotiation can also occur between
different PAs.

Piloting knowledge update Behaviour FE: manages the dissemination
of knowledge regarding the Piloting Plane. It controls information
regarding the core Behaviours required for the operation of the Piloting
Plane, as well as the information required by the Dynamic Planner.

23

Network federation Behaviour FE: this Behaviour controls the union
and separation of virtual networks controlled by different PAs. This
Behaviour identifies the steps necessary to compose/decompose differ-
ent federated domains, proposing actions to the Dynamic Planner.

Knowledge update Behaviours FE: this class of Behaviours supervises
the operation of the Knowledge Plane. They define the “What, When
and Where” of the information: What information to collect, when to
collect, and from whom (where). Those Behaviours are specific to each
service, however the whole set of these Behaviours supervises storage
of information in the Knowledge Plane. Each PA requires pre-defined
knowledge as well as runtime data. Mapping logic enables the data,
represented in a standardized information model, to be transformed
into knowledge and combined with knowledge represented by ontolo-
gies.

Bootstrap and Initialise Behaviour FE: this Behaviour is capable to boot-
strap and initialise other Behaviours under supervision of the Dynamic
Planner.

Reconfiguration Behaviour FE: this Behaviour is capable of dynami-
cally reconfiguring and adapting other Behaviours under supervision
of the Dynamic Planner.

Optimiser Behaviour FE: this Behaviour is capable of dynamically opti-
mising and organising other Behaviours under supervision of the Dy-
namic Planner.

Closing down Behaviour FE: this Behaviour is capable of dynamically
closing down other Behaviours under supervision of the Dynamic Plan-
ner.

Examples of Behaviour FEs, which have direct interworking with other
management functions providing near real time reaction are listed below.
Those Behaviours will act as a proxy to the PAs, which will then implement
each of those functions listed below. The associated Behaviours will deal
with the interworking of those functions with others.

� Supervision of service life-cycle managers;

� Supervision of Distribution/Federation/Negotiation of APSs;

� Supervision of interactions between APSs;

24

� Negotiation / Distribution of the high-level goals to different APSs;

� Monitoring of the APSs; and

� Supervision of network consistency/integrity checks of the sequence of
changes to networks made by separate APSs.

In the following sub-sections we provide a detailed description of the
main core management Behaviours, which support federation, negotiation,
governance and distribution of the management tasks. Next, we describe in
more details the PA Behaviours.

4.2.1 Federation Core Behaviour

Each APS is responsible for its own set of virtual resources and services
that it governs as a domain. Federation enables a set of domains to be
combined into a larger domain, as well as breaking down a domain into
smaller domains. With regards to the service enabler, federation Behaviour
is assumed to be important when conflicts between services are detected
and services can’t find a resolution themselves. Therefore, the Federation
Behaviour is the only way to find a solution. We are considering two different
networks A and B. The APS governs each network as a domain, which can
have different requirements, policies and constraints. Federation is set up
into three different possibilities: The first case is that APS can federate the
network by creating a domain coming from the union of both networks that
are in conflict. The resulting domain inherits the characteristics of their
union. In the second case, we can assume that APS can federate by creating
a domain resulting from the intersection of both networks. In this case, the
new network’s requirements are the common ones from each network. The
third case, we might assume that APS can’t federate by the two previous
possibilities. Moreover, in this case, the APSs create a bridge, enabling to
link the networks.

Here are two aspects to federation in Horizon. The first deals with the
agreements that must be shared among all participating members of the
federations, and the second deals with facilitating the provision of services
across federations. These two aspects are treated separately, but are tightly
dependent on each other because if agreements cannot be made between
participating members of the federation, then there can be no consensus on
service provision. One of the major challenges facing the Internet of today is
that dynamic agreement adaptation between independent administrative do-
mains is difficult when business and technical concerns need to be addressed

25

individually. In this case, the APSs will start up a special negotiation Be-
haviour to help in the negotiation of a new agreement, which will be driven
by the decisions of the APSs. In Horizon, federation of APSs is separated
into two concerns, that are tightly coupled, namely business concerns and
technical concerns. These are summarised hereafter:

Federation of High Level Objectives
A federation in Horizon is born when two or more APSs need to come

together under a common objective. Typically, this objective is to provide
a common set of services with a guaranteed reliability across the boundaries
of the APSs. Each APS will contain its own business objectives as defined
by the policy continuum. They need to decide on a common set of business
objectives that can be maintained across the federation. Once these set of
common objectives are put in place, the business aspect of the federation
is addressed. However, modifications to the federation business objectives
can be proposed by any member, and any member can choose to leave the
federation. Leaving a federation is part of the self-governance part of the
PAs and may entail a penalty if it breaches the terms of the federation. As
each APS can decide for itself to participate with other APSs, the federation
merely puts in place some common understanding between federation mem-
bers about how they should interact with each other. One example could be
to collude against a specific APS that breaches the terms of the federation.
Actually offering and consuming services from within a federation is a tech-
nical concern and must be dealt with separately. This is to ensure that new
services can always be introduced into a federation.

Technical concerns of a Federation
Once an APS is participating in a federation of APSs, it can consume and

provide resources and services within the federation. The APSs in Horizon is
concerned with the actual piloting of the usage of these services and resources,
and the joining and leaving operations of a federation. It is the challenge of
the APSs to ensure that requested services of the APS are made available
in a way that abides by the terms of the SLAs and policies specified on
the federations. To do this, the APSs must be able to assess whether the
configurations of services are adequate enough to ensure the agreed terms of
the federation are being upheld. The PA APS must also abide by its own
business objectives and if these objectives are no longer fulfilled it may decide
to leave the federation. On leaving a federation, the associated APSs must
signal this intention to the federation members.

Different types of services and resources required different technical solu-
tions to ensure that they can be used effectively in a federation. It is up to
the service creator to ensure that if the new service is to be used within a
federation, that it be technically feasible to do so.

26

4.2.2 Distribution Core Behaviour

The APSs provides communication and control services that enable tasks
to be split into parts that run concurrently on multiple APSs within an
Piloting Plane, or even across multiple Piloting Planes.

Business concerns of Distribution
The business concerns relate to whether each APS requires the distribu-

tion of information, tasks, and code. Information distribution is important,
as some APSs may generate information that is unique to them and will need
to be explicitly controlled. Access control policies may play a role here. Task
distribution can be seen as the distribution of work that involves distributed
processing across a number of processing elements. For example, the com-
putation of the effective bandwidth of a particular film may be distributed
across a number of machines, as this may be a time consuming process. The
business concern here is that a particular APS may request its associated PAs
to distribute a processing task. The distribution of code is slightly different
from the distribution of information and tasks in that there is typically no
return expected from the distributing PA. The distribution of code may be
an enabler for an APS to upgrade a particular service offering that relies on
the federation of a number of PAs.

Technical concerns of Distribution
The distribution of information may be carried out using the concepts

being developed in the knowledge plane relating to the Context Information
Service. However, the APSs need to be involved as it can enforce strict
access control over the information, and can thus instruct the distribution
of information to abide by the high-level policies of the APS. The high-
level policies may authorise or prohibit information from leaving or entering
its system. The distribution of tasks can be technically carried out by the
platform being used to distribute information. However, the task information
may be in a specific format, where strict instructions may need to be in place
to instruct the target PAs of the requirements of the task. It is up to each
PA to decide whether to accept or reject the task being distributed. The PA
will need to inform the APSs of its intentions; the APS then takes care of
the distribution, and informs the PA whether or not the intentions were met.

The distribution of code can also be carried out by the platform being used
to distribute information. Code in this case is a special form of information
that can be distributed, in that it is mark to be executable. The code may
be used to upgrade or deploy a new service within other PAs. Therefore, the
PA instructs the APSs that code needs to be distributed and it is up to the
APSs to handle the distribution of the code. This can be carried out using
the Service Enabler Plane.

27

4.2.3 Negotiation Core Behaviour

In Future Internet Networks approaches, it becomes mandatory for net-
work and service providers to offer and publish their services so that more
complex services can be provided. An important component that allows this
requirement to be met in Horizon is the negotiation component part of the
Piloting Plane. This component acts as a virtual service broker that me-
diates between different PAs, taking care of service requests and providing
support so that the underlying service providers can negotiate responsibili-
ties, tasks, high-level goals, etc. This support should be carried out taking
into account the nature of the underlying service providers, the services they
provide, their interests, their service qualities and other key aspects. All
in all, this functionality should be provided leveraging the service requester
entities from complex decision-making processes.

In Horizon each APS advertises a set of capabilities (i.e., services and/or
resources) that it offers for use in the Piloting Plane. The negotiation com-
ponent enables the specific functionality of selected capabilities to be agreed
upon between APSs. Examples include using a particular capability from
a range of capabilities (e.g., a particular encryption strength when multiple
strengths are offered), being granted exclusive use of a particular service when
multiple APSs are competing for the sole use of that service, and agreeing on
a particular protocol, resource, and/or service to use. The negotiation func-
tionality piloted between APSs and PAs has inherent business and technical
concerns. The following elaborates on these two critical aspects.

Business and Technical Concerns for Negotiation
When the PAs negotiate high-level goals under an APS, or when different

PAs negotiate high-level goals with other PAs, the negotiation finishes when
the participants align their internal business objectives with a common one,
namely when the participants converge to negotiated high-level goals for
which virtual and non-virtual resources must be allocated, managed and
controlled autonomously in their respective domains (PA and/or APS). In the
negotiation of business objectives, the responsibilities, benefits and penalties
are also considered during the negotiation.

It is worth mentioning that an APS and/or a PAs may negotiate business
objectives with several PAs and APSs, sequentially or in parallel. The ne-
gotiation of business objectives is in turn influenced by technical concerns in
the sense that APSs compromise resources to fulfil the negotiated high-level
goals. The governance capability of an APS (and that of a PA) defines with
whom, why, and when to negotiate. The negotiation capability ensures that
APSs and PAs can always negotiate with other entities in a federation.

As PAs and APSs can have active negotiated agreements with several

28

parties, there is a potential need to re-negotiate the high-level goals due to
statistical changes in the resources committed to these goals when they can-
not be fulfilled, or due to some internal decisions that lead to such corrective
actions.

The APSs may also trigger re-negotiation when the common business ob-
jectives are not fulfilled. Re-negotiation of high-level goals is a functionality
that should be supported by the Piloting Plane. It is part of the governance
capability of each PA and/or APSs to decide on which of its negotiated busi-
ness objectives to re-negotiate. The renegotiation can be driven by utility
functions, cost/benefit optimisations, etc. Again, during the re-negotiation
of high-level goals, the responsibilities, benefits and penalties are also con-
sidered.

The Piloting Plane provides the means for the mediation between PAs
and APSs so that they can negotiate high-level goals as a result of a complex
service request. As the PAs and APSs may belong to different administration
domains, they may talk different languages, may express their high-level goals
in different terms and so forth. Ontology translation and mapping techniques
can be used to create the common language upon participating entities can
negotiate, federate, etc. The Piloting Plane must provide the mechanisms
for the negotiation to occur regardless of any of these technical aspects.

4.2.4 Piloting Core Behaviour

The governance functionality of an APS deals with the self-interested
actions that it takes to (re-) negotiate high-level goals with other parties and
to take actions that can involve the commitment of virtual and non-virtual
resources that may help provision of services across federations. Following
on, each PA can operate in an individual, distributed, or collaborative mode.
In each case, it collects appropriate monitoring data in order to determine
if the virtual and non-virtual resources and services that it governs need
to be (re-) configured. Business objectives, service requirements, context,
capabilities and constraints are all considered as part of the self-interested
decision making process. APSs also may be federated with other APSs (Inter-
system situated view) and as such they may act self-interestedly, namely they
should have self-governance properties.

Business and Technical Concerns for Governance
In a federated environment, the APSs provide support so that their un-

derlying PAs are aware of the needs of other PAs within a federation. As an
APS is aware of its needs, it can decide which set of other PAs it collaborates
with. The nature and scope of the business objectives of an APS would re-
sult in collaborations that can be different on the types of functionality and

29

services that are the subject of the collaboration. The APSs would provide
support for these self-interested decisions to take place and to be acknowl-
edged by the participants during the negotiation phase within a federation.
As introduced earlier, each APS can operate in an individual, distributed, or
collaborative mode:

� The APSs act as individual entities when they are not part of any fed-
eration, when they work isolated and autonomously, governing its own
virtual and non-virtual resources and services driven by its own busi-
ness objectives. No common goals are shared or responsibilities from
any APSs are acquired. The APSs should support this functionality by
handling and transmitting the messages sent by the corresponding PA
to other PAs and/or APSs in the federation they are located in.

� As a result of the distribution function of the Piloting Plane, APSs can
work with other APSs in a federation where complex services are pro-
visioned by coordinating the activities, resources and services of each
distributed APSs after a negotiation phase. Relevant to the governance
function is the fact that each APS should provide a number of contract
interfaces to the PAs, which use them to promote and mediate the ne-
gotiation of a complex service, its activation and maintenance. These
interfaces could be interpreted as contract interfaces that isolate the
internal structure and capabilities of the PAs.

� An APS works in a collaborative mode when it acts as a local or a
global collaborator. A local collaborator is responsible for coordinat-
ing the functionality of other APSs in a given Piloting Plane, this is
when the APSs delegates part of its control to an APS. An APS works
as a global collaborator when it coordinates the functionality of APSs
across different Piloting Planes, namely amongst APSs. This enables
the emulation of client-server, n-tier, clustered, and peer-to-peer archi-
tectures.

In any case of operation, the PP should provide the means for an APS
to govern its virtual and non-virtual resources through a well-defined set of
interfaces. The overall aim of the APSs with this regard is to allow the PAs
to always decide on the action to take based on self-interested policies inside
the APS, driven by its business objectives and capabilities. Its decisions
should also take into account the policies of other APSs participating in the
federation (see Sections 4.2.1 and 4.2.3). However, the APS can reject to
abide to certain policies of the federation when those are not aligned with its
own business objectives. In this case, it is up to the APSs to re-negotiate or
change the policies of the federation.

30

4.2.5 APS Behaviours

The APSs use the APS Behaviours as an interface to communicate with
the PAs. This encapsulation allows the APSs to see PAs in a uniform way,
having the same interfaces as the core Behaviours. All the communication
of the PAs with the APSs follows the information models defined in WP3.
Further, APS Behaviours are wrappers to the CPA, similar to stubs and
skeletons in RPC (Remote Procedure Calls) or CORBA, once they provide
a translation from the specific design issues of a APS to the operational
philosophy of the APSs. One of the uses of such a wrapper is to hide from
the APSs the different implementations of the APSs, for example ensuring
a single communication point, even though the APS may be a distributed
component spread around several virtual nodes.

The wrapper also defines a set of commands that the APSs must sup-
port to allow the APSs to orchestrate their federation and distribution. The
interface provides mechanisms for the APs to disseminate and renegotiate
policies to the APSs, allowing the PA to be self-governing. The PAs can also
support near real-time control of virtual resources and protocols. While the
high-level self-FCAPS APSs are mainly concerned with long-term manage-
ment of resources, lower-level PAs are deployed to react as fast as possible
to changes in the PA-aware context. Thus, lower-level PAs use simple al-
gorithms that act based on a pre-determined overall goal. Those goals are
dictated by policies defined by the APS. Those PAs will act over a single vir-
tual resource or a small set of virtual resources, due to the time constraints
on their reaction. In a sense, lower-level PAs may be seen as the first control
loop of an autonomic system, acting based on pre-determined goals and with
no sort of embedded learning. Examples of possible technologies that could
be employed are state machines, PID controllers, fuzzy decisions, etc.

Low-level PAs are associated with the maintenance of a QoS defined by
the network SLA, controlling the parameters of the virtual nodes as well
as their running algorithms, for example mobility management algorithms,
the queuing discipline of QoS-aware MAC protocols or the admission and
authentication of applications.

4.3 Intra- and Inter- system views

APSs use the knowledge plane to store and disseminate the information
required for their operation. The information can be decoupled into two
parts, or views, according to their relevance to a given APS.

The Intra-System View concerns information required to orchestrate the

31

services within the piloting domain, while the Inter-System View deals with
the piloting of several piloting domains. The Intra-System View contains
information that enables APSs to become aware of the particular situation
that they are now in; the Inter-System View provides similar information for
collaborating APSs.

The Intra-System View thus deals with the services being run within
the boundaries of an APS, together with the information relevant for the
operation of this APS. This view is also called the Situated View. There is
an important trade-off on the definition of the Situated View. Larger Situated
Views will allow decisions to be taken using more knowledge describing the
overall sate of the system. However, the cost of disseminating the knowledge
among all the concerned nodes will be higher, as well as the processing cost.
As a consequence, an optimal Situated View could be defined based on the
problem being solved and on clear performance metrics.

The situated view will be detailed in Deliverable D3.3, once it is a part
of the Knowledge Plane. It will also employ the ontologies and information
models of D3.1 in the representation of the knowledge. The APSs maintain
the situated view, defining what information must be stored in this view,
from which virtual nodes or resources, and with what frequency it must be
updated. The interface of the Piloting plane with the Knowledge Plane is
described in Section 4.4 below.

4.4 Interfaces of the APS

This section describes the interactions of the APSs with other elements
of the Horizon architecture, as shown in Figure 4.4. We first describe the
interface of the APSs with the Knowledge Plane. The interfaces with virtual
resources, the APSs and the service enablers plane are just introduced here,
since they will be defined in the deliverables respective to each of those
functions.

The knowledge base consists of a warehouse where all information and
knowledge required for management and control tasks is kept. As each ele-
ment within the autonomic architecture should be able to work autonomously,
the Piloting Plane should also be able to provide autonomously the informa-
tion required for its functionality. The piloting plane provides the APSs with
the required parameters regarding to which information should be monitored,
how often it should take place and from where in the network it should be
gathered. These parameters are decided by Dynamic Planner, based on the
functionality of Piloting plane and the state of the network, and raise a
specific behaviour dedicated to this task. So, we can consider two types of

32

Figure 4.4: Interfaces of the APS.

knowledge within the knowledge base, those related to Management tasks
and those related to Piloting tasks.

One of the objectives of the PP is to identify what is the needed infor-
mation that is required for autonomic decisions, and next to activate the
required KP functions that will ensure the timely collection and delivery of
this information to the APSs or to a specific Behaviour. The format of the
information requests, as well as the information that is produced by the PP
follows the information models being produced in the Work Package 3 of the
project. The following functions are required for the KP/OP interaction:

Lookup(Info): requests the lookup of a certain piece of information (or
knowledge) to the knowledge plane. This is used for fetching policies,
SLAs as well as context and relevant configuration parameters of the
APSs being piloted.

Store(Info): stores a certain information on the knowledge plane. This
function is used for knowledge produced within the OP, which is then
stored in the KP.

Subscribe(Event, Component): defined by a condition on the stored in-
formation of the KP, this function allows the APSs to be notified of
relevant events happening in the network. The events may define a
condition and also a set of nodes or APSs where such an event may
happen. For example, the APSs may be interested in watching for the
occurrence of certain faults to trigger the reconfiguration of an APS re-
sponsible for fault management. The subscription also identifies which
APSs and which of its components will process the information, that
is, it can be the Dynamic Planner that requests the information, or it
may be necessary for the operation of a certain Behaviour.

33

Watch(Info) and unWatch(Info): used for the APSs to define which are
the information that must be periodically collected and disseminated
by the KP. For example, the averaged used bandwidth of a network
interface associated to a certain PA may be monitored to verify if this
component should be migrated to another node on the network. The
information fetch is defined by the type of the information, its situated
view (from which virtual nodes it must be collected), the periodic-
ity of such an update and the component requiring this information.
Once the APSs issued a Watch request, the KP is responsible for the
maintenance of the information, delivering it directly to the concerned
component. One example of use of Watch would be a APSs that de-
fines that the number of active flows on the network should be commu-
nicated every 30 seconds to the autonomic performance optimization
APS. When this information is not needed anymore, the APSs will use
the unWatch() function to free the KP resources.

Push(Information, PAs): used for synchronous message passing among
the PAs. The Subscribe, Watch and Push interfaces of the APSs are
used by the APSs to create their inter-system view, used to feed the
Dynamic Planner and the core Behaviours with their correct parame-
ters. Those functions are also used for inter-APS communication, once
a APSs may watch the state of another APSs using the same functions.
The access to information from other APSs should be controlled by ac-
cess policies, once APSs may be controlled by different organizations,
and thus it may be in the interest of the APSs to hide some aspects of
the management of the network, e.g. due to competitive issues or to
limit the knowledge of the topology and operation of the network to
ward security attacks.

Interface SEP/APS, Virtual Resources/APS and PA/APS: As de-
scribed before, the ultimate task of the piloting plane is to deploy PAs
within the network. The deployment of PAs should be done considering
the management requirements of services. Consequently, the piloting
plane performs this task of PAs deployment, using the Service Enabler
Plane (SEP). However, the PP uses the SEP to deploy PAs, it does
not deal with the deployment of services. In one hand, the piloting
plane needs to interact with virtual resources in order to provide the
PP with physical management and control information regarding the
state of the network and resources, which will be used for deploying
PAs Behaviours. This interface is useful since it provides the necessary
information helping to deploy PAs in the adequate places regarding

34

the state of the network and resources. The last interface used by the
APS, which has been described before, is the interface of the APSs
with the PAs. This interface is indeed implemented by the PA wrapper
Behaviours, as described in Section 4.2 of this deliverable.

35

Chapter 5

The Piloting Agents

We describe in this section the distributed Piloting Agent plane. This
plane is composed of Distributed Intelligent Agents each associated with a
Network Element (NE) as illustrated in Figure 5.1.

By distributing agents across the home network, the network piloting
plane permits to deal locally with local problems. Indeed local problems
are often simpler and easier to deal with than the resulting global problem.
Furthermore a local problem can be addressed earlier locally than in a cen-
tralized approach; e.g. an agent can immediately change the configuration
of its network element to react to a local load problem. Beyond purely local
problems, agents cooperate among neighbours to deal with problems appear-
ing in the neighbourhood, e.g. a connectivity problem can be detected by
several agents. These agents can then cooperate to characterize the problem
more precisely and eventually provide a solution or a synthetic report to the
global hypervisor. The Piloting plane draws from well established, simple
and powerful Distributed AI techniques to program Distributed Intelligent
Agents individually and their interactions. The knowledge plane which is

Figure 5.1: Intelligent agents forming the Piloting Plane.

36

Figure 5.2: Outline of Agents Architecture.

Figure 5.3: Each Agent has its own Situated View of the Network.

a part of the Piloting plane consists in the situated view component of the
agent which is an information base of gathered information. Similarly, the
orchestration plane is composed through a Dynamic Planner and different
Behaviours. The architecture of the piloting system is outlined in Figure 5.2.

The first part of the piloting plane is composed of a Knowledge plane
which is a distributed information base embedded in each agent. It contains
local information of the agent as well as global information of the network.
Each agent maintains its own view of the home network on the basis of
information obtained (i) directly from local observation of its network element
(NE), (ii) indirectly for the rest of the network by exchanging information
with its neighbours. This agent-centric view of the network, focused on
the agent’s close network environment, is called the Situated View, and is
illustrated in Figure 5.3.

The rationale for the Situated View is that events occurring in the neigh-
bourhood of an Agent are generally of greater importance for the agent than
events occurring in a remote part of the network. The fact that local events

37

Figure 5.4: Outline of the Piloting system.

are known earlier and are more accurately documented in the Situated View
makes it easier for the agent to react rapidly and appropriately. Agents reg-
ularly check for important changes appearing in their Situated View - and
thus in the network environment as seen by each agent - and may decide
to automatically adapt certain parameters of their own NE or ask neigh-
bouring Agents to do so for their respective NEs. The use of the Situated
View drives implicit cooperation between agents who ”influence” each other
via the knowledge that they are sharing. Implicit cooperation is the pri-
mary mode of cooperation among agents in the Piloting plane. This mode
of cooperation is simple, particularly robust and well suited for dynamically
changing environments because it does not require the establishment of an
explicit dialog and a strict synchronization between Agents.

The role of the part named orchestration plane is to decide, in real time
if necessary, how to feed algorithms, such as mobility, security, QoS, etc.
An autonomic system is composed of different autonomic elements, which
cooperate in order to achieve the overall objective of the autonomic system.
Therefore, an orchestration plane is needed to decide in real time what to
do when a threshold is reached. The autonomic architecture performs this
process via behaviours and dynamic planner. What an agent is capable to do
is defined as a set of Behaviours (”B” in Figure 5.4). Each of these Behaviours
can be considered as a specialized function with some expert capabilities, able
to deal with specific aspects of the work to be performed by the agent.

Typical categories of Behaviours are as follows:

� Updating the Situated View in cooperation with other agents;

� Reasoning individually or collectively to evaluate the situation and de-
cide to apply an appropriate action, e.g. a Behaviour can simply be

38

in charge of computing bandwidth availability on the NE, it can also
regularly perform a complex diagnostic scenario or it can be dedicated
to automatic recognition of specific network conditions and

� Acting onto the NE parameters, e.g. a Behaviour can tune QoS pa-
rameters in a DiffServ context.

Behaviours can access the Situated View which operates within each agent
as a whiteboard shared among the agent’s Behaviours. The activation, dy-
namic parameterization and scheduling of Behaviours within an agent is
performed by the Dynamic Planner. The Dynamic Planner decides which
Behaviours have to be active, when they have to be active and with which
parameters. The Dynamic Planner detects changes in the Situated View
and occurrence of external/internal events; from there, it orchestrates the
reaction of the agents to changes in the home network environment.

39

Chapter 6

Testbed

It is important to evaluate the proposed self-management system before
deploying the system in a real network. Figure 6.1 illustrates the testbed
built with this objective.

Figure 6.1: Testbed.

The testbed contains two virtual networks (virtual network A and virtual
network B). Both virtual networks contain two virtual routers each. The
virtual routers are located at the real hosts zeus and dionisio. To the virtual
network A be instantiated, it is needed to instantiate the virtual routers
horizonzeusA, at the real host zeus, and horizondionisioA, at the real host
dionisio. Similar instantiations are needed to the virtual network B.

40

Virtual network A is created to interconnect hosts artemis and apolo
through a 2-hop virtual path. Similarly, virtual network B is created to
interconnect hosts nix and cronos. The 2-hop paths of each virtual network
can be mapped on one of two possible physical paths between the real hosts
zeus and dionisio: an 100Mbps link and an 1Gbps link. Initially the two
virtual paths share the 100Mbps link.

Preliminary experiments were performed to confirm the possibility to
change the mapping of the virtual paths during the operation of both virtual
networks. The idea was to overload the 100Mbps link and, after that, to
migrate just one virtual path to the 1Gbps link. This experiment simulates
a scenario where agents located at the routers detect the high utilization of
a link and take the decision to migrate one of the virtual links.

The next sections present more details about the testbed. Section 6.1
summarizes some tools used to build the testbed and Section 6.2 presents
the results of the preliminary experiments. It is important to highlight that
these experiments were realized manually without mediation of agents from
the proposed self-management system. The results obtained with the agents
are presented in Chapter 8.

6.1 Tools

In this section we describe the major tools employed to build the testbed
used in the experiments. The tools are used for the deployment and ma-
nipulation of virtual networks, and the Ginkgo platform was used to the
development of the multi-agent system.

6.1.1 qemu

qemu [24] is a processor emulator which can also be used as a virtualiza-
tion platform. Comparing to other virtualization platforms, qemu has the
advantage of being easy to install, because to the host operation system it is
an application like any other. The disadvantage is that qemu is susceptible
to the same process scheduling and memory management algorithms of the
host operating system.

qemu is a free software under the GPL and open-source. There are some
extra components which can be used with qemu to improve the performance
of the guest operating system when the real processor contains the same in-
structions of the emulated processor. The idea is to allow the guest operating
system to access the real processor directly.

41

6.1.2 KVM

The Kernel-based Virtual Machine (KVM) is a full virtualization hypervisor
based on the machine emulator qemu. It runs on x86 architectures with new
virtualization technologies like Intel VT and AMD-V. KVM consists of a kernel
module of Linux, which, when loaded, provides an interface at /dev/kvm to
the setup and control of the guest virtual machines.

KVM is a free software under the GPL and open-source that allows to use
external tools to control it, like libvirt.

Some of KVM features that are interesting for the Horizon project include:

� Good performance in full virtualization.

� Live-migration of virtual machines.

� Support SMP hosts and guests.

� Memory ballooning.

� VM networking by bridging, routing or private networks.

KVM surpasses qemu in terms of performance in full virtualization because
the main objective of qemu is to be a processor emulator, not a virtualization
platform. However, the installation and configuration of qemu is much easier
than KVM, since there is no need to modify the host operation system with
special kernels or modules.

The preliminary experiments of the multi-agent system presented in this
report were realized in a testbed powered by qemu virtual machines. Now,
the testbed is powered by KVM virtual machines. The final experiments of the
multi-agent system, presented in Chapter 8, were performed on this current
version of the testbed.

6.1.3 libvirt

libvirt is an API to access the virtualization capabilities of Linux with
support to a variety of hypervisors, including qemu, KVM and Xen, and some
virtualization products for other operating systems. It allows local and re-
mote management of virtual machines. With libvirt it is possible that an
agent uses the same code to request information regarding the performance
of a virtual link independent of the hypervisor running in the virtual routers.

The libvirt is implemented in C (supporting C++) and includes direct
support for Python. It also supports a number of language bindings which

42

have been implemented for Ruby, Java, Perl, and OCaml. During the work
of this report, the C version and the Java binding of the API were used.

The importance of libvirt for this work is to make virtualization technology-
independent, facilitating future design changes. Thanks to libvirt was pos-
sible to migrate the virtualization platform in the testbed from qemu to KVM

without modifying the agents.

6.1.4 Ginkgo Distributed Network Piloting System

Ginkgo Distributed Network Piloting System [25] is an agent platform
based on autonomic networks. It has the building blocks for the develop-
ment of a piloting system for computer networks. The framework allows the
creation of lightweight and portable agents, which facilitates its implemen-
tation in heterogeneous environments: routers, switches, hosts, wired and
wireless networks. The agents play the role of the autonomic manager of au-
tonomic computing. With distributed managers near its managed elements,
monitoring can be done locally.

The platform allows to form clusters of agents in neighborhoods. Neigh-
bors exchange information and get a situated view of the network. Thus,
besides the local environment, the agent is aware of other network places.
This information is stored in the knowledge base that has an information
model to facilitate communication between agents. Other data repository is
the policy file, which contains rules of the application. With the environment
and application knowledge, the multi-agent system can provide to network
the self-knowledge property.

The sensing, cognition and acting of agents are realized by the behaviors.
They feed the knowledge base, perceive and predict threatening events and
perform changes on the managed elements. Agents also have a dynamic plan-
ner that, with information in the knowledge base and the rules in the policy
file, changes parameters of the behaviors and controls the life cycle of the
agent. This makes possible to develop the properties of self-configuration,
self-healing, self-optimizing and self-protection in the network, which pro-
mote the self-management.

The Ginkgo Platform provides the key features necessary to implement
the Piloting Agents presented in Chapter 5.

6.2 Preliminary Experiments in the Testbed

The preliminary experiments were realized to evaluate if it was possible to
change the mapping of the virtual links during the operation of the virtual

43

networks. This section summarizes the results obtained with one of the
experiments.

The virtual routers are VMs based on qemu version 0.12.5. For the cre-
ation and manipulation of them, it was used the libvirt in version 0.8.3.
Both the physical and virtual machines contain the operating system Debian
GNU/Linux with kernel version 2.6.32. The virtual links are created in the
data link layer, with the Ethernet protocol, via virtual interfaces and bridges.
The bridges are controlled by the utility brctl of the Bridge-util package,
version 1.4-5.

Initially the two virtual networks had their virtual links sharing the
100Mbps link of the substrate network. Traffic was generated using the
iperf in the two virtual networks until the 100Mbps link was saturated. At
this point, scripts were executed manually at the routers of virtual network.

Figure 6.2: RTT between hosts of the virtual network B.

The graph of Figure 6.2 plots the RTT between the two hosts cronos
and dionisio when the communications used the virtual network B and the
100Mbps link was saturated. The scripts to change the mapping of the virtual
link were executed at time 40s. It is possible to observe in the graph that this
change had as consequence the reduction at the RTT between the two hosts.
At time 60s, the scripts were executed to return the mapping of virtual link
to the 100Mbps link. As consequence, the RTT increased to its initial range
of values.

44

An experiment similar to the one summarized in this section is described
in Chapter 8. The difference is the last one was realized with agents taking
actions, instead of the manual execution of scripts.

45

Chapter 7

The Multi-Agent System

We implemented a multi-agent system within the testbed to perform the
management of virtual networks. The system was developed with support
from Ginkgo platform, version 2.0.13. The agents were compiled and exe-
cuted with the version 1.6.0-21 of Java. For the monitoring of virtual net-
works by the agents, the libvirt-java library version 0.4.6 was used.

The aim of the experiment is to change the mapping of virtual links over
paths in the substrate network dynamically and automatically, according
to context changing, instead of manually as presented in Section 6.2. The
resources being monitored are in the virtual networks, not in the physical
network. It is monitored, for example, the failure of a resource in the data
plane, which can lead to faults in the management system.

Figure 7.1: Agents in physical routers managing virtual routers.

In the knowledge base, each network resource is an individual of the infor-
mation model. Each resource is controlled by a single agent and, therefore,
each individual is unique in the knowledge base even after the diffusion. In

46

the information model, the links are directed, i.e., each wire is represented
by two links in opposite directions. The agents are located in routers and
they send data over a directed link, monitor and control this link. Figure 7.2
shows the class diagram of the information model, based on [26].

Figure 7.2: The information model of the agents.

The neighborhood consists of all agents of the routers within the domain,
so the information is exchanged by broadcast. To make a change in the
mapping of the virtual link is necessary to perform actions on both ends
of the physical path. Two agents in separate routers are responsible for
a part of the execution. Ideally, the two actions occur at the same time to
reduce losses in the data plan, so, we must create a mechanism to synchronize
agents. All communication on the Ginkgo platform is based on the diffusion
of knowledge base, then, we need to extend the information model in order
to indicate the status of the resources and the agents. With this information,
behaviors are organized to perform the actions at about the same time.

The agents have four behaviors: Monitor, Analyze, Plan and Execute,
which are executed periodically in sequence forming the autonomic cycle of
the manager. Their actions are listed below.

47

Monitor: collects data from network interfaces through libvirt and feeds
the knowledge base.

Analyze: verifies whether the use of physical links exceeded the threshold
defined in the policy and inform in the knowledge base which are over-
loaded.

Plan: if there is a problem with a link belonging to the agent, it plans the
action, i.e., it chooses another physical link, if any, to receive the flow
of a virtual link that is mapped on the overloaded one. If the problem
is on a link in an adjacent node, it plans an action consistent with what
was intended by the neighbor agent.

Execute: ensure that both agents have already planned their actions to
perform its part locally, states the conclusion of the execution in the
knowledge base.

There is an inversely proportional relationship between the consumption
of resources for management and speed of the corrections. If the frequency
of the agent life-cycle is high it will use more processing cycles of the router
and take corrective actions more quickly. If the frequency is low, the pro-
cessor consumption will be lower and the fixes will take longer. To obtain
a good trade off between them, saving resources without losing too much
performance, we defined rules in the policy file to reduce the time between
cycles when the link usages are above the threshold, and to return to normal
rate when the execution ends. The source of policy file is listed in Figure 7.3.

48

1 (policy (subgoal main (rules

2 (rule RINIT if (impulse init) (

3 (set control.speed 1.0)

4 (changerate MonitorBehavior 1.0)

5 (changeprio MonitorBehavior 3)

6 (start MonitorBehavior)

7 (setcontrol AnalyzeBehavior.threshold 0.5)

8 (changerate AnalyzeBehavior 1.0)

9 (changeprio AnalyzeBehavior 2)

10 (start AnalyzeBehavior)

11 (changerate PlanBehavior 1.0)

12 (changeprio PlanBehavior 1)

13 (start PlanBehavior)

14 (changerate ExecuteBehavior 1.0)

15 (changeprio ExecuteBehavior 4)

16 (start ExecuteBehavior)))

17 (rule RFASTER if (and control.speedup (= control.speed 1.0)) (

18 (set control.speed 0.2)

19 (changerate MonitorBehavior 0.2)

20 (changerate AnalyzeBehavior 0.2)

21 (changerate PlanBehavior 0.2)

22 (changerate ExecuteBehavior 0.2)))

23 (rule RNORMAL if (and (not control.speedup) (= control.speed 0.2)) (

24 (set control.speed 1.0)

25 (changerate MonitorBehavior 1.0)

26 (changerate AnalyzeBehavior 1.0)

27 (changerate PlanBehavior 1.0)

28 (changerate ExecuteBehavior 1.0))))))

Figure 7.3: The rules of the policy file.

49

Chapter 8

Results

In the experiment, the virtual routers are VMs based on KVM version
0.12.5. For the creation and manipulation of them, it was used the libvirt in
version 0.8.3. Both the physical and virtual machines contain the operating
system Debian GNU/Linux with kernel version 2.6.32. The virtual links
are created in the data link layer, with the Ethernet protocol, via virtual
interfaces and bridges. The bridges are controlled by the utility brctl of the
Bridge-util package, version 1.4-5.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 5 10 15 20 25 30

U
se

 (
%

)

Time (s)

zeus.eth1.tx (Fast Ethernet)
zeus.eth0.tx (Giga Ethernet)

Figure 8.1: Utilization of the physical links.

The configuration parameters of the agents are in the policy file shown
in Figure 7.3. The behaviors of the autonomic cycle run at an interval of 1s
in normal state, which the use of all physical links in the network are below
the threshold set in the Analyze behavior, configured at 50%. When occurs

50

an overload, the cycle frequency increases at a rate of 5 runs per second, i.e.,
an interval of 0.2s.

The graph of Figure 8.1 shows the utilization of the physical links through-
out the experiment. A flow passing through the virtual network A, with con-
stant rate of 40Mbps generated by the iperf application, starts close to 5s.
The Fast Ethernet physical link reaches 40% of utilization, not exceeding the
threshold of Analyze behavior. Another flow is started about 15s, through
the virtual network B at a constant rate of 40Mbps. The link utilization
exceeds the threshold, reaching 80%, and the correction begins to be per-
formed by the Plan behavior. The ending of the execution occurs near the
18s, when the flow of the virtual network is migrated to the Giga Ethernet
link. Therefore, the multi-agent system takes about 3 seconds to prepare and
implement the changes.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

artemis.eth0:1.tx
apolo.eth0:1.rx

Figure 8.2: The traffic loss in the virtual network, measured on the hosts.

The graph in Figure 8.2 shows the packet loss caused by the exchange
of virtual network A link mapping. The curves correspond to the sending
of packets by artemis and the reception of packets by apolo. Losses can
be detected when the difference between the two curves increases. In this
particular experiment, the loss is registered between the time 17 and 18s.
According to the iperf report, the amount of missing data was 1.9Mb, 158
packets of 1470 bytes, which corresponds to 47ms of loss in a traffic with a
constant bitrate of 40Mbps.

51

Chapter 9

Conclusion and Next Steps

The Horizon project proposes a new system or plane, the Piloting Plane
(PP), which enables the cooperation of the various autonomic control loops
in the network, ensuring that the operates within the boundaries set by the
business goals defined by the operators. This document presented the initial
design of the piloting plane in the Horizon project, defining its functions,
requirements and the concepts behind the operation of the components that
make the piloting plane, the PAs. In addition, it provides a self-management
system based on multi-agents provided by the Ginkgo Distributed Network
Piloting System.

A Piloting Agent presented is a functional entity of the Horizon archi-
tecture that deals with inter-domain management tasks, such as the federa-
tion, negotiation, governance, and distribution of management domains. The
APSs have two main building blocks. The first one is the Dynamic Planner,
which serves as an autonomic policy-based dispatcher. The Dynamic Plan-
ner creates and destroys Behaviours, which implement the interfaces for the
PAs and the core inter-management functions. The second building block
represents a Behaviour, which has two functions. The first one, carried out
by the Core Behaviours, is to implement piloting tasks. The second, imple-
mented by the PA Behaviours, is to act as a proxy for the communication of
the APSs with the PAs that it orchestrates.

Although not incorporating all the features designed for the Piloting
Plane, the self-management system prototype implemented changes of map-
ping of virtual links if the load of specific physical links increases more than
a certain threshold, and the results presented in Chapter 8 confirm the value
of the approach.

The next steps of the work are related to the extension of the platform
to implement the ideas presented in Figure 1.1: specialized agents to execute
a role, like power and performance control; the existence of a hierarchy of

52

agents; and the management based on service level agreement.

53

Bibliography

[1] S. Dobson, S. Denazis, A. Fernández, D. Gäıti, E. Gelenbe, F. Mas-
sacci, P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, “A survey of
autonomic communications,” ACM Trans. Auton. Adapt. Syst., vol. 1,
pp. 223–259, December 2006.

[2] D. Gäıti, G. Pujolle, M. Salaun, and H. Zimmermann, “Autonomous
network equipments,” in Autonomic Communication, pp. 177–185, 2006.

[3] Y. Cheng, R. Farha, M. S. Kim, A. Leon-Garcia, and J. W.-K. Hong, “A
generic architecture for autonomic service and network management,”
Computer Communications, vol. 29, no. 18, no. 18, pp. 3691 – 3709,
2006.

[4] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, no. 1, pp. 41–50, 2003.

[5] Q. Mahmoud, Cognitive Networks: Towards Self-Aware Networks.
Wiley-Interscience, 2007.

[6] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A
knowledge plane for the internet,” in Proceedings of the 2003 confer-
ence on Applications, technologies, architectures, and protocols for com-
puter communications, SIGCOMM ’03, (New York, NY, USA), pp. 3–10,
ACM, 2003.

[7] J. Turner and D. Taylor, “Diversifying the internet,” in Global Telecom-
munications Conference, 2005. GLOBECOM ’05. IEEE, vol. 2, pp. 6
pp. –760, December 2005.

[8] N. Feamster, L. Gao, and J. Rexford, “How to lease the internet in your
spare time,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 61–64,
January 2007.

54

[9] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
internet impasse through virtualization,” Computer, vol. 38, no. 4, pp. 34
– 41, April 2005.

[10] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network re-
sources to virtual network components,” in INFOCOM 2006. 25th IEEE
International Conference on Computer Communications. Proceedings,
pp. 1 –12, april 2006.

[11] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” SIG-
COMM Comput. Commun. Rev., vol. 38, pp. 17–29, March 2008.

[12] I. Houidi, W. Louati, and D. Zeghlache, “A distributed and autonomic
virtual network mapping framework,” Autonomic and Autonomous Sys-
tems, International Conference on, vol. 0, pp. 241–247, 2008.

[13] IBM, “An architectural blueprint for autonomic computing. autonomic
computing white paper fourth edition,” June 2006.

[14] D. Gaiti and G. Pujolle, “Performance management issues in atm net-
works: traffic and congestion control,” IEEE/ACM Trans. Netw., vol. 4,
pp. 249–257, April 1996.

[15] T. Bullot, R. Khatoun, L. Hugues, D. Gäıti, and L. Merghem-Boulahia,
“A situatedness-based knowledge plane for autonomic networking,” Int.
J. Netw. Manag., vol. 18, pp. 171–193, March 2008.

[16] G. P. T. Bullot, D. Gäıti and H. Zimmermann, “A piloting plane
for controlling wireless devices,” TELECOMMUNICATION SYSTEMS,
vol. 39, pp. 195–203, October 2008.

[17] J. Strassner, N. Agoulmine, and E. Lehtihet, “Focale: A novel auto-
nomic networking architecture,” in Proceedings of the Latin American
Autonomic Computing Symposium (LAACS), 2006.

[18] A. Project, “Autonomic network architecture,” 2011.

[19] H. Project, “A content-centric network architecture for opportunistic
communication,” 2011.

[20] B. Project, “Bio-inspired service evolution for the pervasive age,” 2011.

[21] C. Project, “Component-ware for autonomic situation-aware communi-
cations, and dynamically adaptable services,” 2011.

55

[22] N. Niebert, “Ambient networks: a framework for mobile network coop-
eration,” in Proceedings of the 1st ACM workshop on Dynamic inter-
connection of networks, DIN ’05, (New York, NY, USA), pp. 2–6, ACM,
2005.

[23] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “Refactoring network control
and management: A case for the 4d architecture,” tech. rep., 2005.

[24] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceed-
ings of the annual conference on USENIX Annual Technical Conference,
ATEC ’05, (Berkeley, CA, USA), pp. 41–41, USENIX Association, 2005.

[25] G. Networks, “Ginkgo distributed network piloting system. white pa-
per,” 2008.

[26] I. Fajjari, M. Ayari, and G. Pujolle, “Vn-sla: A virtual network specifica-
tion schema for virtual network provisioning,” International Conference
on Networking, pp. 337–342, 2010.

56

