Horizon Project
ANR call for proposals number ANR-08-VERS-010
FINEP settlement number 1655/08

Horizon - A New Horizon for Internet
WP3 - TASK 3.1: Service and Resource Overlay Algorithms

Institutions
Brazil France
GTA-COPPE/UFRJ LIP6 Université Pierre et Marie Curie
PUC-Rio Telecom SudParis
UNICAMP Devoteam

Netcenter Informatica LTDA. Ginkgo Networks
VirtuOR

Contents

1 Introduction
1.1 Related Research Efforts
1.2 Challenges in Network virtualization using Xen
1.3 Report Outline

2 Controllers for the Domain 0 shared resources
2.1 Maximum usage controller,
2.1.1 Punishment computing
2.1.2 MUC prototype description and analysis
2.2 Efficient usage controller
2.2.1 Punishing virtual networks
2.2.2 EUC prototype description and results

3 Xen throughput control
3.1 CPU allocation in Xen
3.2 XTCoverview e
3.3 Experimental testbed o000
3.4 Xen System Modeling
3.4.1 'Training data acquirement
3.4.2 Model evaluation
3.5 XTC controller design
3.6 Experimental Results
3.6.1 Practical implementation
3.6.2 XTCfeatures,

4 Adaptive virtual network provisioning
4.1 Adaptive virtual network provisioning scenario
4.1.1 Multi-agent based adaptive embedding framework . . .
4.1.2 Distributed fault-tolerant embedding algorithm
4.1.3 Performance results
4.1.4 Distributed resource re-optimization algorithm

11
12
13
15
18
21
22

25
26
26
27
28
29
30
31
32
32
35

5 Conclusions

Bibliography

47

51

List of Figures

1.1

1.2

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2

4.3

4.4

Xen architecture with two virtual networks: DomUs behave
as virtual routers.
Packet forwarding modes in Xen-based networks.

Availability of the secure data plane update when using MUC.
Impact of MUC over the RTT..
Resource usage control in MUC.
EUC control according to different virtual networks patterns,

assuming a demand of 300Mb/s for each virtual network. . . .

XTC Feedback Control Loop.
Example of XTC utilization.
Experimental Testbed.
Cap Variation with 64-Byte packets.
Average Throughput and RMSE measurement.
Achieved Throughput - APD XTC Experiment.
Traffic Differentiation Using XTC
Disturbance Tolerance Using XTC

Multi-Agent based adaptive embedding framework
Multi-agents based distributed fault-tolerant embedding Sce-
NATIO« o o i e e e e e e
Average time delay required to adapt a VN topology in the
case of node failure. L L.
Number of messages exchanged to adapt a VN topology in the
case of node failure. L L.

16

Chapter 1

Introduction

The Work Package 3 defines the piloting system needed to handle net-
work emerging problems, such as congestion, failures, QoS requirements, etc.
Hence, this work package introduces a set of algorithms and intelligent agents
to manage virtual networks taking into account the fulfillment of their indi-
vidual service level agreements. To reach this goal, this work package must
face obstacles such as dealing with the changing requirements of the different
virtual networks and also it must deal with the conflicting objectives between
infrastructure providers and virtual networks, as well as between co-existent
virtual networks sharing the same physical substrate.

The first task of Work Package 3, described in this report, is to investigate
the algorithms to control the virtual networks. Data networks represent a
dynamic and complex area, in which managers face new problems and chal-
lenges every day. The increase of the network complexity and of the amount
of information collected make resources and network control more and more
difficult. We argue that in such an unpredictable, changing and open en-
vironment, a dynamic control gives the opportunity to obtain an optimized
network management and monitoring. In this project, we are interested in
the adaptive network monitoring approach, which monitors the network state
and controls its different components. We aim at including intelligent and dy-
namic control to guarantee QoS and to provide better network management
and global performance.

The algorithms defined in this task consider resources availability and
Service Level Agreements (SLAs). These algorithms are designed within the
piloting system to guarantee that the agreements of all virtual networks are
respected, even in the presence of misbehaved virtual networks that violate
their SLAs.

1.1 Related Research Efforts

The control and management of virtual networks can be divided into local
and global network control. The global control includes operations such
as instantiating virtual nodes and virtual links, as well as virtual network
migration. The local control monitors the resources of each physical node
that are assigned to each virtual network, dealing, for instance, with isolation
between networks.

Schaffrath et al. proposed an architecture for global control of virtual-
ized networks [1]. The proposal was implemented with Xen and assumes a
centralized control that creates slices in the network, through the instanti-
ation of virtual machines and virtual links. Thus, upon receiving a request
to allocate a new network, the system contacts each of the selected physical
nodes and instantiates the virtual machines needed to build the network as
well as the virtual links between them through IP tunneling. Other similar
approaches to global control are found in the virtualization-based testbeds,
such as GENI [2]. The access of the researcher to the testbed is controlled
through a central entity called the Clearing House. The Clearing House mon-
itors which physical nodes and services are available in each of the federated
testbeds, who is authorized to use them, and which slices are scheduled for
each researcher.

Entities with global control also perform other functions, such as migra-
tion. Houid et al. proposed a global control system based on multi-agents
for dynamic resource allocation to virtual networks through the use of mi-
gration [3]. The system monitors the available resources on each physical
machine as well as the changing demands of virtual networks. Noting that
resources are scarce, the agent on the physical node searches a similar phys-
ical node to receive one or more of its virtual machines.

The global network control systems do not deal with the sharing of re-
sources within the physical machine, assuming that the slices are isolated
by a locally controlled mechanism. Egi et al. investigate the construction
of a platform of virtual routers using Xen and Click [4] as local control,
evaluating the provision of isolation and fairness between the networks [5].
The authors investigate the use of different data planes, assuming routing
through a privileged domain and through a virtual machine, and evaluate
the ability to share resources among virtual networks. The authors extended
the CPU scheduler of Click to evaluate the CPU costs of packet forwarding.
This work, however, has no mechanisms for defining management capabil-
ities to specify the amount of resources to each virtual network. Also, the
authors’ proposal does not differentiate or prioritize traffic to ensure QoS in
the virtual networks.

Another important aspect of local control is the guarantee of isolation
between virtualized environments. Xen has problems not only with respect
to the Input/Output (I/O) operations, but also with other aspects such as
fairness [6, 7|. Jin et al. proposed a mechanism to ensure fairness in the use
of L2 and L3 caches on Xen, whose use is not contemplated by the isolation
mechanisms of the Xen hypervisor [7]. The proposed algorithm modifies the
allocation of memory pages by the hypervisor using the technique of page
coloring.

Mecllroy and Sventek proposed a local control based on Xen for the cur-
rent Internet, in which each flow that requires QoS is allocated to a virtual
machine, called QoS routelet [8]. Each virtual machine applies, then, their
QoS policies across the incoming traffic. The prototype is implemented in
Xen and the traffic without QoS requirements is routed by the privileged
domain, while other traffics are routed by virtual machines. The authors
note that it is not possible to guarantee QoS in the strictest sense with this
model, because the Xen scheduler is not suitable for this task. Other prob-
lems related to this proposal are the scalability, because it takes a virtual
machine per QoS flow, and low performance in packet forwarding.

Mechanisms for the isolation of virtual environments have also been pro-
posed for other virtualization platforms. Trellis [9] is a system to provide iso-
lation on the VIrtual Network Infrastructure (VINI) [10]. VINI is a testbed
similar to PlanetLab, which acts as a private testbed within this project.
Because VINI is based on virtualization in the operating system level, i.e.
all virtual environments share the same kernel, the performance of packet
forwarding using Trellis is lower than that of Xen with plane separation [11].
The major problems of approaches based on operating system virtualiza-
tion [9, 12, 13] are that all control planes are executed on the same operating
system and, in general, these approaches do not allow the creation of differ-
entiated data planes for each virtual network.

Genesis is a kernel to create virtual networks with different architec-
tures [14]. Based on the concepts of hierarchy and inheritance, Genesis
proposes that different “child” virtual networks should be created based on
a “root” network, from which the children inherit common characteristics.
Just as Trellis, Genesis is based on the premise that all control planes work
on the same operating system. It allows, however, the usage of different
policies and QoS mechanisms for each virtual network. Because Genesis is
implemented at the user level and inserts a virtualization layer, it presents
low performance on routing.

Another virtualization platform is OpenFlow [15], which is based on a
network of simple forwarding elements and a centralized control plane. To
share the physical resources of the forwarding elements among the virtual

networks, the OpenFlow platform provides the FlowVisor tool [16], which is
a transparent proxy between the forwarding elements and the control planes.
FlowVisor controls the use of CPU and memory in the forwarding elements
as well as the division of the network space, i.e. which characteristics define
each virtual network.

Another approach based on Linux and Click to create a shared data plane
is proposed by Keller and Green [17]. In this proposal, each virtual network
can create its own data plane, based on generic assumptions for packet for-
warding in Click. However, the authors do not address a fair division of
resources among the control planes.

The proposals described in this report for the Horizon project are focused
on the local and on the global control. The local control is performed by
the proposals that guarantee the isolation and the SLAs inside each physical
node in Xen networks. The global control autonomously solves physical node
failures using a distributed fault-tolerant algorithm and also migrates virtual
networks hosted on overcharged physical nodes. The proposals for the global
control approach presented can be applied in any virtualization platform,
such as Xen or OpenFlow, which are the basis for the project.

1.2 Challenges in Network virtualization using
Xen

The virtual network model using Xen considers that virtual machines be-
have as routers. A virtual network is defined as a set of virtual routers
and links, created over the physical infrastructure, as illustrated by Fig. 1.1.
The Xen architecture is composed of the hypervisor, the virtual machines,
called unprivileged domains (DomU), and a privileged virtual machine called
Domain 0 (Dom0). The Xen hypervisor controls the physical resource ac-
cesses and handles the 1/0O operations performed by the domains. Dom0 is
a privileged domain that directly accesses the hardware. Since Dom0 is a
driver domain, it stores all physical device drivers and creates an interface
between the virtual drivers placed in the unprivileged domains and the phys-
ical devices. In addition, Dom0 is also the management interface between
the administrator and the hypervisor to create virtual machines, modify Xen
parameters, and manage Xen operation.

Sending and receiving packets are I/O operations, which require the use of
the device drivers located at Dom0. Thus, all network operations of DomUs
generate an overhead in terms of both memory and CPU of Dom0. The
Xen hypervisor, however, does not efficiently isolate Dom0 resource usage,

Xen Architecture
Dom0 @ @
Management|| DomU; (| DomU;
and
Drivers | Xen Hypervisor I
| Hardware |
@@ Virtual Router — Physical link
) — — Virtual link of network 1
Physical Router — - Virtual link of network 2

Figure 1.1: Xen architecture with two virtual networks: DomUs behave as
virtual routers.

which is a major vulnerability of Xen. Table 1.1 shows that a DomU can
easily increase Dom0 CPU consumption by performing network operations!.
Since data transfer between two DomUs and data transfer between DomU
and Dom0 are Dom0 CPU-demanding operations, a malicious or fault action
in a DomU can easily exhaust the Dom0 resources and thus compromise
the performance of all other domains. One of the goals of Horizon project
proposals is to prevent that any operation performed on a virtual network
breaks the isolation between networks.

Table 1.1: CPU consumption on Dom0.
CPU (%) Description
0,71 +£0,60 | Basic CPU consumption on Dom0
66,43 £ 8,93 | TCP traffic from DomU to Dom0
85,49 £ 5,91 | TCP traffic from DomU; to DomU,
1,794+1,01 | TCP traffic from an external machine to DomU

The Xen conventional architecture is not efficient for network operations
because DomU packet forwarding takes a long and slow path. As depicted in
Fig. 1.2(a), the packet arrives at Dom0, follows to DomU, and returns back
to Dom0 to be forwarded to the next router. The plane separation paradigm
is an alternative to improve the forwarding performance because packets are
directly forwarded by a shared data plane in Dom0, as shown in Fig. 1.2(b).

! Tests were performed with the Top tool in a machine with Intel Core 2 Quad processor
with 4GB of RAM and Xen 3.4-amd64. Each DomU is configured with one virtual CPU
and 128 MB of memory, and Dom0 is configured with one virtual CPU and no memory
constraints. Each virtual CPU is associated with an exclusive physical CPU. TCP traffic
was generated with Iperf. The basic CPU consumption indicates the CPU usage in Dom0
when there are no operations in the DomUs. We assume a confidence interval of 95%.

The plane separation is accomplished by maintaining a copy of the current
forwarding table of DomU in Dom0, which has direct access to the hardware.
It is important to note that data packets are directly forwarded by Dom0,
but control packets are forwarded to DomU to update the control plane.
Also, plane separation does not avoid flexible packet forwarding. If a virtual
router needs to do specialized operations not supported by the shared data
plane, such as monitoring or modifying a specific header field, it can ignore
plane separation by inserting a default route to the virtual machine in the
forwarding table in Dom0, as done in the conventional packet forwarding.

(~ DomUj DomU; h
(__Control Plane) (_ Control Plane) (— DomU; DomU,
(__ DataPlane) | (__DataPlane) (Control Plane) | (ControlPlane)
| v _-P(__DataPlane) (__DataPlane)
eth0 eth1 eth0 | [ethT IV :
b H Eoui \)" S B s o0][ethi 1/
T Veth2.1 guivaien
(-|Veft11.0HVeth1 1 VethZ 0} Veth2 1 b planes {Veth.0 - Veth1.1 —{Veth2.0}{ Veth2.1 |\
22 - DomO0
\
) =~ Router N Router
=< M DataPlane.) (__ DataPlane)
~\ — = — N
G o} e Comr 1
(a) Conventional packet forwarding. (b) Packet forwarding with plane separation:

data packets pass only through Dom0.

Figure 1.2: Packet forwarding modes in Xen-based networks.

Finally, Xen also does not provide any scheme for QoS provision in the
virtual networks. Thus, a scheme for controlling traffic policies must be built
to guarantee the QoS within each virtual network and also between virtual
networks.

1.3 Report Outline

The rest of this report is organized as follows. First, we describe the proposals
developed for the local control inside physical network nodes. The two first
proposals are controllers for the Domain 0 shared resources, which control
the resource usage by each virtual network according to the service level
agreements (SLAs) of each virtual network. These proposals are described in
Chapter 2 and consist of two kinds of controllers: the first controller, which
allows the maximum physical resource usage as soon as all the minimum
required levels of all virtual networks are respected; the second controller,
which restricts to the agreed SLAs the resource consumption of each virtual
network, even if there are idle resources. One approach tries to achieve the

highest throughput to all virtual networks, while the other approach tries
to achieve the agreed resource utilization, so that there are fewer expenses
with physical equipment and management primitives, such as virtual network
instantiation and migration, are easily performed. The last proposal for local
control, described in Chapter 3, guarantees the minimal agreed bandwidth
to each virtual router, assuming the virtual machine as a complete router,
which means that both control and data plane are placed inside the virtual
machine. This proposal modifies Xen parameters on the fly to guarantee that
the required resources will be available to each virtual network when they
are demanded. Finally, we describe our proposal for managing the physical
resource allocation considering a global view of the network. This proposal,
described in Chapter 4 deals with the challenges of allocating virtual networks
with respect to all SLAs.

10

Chapter 2

Controllers for the Domain 0
shared resources

The Domain 0 resources, such as CPU, memory and bandwidth, are shared
by the virtual routers in the I/O operations. Since there is no control in this
resource sharing among virtual routers and these resources may be depleted
during packet forwarding, isolation among virtual routers may be broken.
The isolation failure may imply in security problems, as well as in SLA
violations. Hence, it is necessary to develop mechanisms for local control
that will guarantee the SLAs of each virtual network in each physical node.
The main objective of the two proposed controllers is to provide isolation
in the Xen virtualization platform by controlling the use of Dom0 resources.
Then, the proposed controllers allocate and monitor physical resources used
by all DomUs according to the parameters set by the administrator of the
physical machine as SLAs of each virtual network.

We propose two kinds of controllers that differ in the physical resource
usage policies. The first controller, called Maximum Usage Controller, defines
to each virtual network a fixed resource reservation and a parameter called
weight. The fixed resource reservation guarantees the minimal amount of
resources available to each virtual network, while the weight specifies the how
the idle resources are distributed among virtual networks. As long as there
are idle resources, they will be provided to the networks that have a demand
for that resource. The second controller, called Efficient Usage Controller,
provides to each virtual network a more detailed set of parameters to define
the SLA. In this controller, only the agreed resources are provided to each
virtual network. Hence, even if there are idle resources, a virtual network
cannot exceed the amount of resources specified in the SLA.

Both controllers are based on resource monitoring and punishments ac-
cording to the SLA definitions specified to each virtual network. Also, both

11

controllers support the plane separation paradigm, so that the resources will
be correctly monitored, independent of the data plane location.

We assume in our analysis that all DomUs may be not trustworthy, be-
cause each DomU may have a different administrator. Hence a DomU may,
intentionally or not, damage other domains. Hence, in our model, a DomU
can be malicious or present an unacceptable behavior. The malicious behav-
ior occurs when a DomU intentionally executes an action to break the iso-
lation among virtual networks and then damage other DomUs performance.
By unacceptable behavior, we classify any attempt of a DomU to exceed its
resource reservation that uses all Dom0 idle resources, which could interfere
in the other domains operation. Since both behaviors are harmful, we clas-
sify the virtual machines with these behaviors as opponent domains. Other
domains are called common domains.

2.1 Maximum usage controller

The Maximum Usage Controller (MUC) [18] allocates Dom0 resources and
also monitors their total usage, U(t), and their usage by each virtual router i,
Ui(t), in every T seconds. The allocation of Dom0 resources takes place in two
ways: by fixed reservation and on demand. In the allocation based on fixed
reservation, the administrator reserves a fixed amount of Dom0 resources
for each DomU, ensuring a minimum quality for each virtual network. The
on-demand allocation guarantees high efficiency in resource usage, because
MUC redistributes the idle resources among the DomUs that have a demand
greater than their fixed reservation. We classify as idle resources all the non-
reserved resources as well as the reserved resources that are not in use by the
virtual networks. Thus, a premise of the controller is to provide the fixed
resources of a virtual router i, represented as a percentage «; of the total
resources of the Dom0, R(t), whenever there is a demand. Another premise
is to allocate all the idle resources on demand to the virtual routers according
to the priority preset by the administrator. This priority is a parameter called
weight that belongs to {W; € Z | 1 < W; < 1,000}. The higher the weight of
a virtual router, the more idle resources on Dom0 it has access to. Thus, the
on-demand allocation provides an additional differentiated quality for each
virtual network.

MUC monitors bandwidth by observing the volume of bits being transmit-
ted by each output physical link. If a router exceeds the allocated bandwidth
in an output link, it is punished by having its packets (destined to that link)
dropped.

The CPU usage in Dom0 is monitored based on the volume of packets

12

passing through Dom0O. The monitored data is then weighted on the cost
of each network operation. The packet processing cost is assigned according
to the source and the destination of the packet because, as shown in Ta-
ble 1.1, the packet impact on the Dom0O CPU depends on whether the packet
comes from/goes to a DomU or an external machine. If a router exceeds
the allocated CPU, it is punished by having its packets dropped in the in-
put interface. To avoid attacks that generate unfair CPU punishments, it is
important to define the responsible domain for each measured operation. In
transfers between DomUs, the DomU that sends the packet is responsible for
all the costs of CPU usage, because we want to prevent an opponent domain
from starting unsolicited traffic to exhaust CPU resources of a common do-
main. Besides, in transfers between DomU and Dom0, the CPU usage cost
is always accounted for the DomU.

MUC controls memory usage by observing the size of the forwarding
table of each virtual router. If the Dom(0 memory reaches critical limits,
the virtual routers whose tables/filters occupy more memory than the fixed
reservation are punished, through the disposal of a percentage of routes. To
avoid packet losses, a default route to the virtual router is added. Hence,
the packets that correspond to the discarded routes are forwarded by the
virtual router instead of being discarded by Dom0. Therefore, reducing the
size of the routing table does not imply dropping packets, but only in a
reduced forwarding performance because the packet is then forwarded by
DomU instead of by DomO0.

2.1.1 Punishment computing

Opponent domains are punished by having their packets or routes dropped.
MUC searches and converges for a dropping probability that balances the use
of Dom0 resources among virtual routers according to the fixed reservation
and weight values. To avoid drops when there are idle resources on the
physical machine, a virtual router is punished only if its usage overcomes
its fixed reservation value and if the total resource usage reaches a critical
level, given by a percentage (3 of total resources R(t) in Dom0. With no idle
resources, all nodes that use more than the fixed reservation are punished to
avoid that other virtual routers cannot use their fixed reservation. Given that
the total non-reserved resources is given by D(t) = R(t) — >_; a;R(t), then
the dropping probability in ¢ + 7', given by ®;(t + T'), is updated according
to Algorithm 1.

It is important to note that even if a DomU consumes fewer resources
than its fixed reservation value, the punishment is not immediately reset to

13

Algoritmo 1: Heuristics for punishment computing.

SOk W N

10
11
12
13

14
15
16
17
18
19
20
21
22

input
ou:)put: O;(t+T)

1 if (a; - R(t) < U;(t)) or (®;(t) > 0) then
if (a; - R(t) < U;(t)) then

else

else

end

: (pl(t% Wl, (67 R(t), U(t), Ul(t), D(t), 6

% Calculate an idle resource usage indicator
Ti(t) = (Ui(t) — ai - R(t))/D(t)
if (B-R(t) <U(t)) then
% Since there are no idle resources, some network can be damaged.
Thus, we increase punishment.
if (®;(t) > 0) then
‘ ©;(t+T) = min(@(t) + (L + Ti(t) - (1 + 35) - s
else
‘ O,(t+T) = Pinitiar % Set initial punishment
end

else
% Reduce punishment, because there are idle resources

B0+ T) = maz(®,(0) ~ (1+ (1 Tu(0)) - (1) - 2 o)

end

% Reduce punishment, because the router used only its fixed resources.

it + T) = maz(®;(t) — 3 (1 — 1) - 2L 0)

| @,(t+T)=0

end

14

avoid instabilities. Also, to prevent that traffic generated by virtual routers
interrupt other Dom0 services due to CPU overload, a residual punishment
is constantly applied in the output interfaces of virtual machines. Such pun-
ishment should be small enough to not impact the low-volume transmissions,
but should prevent that a DomU consumes all the resources of DomoO.

2.1.2 MUC prototype description and analysis

We developed a prototype to analyze the effectiveness of MUC in the pres-
ence of opponent domains and to verify the efficiency of the controller to
share resources. The prototype was implemented in C and Python and the
controller is able to monitor both bandwidth and CPU of Dom0. Monitoring
and punishment were implemented with Iptables. To dynamically estimate
the capacity of physical links, we used Mii-tool. We compute the CPU usage
with MUC by estimating the cost in Dom0 of each network operation, in-
cluding communication between DomUs, from DomU to Dom0, from Dom0
to DomU, from DomU to external machine, from external machine to DomU,
and between external machines. The residual punishment in the output vir-
tual interfaces was estimated as 0.0009 based on the packet rate that caused
damage to Dom0 response time.

We performed the tests on a machine, hereafter called router, equipped
with an Intel core2 quad processor with 4GB of RAM, using Xen 3.4-amd64 in
router mode. The router has five physical Ethernet interfaces of 1 Gb/s each.
We instantiated four virtual machines running Debian operating system with
Linux kernel 2.6-26-2, each with one virtual CPU, 128 MB of memory, and
five network interfaces. The number of virtual CPUs in Dom0 varies accord-
ing to the test and there are no memory constraints for this domain. The
physical CPUs are shared by all virtual CPUs and the hypervisor dynamically
maps virtual CPUs to the real CPUs. The tests use two external machines
that generate or receive packets, each with a network interface of 1 Gb/s. All
traffic is generated with Iperf and the results present a confidence interval of
95%.

The first test evaluates the availability of the secure data plane update.
The test is considered successful if the DomU securely updates its data plane
and no operation of other domains that passes through Dom0 prevents the
data plane update. We analyzed the impact of the usage of MUC during
the data plane update. The test consists of a maximum of three attempts
from DomU; to update the data plane, while DomU, sends TCP traffic to
DomU;. The scenario simulates an opponent virtual router, DomUs, trying
to prevent a common router, DomU;, from normally operating. In MUC,
DomUy, which is trying to update the data plane, has a; = 0.5 and the

15

opponent, DomUs,, has ay = 0.3. All DomUs have weight W = 500.

Fig. 2.1(a) shows the success probability of data plane update and Fig. 2.1(b)
shows the volume of data transmitted between the virtual machines. The
DomUs attack is effective when using the conventional plane separation, even
if there is a great number of CPUs in Dom(0. MUC, however, increases by
up to 100% the probability of a successful data plane update. Indeed, MUC
limits the attack traffic from the DomU; avoiding the overload of Dom0 re-
sources. Also, MUC reserves the CPU resources required by DomU; to send
the update messages as well as to perform cryptographic operations required
by the secure plane separation. Fig. 2.1(b) shows that MUC punishes traffic
from DomUsy to DomU; to ensure that the Dom(0 CPU resources are not
exhausted. Therefore, the throughput achieved when using MUC is smaller
than when using the secure data plane update with only one CPU in Dom0.
When we increase the number of CPUs in Dom0, the CPU restriction is
relaxed and the throughput using MUC increases. Indeed, MUC through-
put is even greater than the throughput of the secure data plane separation.
MUC ensures the fixed resources of DomU;, and then DomU; can handle
the data plane update as well as the ACK messages of the TCP connection
started by DomU,. Losing ACK messages is worse to throughput than the
limitation imposed by MUC to traffic due to the CPU consumption. Thus,
MUC ensures a secure data plane update with high availability and also en-
sures a high performance connection between virtual machines because of
the proposed architecture with the controller module.

[~
I
2 Hw/o Muc @ Hw/o muc
3 Omuc 84 [Imuc
Q1 |- =
e -
& 2
[2]
& 0.5~ 2
3 g
S £
D =
0 0

1CPU 2CPUs 3CPUs 4CPUs 1CPU 2CPUs 3CPUs 4CPUs

(a) Probability of a successful data plane (b) Throughput between DomU; and
update with traffic between DomU; and DomUs during data plane update.
DomUs.

Figure 2.1: Availability of the secure data plane update when using MUC.

The second test evaluates the transmission delay when using MUC with
the plane separation paradigm. We evaluate the impact of MUC compared
to the usage of the plane separation paradigm without any kind of control.
This test measures the delay caused by MUC overhead according to Dom0
workload. Because we are not evaluating fairness in resource sharing, we
created a virtual network with a fixed reservation of 100%. The test consists

16

of two experiments that measure the Round Trip Time (RTT) between two
external machines using Ping. In the first experiment, there is no background
traffic, whereas in the second experiment background TCP traffic was gen-
erated between the two external machines. The results of both experiments
are in Fig. 2.2(a). Without background traffic, data transmission presents a
low RTT for both configurations. However, when there is background traffic,
the Dom0 CPU is overloaded, increasing the response time of the system,
and, consequently, increasing the RT'T. The results show that the CPU and
bandwidth control provided by MUC prevents that the Dom0 CPU is over-
loaded and, thus, MUC presented an RT'T up to eight times lower than the
conventional plane separation configuration. It is important to note that
even though MUC control implies in dropping packets, these drops do not
cause a major impact on traffic, as shown in Fig. 2.2(b).

__1000[-
w
W/0 MUC 5
=20t v s
e [Imuc 5

et 2 500~
E 10 D
o
=
'_

0 No traffic Backgroung traffic 0 W/0 MUC MUC

(a) MUC impact over RTT between two (b) Background traffic throughput be-
external machines with one CPU on tween two external machines with one
Dom0. CPU on Dom0.

Figure 2.2: Impact of MUC over the RTT.

The third experiment concerns sharing output links. In this experiment,
a DomU and an external machine on different virtual networks initiate a
communication with another external machine. Thus, both networks share
the output link to the destination machine. Both networks have equal access
to physical resources, with o = 0.5 and W = 500 in both virtual routers.
To assess MUC, we also test the bandwidth control using Traffic Control
(TC), a widely used tool for traffic control on Linux machines. In TC ex-
periments, we use the Hierarchy Token Bucket (HTB) to create two output
queues, each one with a minimum bandwidth of 512Mb/s and a maximum
bandwidth of up to 1Gb/s to simulate the same resource usage policy than
MUC. Figs. 2.3(a) and 2.3(b) present the results when the DomU sends UDP
traffic with a maximum rate of 1.5 Gb/s and packets of 1500 B while the
external machine sends TCP traffic. In the beginning, there is no control in
the network and from the specified moment MUC or TC controls traffic.

The results show that external machine traffic has priority over DomU
traffic when there is no control on the resource sharing. This is an isolation

17

1000 T 1000,

Average TCP

2 Average TCP 0
g ; g TCP traffic throughput
5 5 TCon :
5 500 2 500 (~26s) ™~ Average UDP
2 i 2 g/ throughput
2 UDP traffic ;| Average UDP 2 UDP traffic]
= : throughput [VA ;

0 0]

10 Ti%oe (s) 30 40 10 20Time (S%O 40 50

(a) Resource sharing in MUC with UDP (b) Resource sharing in TC with UDP
traffic from DomU and TCP traffic from traffic from DomU and TCP traffic from
external machine external machine

Figure 2.3: Resource usage control in MUC.

failure when using plane separation, because external traffic influences the
maximum volume of traffic generated by a DomU. Thus, an external machine
that belongs to an adversary network could generate attack traffic to damage
the performance of a virtual router of another virtual network. In this test,
we equally share the resources between the two virtual networks and then
both network should have an equal slice of the link, which means 512 Mb/s
for each virtual network. Although MUC presents a larger variation in traffic
than TC, MUC average throughput has a lower error with respect to the ideal
rate of 512 Mb/s for each virtual network than the TC average throughput.
In fact, if there is no control of the external machine inflow, UDP traffic from
the virtual machine is underprivileged and is unable to achieve high rates.
Therefore, MUC control presented a maximum throughput error with respect
to the ideal rate of 512 Mb/s of —14.2 % for UDP traffic and of —0.62 % for
TCP traffic and TC presented a maximum throughput error with respect to
the ideal rate of 512 Mb/s of —52.18 % for UDP traffic and of +35.68 % for
TCP traffic. Thus, the MUC presented a higher fairness in the link resource
sharing because it is adapted to the Xen architecture particularities.

2.2 Efficient usage controller

The Efficient Usage Controller (EUC) is a controller for Xen-based virtual
networks with a different policy than MUC. EUC guarantees a robust and
accurate isolation between virtual machines and allows a differentiation of the
physical resources allocated to each virtual network according to the Service
Level Agreements (SLAs).

EUC is responsible for monitoring the use of physical resources by each
virtual network and for the punishment of virtual networks that exceed the
use of resources employed in the SLA. The control is based on observations

18

in the short and long term use of the CPU, memory and bandwidth in Dom0.

The controller assumes the existence of a specification of the physical
resources allocated to each virtual network according to the SLA. This spec-
ification includes: the resources reserved for short term (R.,), which are the
resources which must be met for the network ¢« whenever there is demand in
a short time interval I.; the resources reserved for long-term (R;,), which are
resources that should be guaranteed only in a long time interval [, if there
is demand; the short-term exclusive reserve (R.,), which is a type of short-
term reserve that should not be made available to other networks, even if
network i does not demand this resource; and the maximum reserve (R,,qz,),
which is the maximum resource usage that the network ¢ can use in ;. The
network can also choose a restricted reserve,RR,,, which means that network
¢ must never exceed the resource usage specified by R,,. Based on this set of
features, a virtual network can define different profiles of physical resource
usage. The choice of parameters for each virtual network varies according to
the requirements of the virtual network operator and the price it is willing
to pay for its slice of the network.

The proposed controller monitors if the demand of network ¢, D;, is in or
out of the SLAs of that network. Algorithm 2 is a simplified version of how
the EUC calculates the punishments for each network!.

Algorithm 2 is run in every [I. for each of the monitored resources of
Dom0, i.e., the outgoing bandwidth of each physical link, the CPU, and the
memory. This algorithm assumes that the demand D; of network 7 in the last
1. is known and this value is used as an estimation of network demand in the
next /.. Based on the estimated demand of all the networks, the resources
are divided between the virtual networks. Algorithm 2 further assumes that
the number of virtual networks hosted in the physical node (N), the total
physical resources available to the virtual networks (R;), the total resources
used by each network up to the current time during the long interval (used;),
and current weight of each virtual network ¢ (weight;) are known. The weight
is a parameter generated by the controller in each I, to control the usage of
the long-term reserve by each virtual network, so that the greater the weight,
the greater the access of the virtual network to the non-reserved resources in
the short term.

First, the algorithm resets all punishments, calculates the amount of re-
sources that are not reserved, and the sum of the weights of all networks.
These values are used to calculate the amount of resources that must be re-
leased for each network in the next [., which is represented by the variable
next available. Thus, if the virtual network has not spent its entire long-

I'The extended version considers the parameters Re,, Rmaa,, and R,,.

19

Algoritmo 2: Punishment calculation for each virtual network.

4
5
6

(o]

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35

input : R, N, I, I}, R[], Ri[], weight[], used]], D[]
output: punishment] |
1 Zero(punishment]);

2 total _available = Ry — ZlN:l(Rc[z'D;
3 total weight = Zfil weight]i];

for net =1 to N do

if (used[net] < Ry[net] - I;) then

end

end

else

end

next _available[net] =
R.[net] + total _available - weight[net]/total _weight;

next _available = R [net];

if (Dinet] > next_available[net]) then

end

punishment[net] = 1 — next _available[net]/D[net];

while (verify(next available[|, D[],N) ==1) do

weight total = 0;
for net =1 to N do

end

left

if (next_available > D[net]) then
| next_available = D[net];

end

if ((Dnet] > next_available[net])&(used[net] < Rj[net] - I;)) then
| total_weight+ = weight[net];

end

over = Ry — Zijil(nea:t_available[i]);

for net =1 to N do

end

if ((D[net] > next_available[net]) &(usednet] < R[net] - I})) then
next _available[net]+ = leftover - weight[net]/weight _total;
end
if (next_available[net] < D[net]) then
| punishment[net] = 1 — next_available[net]/D|net];
else
| punishment[net] = 0;
end

20

term reserve, the next awvailable is given by the short-term reserve plus a
slice proportional to weight of the virtual network. Otherwise, the EUC pol-
icy defines that the resources are limited by the short-term reserve of the vir-
tual network. All networks that have a demand higher than next available
receive a punishment commensurated with the excess use.

To improve the resource distribution among virtual networks, EUC checks
if

D; < next_availableli] (2.1)

is true for each network i, {i € Z | 1 <1i < N}, using the function verify().
Then, EUC sets next _available[i] = D; for all the networks that checks true
for Condition 2.1. Besides, the difference given by

Dif f = next availableli] — D; (2.2)

is distributed among the networks that are being punished because the con-
dition

next _availableli] < D; (2.3)
is satisfied. After that, the total weight is recomputed, considering only
networks that still satify the Condition 2.3. After, the next_available[i] of
these networks is recalculated based on the released resources in proportion
to the weight of each network. Finally, the punishments of all networks
are upgraded. This process is repeated until Condition 2.1 is false for all
networks. Thus, the physical resources are distributed in proportion to the
weight and the demand of each network.

Another objective of the controller module is to calculate the weight of
each network in each resource in each short interval. The weight of a network
1 is an adaptive variable, computed based on the resources that the network
has already used (used) and long-term reserve, R;,. The weight adjustment
basis is to give to each network a weight proportional unused long-term re-
serve, i.e. weight[i] = Ri[i] — used[i]/ Y1, Ri[i]. Thus, the networks that
have greater long-term reserve available gain priority in the allocation of
available resources, receiving a larger slice of the resources if there is de-
mand. Therefore, EUC increases the likelihood that the long-term reserve is
fully provided to all virtual networks.

2.2.1 Punishing virtual networks

EUC computes the punishment as shown in Algorithm 2 for each DomO0 re-
sources that is being monitored. The application of the punishment, however,
depends on the resource.

21

When a virtual network overloads the processing resources, this network is
punished by dropping a percentage of the packets on all incoming interfaces.
Thus, the percentage of packets specified by the punishment fails to enter
Dom0, reducing the CPU power spent with packet forwarding. When there
is bandwidth overload in an outgoing interface, packets destined to that
interface are dropped. It should be noted that punishment reduces network
bandwidth consumption on the outgoing interface, but the CPU cost remains
and it is accounted to the network CPU resources.

Memory consumption is estimated at EUC only by the amount of filtering
rules and packet forwarding rules in Dom0O of each virtual network. In fact,
filtering and forwarding packets demand memory in Dom0, but this demand
is small and can be disregarded. Thus, a virtual network that chooses to do
packet forwarding by the virtual machine has zero memory cost for EUC,
because these two operations will be done within the virtual machine. The
networks that opt for plane separation, however, must observe a maximum
of filtering rules and routing table entries. The punishment due to excessive
memory usage implies on the disposal of a percentage of routes from the
routing table. To prevent packet loss, a default route to the virtual machine
is set up. Hence, if a packet has no forwarding rules set up in Dom0, this
packet is forwarded by the data plane inside the virtual machine. Therefore,
if a network uses the plane separation paradigm and depends on high perfor-
mance in packet forwarding, it must control the number of routes installed
in the Dom0.

2.2.2 EUC prototype description and results

We developed a prototype of EUC in C++ to evaluate the proposal. We
used Xen-4.0 configured in router mode in our test environment. The CPU
usage, which is estimated based on the volume of packages forwarded, and
the bandwidth usage are monitored using the tool Iptables. The same tool
was also used to apply punishments. To control the QoS parameters, we used
the tool Traffic Control (TC).

The prototype was implemented on a physical machine with an Intel Core
2 Quad, 4GB RAM, and five gigabit network interfaces, hosting three virtual
machines with the operating system Debian 2.6.32-5. The Dom0 is configured
with four logical CPUs, while each DomU has a logical CPU. The testbed is
composed of four machines, one running Xen and EUC that represents the
physical router, and the other, called external machines, connected to this
physical router. The traffic is generated by the Linux kernel module ‘pktgen’,
characterized by UDP packets with 1472 B payload.

We analyzed EUC controlling three different virtual networks, but with

22

equal demands given by D; = 300 Mb/s, 0 < i < 3. The Network 1 has a
short-term reserve R., = 50 Mb/s and a long-term reserve R;, = 350 Mb/s,
so that its demand is consistent with SLAs and must be fully provided. Net-
work 2 has R., = R;, = 100 Mb/s, which means that this network demands
more than the resources agreed in the SLAs. Network 3 simulates a network
with high traffic volume, but without any priority or delay requirement, so
that R., = 0 and R;, = 250 Mb/s. Therefore, the Network 3 also presents
a demand that exceeds its SLA. None of the virtual networks has exclusive
reservation and CPU resources and memory were equally divided between
the three networks. The traffics of the Network 1 and 2 are transmitted from
an external machine to another via Dom0 routing, because these networks
use the plane separation paradigm. The traffic of Network 3 goes from the
virtual router to the external machine, simulating a traffic generated or for-
warded by the virtual router. The output link is shared by all three networks
and is the object of this analysis. In this experiment, EUC is configured with
a short interval I. = 1 s and a long interval I; = 15s, which were obtained
by testing the EUC to achieve the best performance. The total test time is
200 s.

Q) ! | Net1 + W Short-term error
5 H S E H | ong-term error
=) = Net3 » : L Compliance
= [=)) o et Rppart® ~1
o " 0.5] 3
5 E <
=1
o Net 2
= o /

20 40 60 20 40 60 0 N

Time (s) Time (s) Net 1 Net 2 Net 3

(a) Dom0 throughput per vir- (b) Weight variation per vir- (¢) Error and compliance for
tual network. tual network. each virtual network.

Figure 2.4: EUC control according to different virtual networks patterns,
assuming a demand of 300Mb/s for each virtual network.

Figure 2.4(a) shows the throughput V; of the three networks over time.
Because Network 2 has only the short-term reserve, EUC limited its use
steadily at 100 Mb/s. The Network 1 had its demand met at all times, while
the Network 3 demand was blocked when the total amount of data available
in the long-term reservation was used. The use of the long-term reserve
is governed by the adaptive weight of the network. Figure 2.4(b) shows the
evolution of the weight for each virtual network. The weight of the Network 2
is always zero, because this network has no right to use anything beyond the
short-term reserve. The weight of the Network 1 increases while the weight of
the Network 3 decreases, because the Network 3 has an average demand that

23

exceeds its long-term reserve and Network 1 has an average demand lower
than its long-term reserve. In fact, the weight fits proportionately between
the networks according to the slice of long-term reserve that each network
can still use. Thus, the weight of the networks that have a lower demand
than its long-term reserve tends to increase while the weight of the networks
that have a demand higher than its long-term reserve tends to decrease.
Finally, Figure 2.4(c) shows the short-term error, the long-term error, and
the compliance, which are defined parameters to check if the SLAs of each of
the virtual network were respected. The short-term error of network i, E,.,
is computed at each short interval /., and demonstrates to which level the
short-term reserve was not met. Similarly, the long-term error of network ¢,
E,., is computed at the end of each long interval, [;, and shows to which level
the long-term reserve was disrespected. Thus,

E., = maz(0,1-V;/min(R.,, D;)) and E,;, =max(0,1-V;/min(R,,,D;)).

(2.4)

The compliance of network ¢, C}, is computed after I, and shows an average
level to which the SLA was respected. Then,

mean(E.,) E,

Ci=1- D= - (2.5)

According to Figure 2.4(c), all networks had met their compliance over long
intervals of every test, because EUC offers an efficient control of shared re-
sources on the physical machine. The Network 2 presents a small error with
respect to the short-term error due to the first long interval, in which EUC
was still adjusting the control to demand of each network.

24

Chapter 3

Xen throughput control

In a previous work produced in this project [19], we indentified a significant
bottleneck in packet forwarding using virtual routers in Xen due to its de-
fault network operation. This occurs because every packet received or sent
by virtual router needs to be processed by Domain 0, that manages I/O op-
erations in Xen. When we have flows with high packet rates or when several
virtual machines forward packets, the network operations can lead to CPU
outage in Domain 0 and, consequently, packets are discarded. Hence, this
situation decreases virtual router performance. Furthermore, a virtual router
can interfer in the throughput of the other virtual routers due to the bot-
tleneck explained above. We need thus a mechanism that performs resource
allocation in Xen in order to guarantee the isolation between the routers and
requirements of each one. The current Xen implementation offers tools to
perform resource allocation, but do not consider network requirements of the
virtual router, such as desired forwarding throughput.

To overcome the Xen network problems, we propose the Xen Through-
put Control (XTC) [20] that can limit the throughput allowed to each virtual
router, in order to provide isolation between them. This mechanism can be
used when a bottleneck is detected to limit the throughput of routers that
exceeds their maximum throughput. Nevertheless, we can disable this mech-
anism when we don’t have bottlenecks, allowing the virtual router to forward
packets in a throughput greater than specified. The decision to enable or dis-
able our mechanism and also to specify which is the maximum throughput
of the virtual router is performed by the Piloting Plane. Hence, our mech-
anism is a tool that Piloting Plane will use when a bottleneck is detected.
The main advantage of our mechanism, compared with simple per interface
packet control, such as Linux TC (Traffic Control) [21], relies on the fact
that we control the aggregated throughput instead of the throughput of each
network interface of the virtual router. Consequently, our mechanism con-

25

trols the throughput, but give freedom to the virtual router administrator to
control the traffic on each of its network interfaces. To control the aggregated
throughput, we act on the router capacity to forward packets by limiting the
percentage of the physical CPU given to the virtual router. Previous work
in this project [22] shows that we can limit the aggregated throughput of the
virtual router using CPU allocation. The main problem of this approach is
how to map CPU capacity on maximum throughput. Our proposed mecha-
nism thus uses a feedback control loop in order to map CPU and throughput,
measuring periodically the router achieved throughput and ajusting the CPU
capacity of the virtual router to meet the desired throughput.

3.1 CPU allocation in Xen

In this work we build virtual routers by using virtual machines that have
the packet forwarding as their main task. As limiting the CPU time limits
also the time that each virtual machine has to execute its tasks, we can use
CPU allocation to limit the throughput that a virtual router can achive when
forwarding packets.

To control the share of physical CPU time that each virtual machine
gets, Xen plataform uses by default the Xen Credit Scheduler [23]. In this
scheduler, the share of CPU given to each virtual router depends on two
parameters: weight and cap. The first one defines weights to each virtual
machine and, in case of CPU contention, the resource sharing is done pro-
portionally to the weights assigned. For example, in case of CPU contention
a virtual machine with weight 200 receives twice as CPU time as the virtual
machine with weight 100. On another hand, the cap parameter imposes an
hard limit on CPU utilization, defining the maximum percentage of CPU
time that a virtual machine can receive. For example, a virtual machine
with cap 50 can only use 50% of the physical CPU time, even if more CPU
resources are available. These two scheduler parameters can be configured
in Domain 0. In order to give more control to our mechanism, we use cap
instead of weight because the first imposes a hard limit in CPU utilization.
The weight, however, can act only in case of CPU contention.

3.2 XTC overview

We develop XTC (Xen Throughput Control) to adjust the cap of each virtual
router according to a requested throughput. Once we control the maximum
throughput, we can provide isolation among the different virtual routers.

26

XTC Self-Tuning

Regulator [
A

Controller
Parameters

Throughput v

Setpoint Error
—‘>®—> Controller ‘9! Xen System —
i Cap |

A

Achieved Throughput

Figure 3.1: XTC Feedback Control Loop.

XTC uses a feedback control loop that acts on the cap entitled to each
virtual router to achieve the requested throughput as seen in Figure 3.1. To
accomplish this, XTC periodically measures the virtual router throughput
and computes the error between this measure and the requested throughput.
The error is then used by the Controller block where we implement a Propor-
tional Integral (PI) controller to compute and adjust the virtual router cap
according to the requested throughput. The Xen System block represents
the behavior of virtual router throughput according to the cap entitled to it.
Using an experimental testbed we model this block to design the Controller
block, choosing the PI controller parameters. In this report we manually eval-
uate the parameters. However, XTC uses a Self-Tuning regulator to evaluate
the Xen System model autonomously and choose PI controller parameters
according to system dynamics. The Self-Tuning regulator block is specified
in [20] and it is not used in the equations and experiments below.

Figure 3.2 illustrates XT'C utilization. In this system, we have one XTC
for each virtual router. The Policing Mechanism (PM) controls all XTCs
and is also responsible for activating and deactivating each XTC. Therefore,
PM communicates each XTC the requested throughput of the corresponding
virtual router. The actions taken by PM are based on its knowledge about
the system environment obtained via resource utilization measurements and
policies specified by the system administrator. Furthermore, PM can use
XTC to provide differentiation between virtual routers. In this report we
focus on XTC design and the PM role is manually performed.

3.3 Experimental testbed

Figure 3.3 illustrates our testbed used to model the Xen System block and to
further perform experimental analysis of our system. The Traffic Generator
machine (TG) produces all data traffic destined to the Traffic Receiver (TR)
machine. The Traffic Forwarder (TF) machine hosts the virtual routers used

27

System

I PM ¢ Knowledge
Control Control
Messages Messages

| XTC - VM1 || XTC — VMn |

Figure 3.2: Example of XTC utilization.

[NICI]

e :
.+~ Control ______.
------ T
Experimental
Traffic I

Figure 3.3: Experimental Testbed.

in our experiments. In our Xen configuration Dom0 has two exclusive CPU
cores while virtual routers shares another core. TF runs Xen hypervisor
version 3.4.2 and has instantiated the virtual routers which forward packets
from TG to TR. We also use a Traffic Controller (TC) machine to run our
mechanism. It is important to note that the Traffic Generator (TG) and
Traffic Receiver (TR) are directly connected to the Traffic Forwarder (TF)
whereas TC is connected to TF and TR through different links. We physically
separate the traffic to avoid interference between control and data.

TG, TR, and TC are general-purpose PCs equipped with an Intel DP55KG
motherboard, an Intel Core 17 860 2.80 GHz processor and 8 GB of RAM.
These machines run Debian Linux kernel version 2.6.32. The TF machine
is an HP Proliant DL380 G5 server equipped with two Intel Xeon E5440
2.83 GHz processors and 10 GB of RAM. This machine runs Debian Linux
paravirtualized kernel version 2.6.26. On the one hand, TG and TR are
connected to TF via their on-board Intel PRO/1000 PCI-Express network
interface. TF, on the other hand, is connected to TG and to TR via the two
interfaces of a PCI-Express x4 Intel Gigabit ET Dual Port Server Adapter.

3.4 Xen System Modeling

The Xen System block models the behavior of virtual router throughput
according to the cap entitled to it. To model the system, we use a black-box
approach as in [24]. This approach is based on experimental data obtained

28

920

‘ 20kp/s
80 40Kpls o
@ 70+ 60Kp/s e
S gl . 80Kp/s --a-
=3 Region of Interest 100kp/s o
5 50 ..v"""-" ©0-0-0-0-0-0-9
£ 4! o8 PP —)
2 e
8 30 » !
K=
= 20+ -
10 b g mmnmm
0 .
0 30 60 90
Cap (%)

Figure 3.4: Cap Variation with 64-Byte packets.
in our testbed using the following framework.

3.4.1 Training data acquirement

Using the testbed described in Section 3.3 with the TC machine turned off,
we model the Xen System by using an experiment to capture the relationship
between cap and throughput. We send packets from TG to TR through one
virtual router using fixed packet rate and fixed packet length. We then vary
the cap given to the virtual router. We send an UDP flow using Iperf [25]
traffic generator during 30 seconds. Afterwards, we measure the average
throughput obtained in the experiment. Figure 3.4 shows the results using
64-Byte packets with different packet rates. The X axis shows the cap given
to the virtual router and the Y axis shows the throughput obtained. Note
that the relationship between cap and throughput depends on the packet
rate of the flows forwarded by each virtual router. The higher the rates, the
more CPU needed. Another characteristic that changes the relationship is
packet length. Higher packet lengths results in higher throughputs for the
same packet rate.

Figure 3.4 also shows that from a certain cap entitled on, the throughput
stops increasing. In this case, the throughput obtained equals to the bit rate
produced because the virtual router receives plenty of CPU resources and,
therefore, does not need resource management. Nevertheless, below these
cap values, the throughput changes according to the cap in a log-scale fash-
ion. Thus, this region is considered on our system modeling. We perform the
same experiment with 1470-Byte packets and also observed the same loga-
rithmic behavior seen in the 64-Byte packet experiment. In that experiment,
however, the throughput is higher for each cap value, as expected.

29

3.4.2 Model evaluation

Using the results from Section 3.4.1, we model the Xen System with a discrete
transfer function, which will be used in the Controller design. We choose to
model the Xen System as a linear first-order system given by Equation 3.1. As
we are modeling a non-linear system using a linear model, the y(k) and u(k)
are offset values from their operating points given by Equation 3.2, where
y(k) and u(k) are the actual values of the Xen System signals and y and
u the operating points. In Equation 3.1, we denote as y(k) the throughput
obtained in the Xen System at the k" sample and u(k) as the log(cap) in the
system input at the k" sample. We use log(cap) value instead of absolute cap
value because the relationship between cap and throughput has a logarithmic
behavior over the region of interest. Consequently, the first-order model of
Equation 3.1 suits our purposes and simplifies the control system design. To
evaluate the Xen System transfer function we apply the Z Transform on both
sides of Equation 3.1 and performing algebraic manipulations we obtain H(z)
as expressed in Equation 3.3.

y(k+ 1) = ay(k) + bu(k) (3.1)
y(k) = g(k) —y (3.2)
u(k) =a(k) —u

H(z) = % - > (33

The next step to model the Xen System is to obtain the variables a and
b that characterize this system on Equation 3.3. As already explained, the
Xen System behavior and thus the variables a and b depend on the packet
rate and packet length of the flow being controlled. The parameters a and
b can also model aggregated flows considering them as one flow with their
average packet rate and packet length.

To show that a first-order system suits our purposes, we model the Xen
System forwarding a flow with constant packet rate of 100 kp/s and 64-Byte
packet length. This example is used in the remainder of this section as a
proof of concept. To estimate a and b for the presented example we use the
least squares regression described in [24]. This method uses the training data
obtained in Section 3.4.1 for the flow at 100 kp/s with 64-Byte packets and
evaluates a and b over an operating point. We assume this operating point as
the mean values y =40 Mb/s and u = 1.39 over the region of interest. This

30

region was chosen because cap still has effect and the throughput does not
saturate. In our example, this region corresponds to cap < 60 as indicated
in Figure 3.4. We obtain a = 0.0915 and b = 32259 from the least squares
regression using MATLAB. To evaluate our model accuracy regarding the
data collected, we compute the R?. This metric quantifies the variability
explained by the model and varies from 0 (worst model) to 1 (best model).
In our model we obtain R? = 0.9899 which suggests a good fit.

3.5 XTC controller design

In a feedback control system the controller computes the input of the plant
being controlled according to the difference between the requested value and
the measured value on the plant output. In our case, the controller must
decide which value of cap will be given to the virtual machine in order to the
Xen System meet the requested throughput. This decision is done periodi-
cally according to the measurement of Xen System output and the knowledge
about past controller decisions. The Controller block uses a Proportional In-
tegral (PI) controller that has the control law given by Equation 3.4. In
this equation, u(k) is the controller decision in the k' sample, denoted as
log(cap), and e(k) is the error computed by the difference between requested
and achieved throughput in the k" sample. Note that this controller com-
putes the current decision based on the current and previous errors and also
on the previous decision of the controller itself. The PI controller is chosen
because it has zero steady-state error, which means that e(k) converges to
zero for large k values, combined with short settling time.

u(k) =u(k —1)+ (K, + K;)e(k) — Kye(k — 1) (3.4)

The design issue of a PI controller is to choose K, and K; parameters
to meet the system requirements. In this work, we manually choose the
parameters. The controller parameters influences the system’s poles and
zeros placement as shown in the transfer function of system, Y (2)/R(z), given
by Equation 3.5. In the equation, R(z) and Y (z) denote the Z transform of
the requested throughput and achieved throughput, respectively. The poles
and zeros of the system influences the system properties such as stability,
settling time, and maximum overshoot. The first indicates that the system
converges to a steady-state value, while the second indicates the time that
the system would meet this value, and the last indicates the largest difference
between the system output and the system steady-state value.

31

Y(z) 2(K, + K;)b— Kyb (3.5)
R(z) 224 2[(K, + K;)b+a+1)]+ (a — K,b) '

The Controller parameters are chosen using the Pole Placement method.
This method considers only the influence of the poles in Equation 3.5. How-
ever, the zeros placement can also influence system properties increasing, for
example, the maximum overshoot. To cope with this influence, we choose
a small value of maximum overshoot. Using the example of Section 3.4.2,
where a = 0.0915 and b = 32259, we choose K, and K; values to place the
system poles to achieve settling time of 5 samples and maximum overshoot
of 8%. We found the values K, = —3.422 x 107% and K; = 22.158 x 107°.
We simulate the control system using Simulink [26] to obtain the real value
of the properties explained above. In the simulation, we obtained a settling
time of 2 samples and maximum overshoot of 21%, which are still acceptable
for our system. With these results we can see the difference of analytical and
simulated results as a consequence of the approximation done by the Pole
Placement method. Our proposed Controller also uses the concept of dead
zone, where it decides to act only when the error exceeds a threshold. As the
Controller acts using calls to Dom0, limiting the Controller actions reduce
these calls. In systems where an external machine performs these calls this
concern is very important, because the TC exchanges messages with TF.
Consequently, the dead zone concept also reduces the control traffic. The
threshold chosen in our implementation is 10% of the requested throughput.

3.6 Experimental Results

This section provides experimental results showing the XTC operation and
some of its features.

3.6.1 Practical implementation

We implement our proposed controller in the experimental testbed of Fig-
ure 3.3. We send packets from TG to TR at a fixed packet rate using Iperf. A
virtual machine hosted in TF forwards these packets. The Traffic Controller
(TC) machine measures the throughput achieved by the Xen System and
plays the role of the Controller of the block diagram of Figure 3.1. To mea-
sure the achieved throughput, this machine periodically collects the output of
the Iperf Server reported by TR. This sensor could be placed at TF, however,
we choose to measure the achieved throughput as the Iperf Server output to
guarantee that the measurement is independent of the TF machine, which

32

N
ul

‘ Averagell'hroughpm‘ =
RMSE mmmm

Throughput (Mb/s)
= = n
o ol o

(&)

FC EP AP APD

Figure 3.5: Average Throughput and RMSE measurement.

can be overloaded by high packet rates. As a Controller, the TC computes
the cap of the virtual router based on the control law of Equation 3.4 and
remotely acts on the virtual router cap. Note that the control law computes
the log(cap), rather than the absolute cap, and then the actuator must com-
pute the inverse of log(cap). The complexity of this computation is negligible
in our testbed. The experiment consists of sending 64-byte packets from TG
to TR at 100 kp/s during 100 seconds. The TC machine must adjust the cap
of the virtual router to track the requested throughput of 20 Mb/s. Observe
that the bit rate sent by TG has the value of 51.2 Mb/s.

Our first evaluation measures the average throughput achieved and the
root mean square error (RMSE) with respect to the requested throughput,
as seen in Figure 3.5. These measurements are computed using the values
obtained during the interval from 20 to 100 seconds of each Iperf run. We
use this interval to disregard the system transient behavior before 20 sec-
onds. The average throughput indicates whether the system achieved the
throughput of 20 Mb/s as requested. This value of requested output is cho-
sen to show the behavior of the system when it is quite far from the operating
point but not so far as to cause undesired system behavior. The RMSE, on
the other hand, quantifies the oscillatory behavior of the system showing how
the system response deviates from the average throughput. The settling time
and maximum overshoot were not evaluated in this experiment due to the
oscillation observed in the system output.

We evaluate separately four different configurations. The first one, called
FC (Fixed Cap), consists of turning off the XTC and adjusting a fixed cap
of 14% to the virtual router. This value is chosen because we expect an Av-
erage throughput close to 20 Mb/s. In practice, this implementation is not
recommended because it is difficult to know in advance a fixed cap value that
leads the system to a specific throughput. The system behavior may vary
because of traffic dynamics, which justifies the use of a feedback controller
to adjust the cap. We use, however, this result as a reference to analyze

33

50 ["Achieved Throughput —
40 t Average=20Mby/s ===

30 r
10
0

Throughput (Mb/s)

0O 20 40 60 80 100
Time ()

Figure 3.6: Achieved Throughput - APD XTC Experiment.

the XTC performance. Figure 3.5 shows that FC implementation obtains
a high RMSE value, which indicates that the system oscillates when the
throughput is limited using Xen’s cap parameter. Therefore, the Controller
will have to cope with this particular behavior of cap adjustment. The EP
(Evaluated Parameters) implementation uses the XTC controller parameters
K, =—3.422x107% and K; = 22.158 x 1079 as evaluated already above and
the measurement and controller periods of 1 second. Results show that the
Average throughput obtained is close to the requested throughput showing
the effectiveness of our proposal. The EP implementation, however, inserts
more oscillation compared with FC. To cope with this shortcoming, we de-
crease the K; parameter to reduce the Integral effect in the Proportional
Integral controller, which is partially responsible for the system oscillation.
We thus use in the AP (Adjusted Parameters) implementation, the XTC
controller parameters as K, = —3.422x 107% and K; = 10.158 x 107°, reduc-
ing the RMSE, as seen in Figure 3.5. Finally, we implement APD (Adjusted
Parameters with Dead Zone) XTC using the concept of dead zone to reduce
the message exchanging between TC and TF. In this experiment, we obtain
a reduction of 29 + 2.4% of the control messages needed to adjust the cap
in comparison to the AP experiment. The comparison between the RMSE
values of APD and AP shows that we can reduce the number of control mes-
sages without increasing the oscillation. To exemplify the system behavior,
we show in Figure 3.6 the system output in a single run of the APD XTC.

In the above experiments, we see that XTC achieves a throughput ex-
tremely close to the requested throughput. Nevertheless, the system response
oscillates around this value because of cap adjustment, which represents a
tradeoff of the Xen platform. Despite this fact, we show that APD XTC
introduces negligible oscillation.

34

Throughput (Mb/s)

0 XTC Off ==
25 | XTCOn mmmm
20 ¢
15
10 +
5 L
0
VRL VR2 VR3

Figure 3.7: Traffic Differentiation Using XTC

3.6.2 XTC features

In this section we discuss two useful features of XTC. The first one is virtual
router differentiation. In this feature, XTC dynamically guarantees higher
throughput to a virtual router by isolating the amount of CPU resources
used by the other routers. In the default network implementation of Xen, all
packets sent and received by virtual routers are forwarded by Dom(. Con-
sequently, Dom0 becomes the bottleneck and the packet rate of each virtual
network influences each other. We conduct an experiment in our testbed
using TF hosting three virtual routers (VR1, VR2, and VR3) forwarding
packets from TG to TR. In this experiment, TG sends to TR three 64-byte
packet flows at 51.2 Mb/s during 100 seconds. Each virtual router forwards
one of the three flows. The virtual routers share the same CPU core, but
there is no contention. First, we neither use XTC nor simple cap adjustment
and measure the average throughput obtained in the last 80 seconds of each
run. This configuration is called XTC Off in Figure 3.7.

The results show that the virtual routers are not able to forward packets
at the full rate, 51.2 Mb/s, because of the high contention for resources at
Dom0. Consequently, the maximum throughput obtained in a virtual router
was 23 Mb/s. To allow VRI1 to forward more packets, we can limit the
amount of packets the other virtual routers can send to Dom0. As a conse-
quence, VR1 has more opportunity to send packets to Dom0, increasing its
throughput. We use XTC on each virtual router and repeat the latter exper-
iment. For VR1, XTC uses the same K, and K; used in Section 3.6.1. The
only difference is that we now limit the throughput to 30 Mb/s. For VR2 and
VR3, XTC is configured to limit the throughput to 15 Mb/s. Because this
rate is far from the operating point of the model used in Section 3.6.1, we
also evaluate, for VR2 and VR3, a system model for the operating point of
27 Mb/s, resulting in a = 0.00339 and b = 34816. We then evaluate the con-
troller parameters, as explained in Section 3.5, and find K, = —4.825 x 1076

35

Without Disturbance == |
With Disturbance s

N
ul

Throughput (Mb/s)
= = n
o ol o

(&)

Fixed XTC

Figure 3.8: Disturbance Tolerance Using XTC

and K; = 18.530 x 1075 Results are presented in Figure 3.7 labeled as
XTC On. They demonstrate that it is possible to assign priority to a virtual
router using XTC. In our experiments, XTC was used in Xen’s default con-
figuration, where virtual routers contend for Dom0 resources. Nevertheless,
XTC is also used when there is no contention for Dom0 resources (for exam-
ple using Direct I/0 techniques [27]), but the virtual routers share the same
CPU and still contend for CPU resources. In this case, XTC can also reduce
the maximum throughput allowed to a virtual router by reducing its CPU
utilization. This strategy gives more room to other virtual router forward
packets.

The second XTC feature that we show is disturbance tolerance, which
is a typical characteristic of feedback control systems. Our next experiment
shows another advantage of using a feedback control system instead of static
solutions, such as using a table containing the direct correspondence between
cap values and requested throughput for a specific packet length and packet
rate. With static solutions, wrong decisions may occur as a consequence of
variable workload in the virtual router caused by additional packet process-
ing. To demonstrate the problem, we use the same testbed of the experiment
for traffic differentiation. In this case, however, TF has only one virtual router
forwarding packets. TG generates a 64-byte packet flow at 51.2 Mb/s during
100 seconds and the XTC must limit the throughput in 20 Mb/s. First, we
do not induce disturbance in the system. Figure 3.8 shows the results ob-
tained when using a fixed cap of 14% to limit the throughput. In addition,
Figure 3.8 plots XTC performance for the same task. These two types of
control are represented in X axis respectively as Fixed and XTC. Without
disturbance, we show that, despite a slight inaccuracy, fixing a cap value
can limit the throughput to 20 Mb/s. We repeat the evaluation inserting
disturbance, as seen in Figure 3.8. The disturbance, in our test, is a process
running in the virtual router consuming up to 10% of the processing power
assigned to it. As shown in Figure 3.8, XTC achieves the requested through-

36

put even in the presence of disturbance. On the other hand, the disturbance
affects the performance of the virtual router in the Fixed case because of
the contention for CPU resources between the simultaneous disturbing and
packet forwarding processes.

37

Chapter 4

Adaptive virtual network
provisioning

This section presents an overview of our ongoing work on adaptive VN pro-
visioning. The objective is to address the dynamic provisioning of virtual
resources acquired from infrastructure providers when the composed virtual
networks are activated and running. Indeed, running virtual networks will
be subject to dynamic variations due to changes in services demands, in traf-
fic loads, in physical resources and infrastructures and subject to mobility
induced variations. Adaptive provisioning frameworks and algorithms are re-
quired to maintain virtual network topologies, respect established contracts,
expand initial allocations on demand, release resources no longer useful, op-
timize resource utilization and respond to anomalies, faults and evolving
demands.

The purpose of this section is to design and evaluate adaptive embedding
algorithms to handle resource re-optimization and fault-tolerant embedding.
The proposed adaptive embedding algorithms are carried out in a decentral-
ized manner by autonomous agents integrated in the substrate nodes. The
goal is to deal with highly dynamic environments and to react quickly to node
failures, performance degradation, etc. Performance results of the embedding
algorithms are reported in terms of time delay and message exchange cost.

4.1 Adaptive virtual network provisioning sce-
nario

Virtual Network (VN) provisioning includes matching, embedding and bind-
ing of virtual resources. VN embedding consists in assigning the required
VN nodes and VN links, specified in the VN request, to a specific set of

38

substrate nodes and paths extracted from substrate network. The VN em-
bedding relies on a selection process run (or executed) by the infrastructure
provider. Among the matched resource candidates, the embedding step con-
sists in choosing and selecting the best (or optimal) resource candidates.
Finding the optimal VN embedding satisfying multiple objectives and con-
straints is a NP-hard problem that has been addressed in several research
studies 28, 29, 30, 31, 32]. The general aim is to allow a maximum number
of VNs to co-exist in the same substrate while reducing the cost for users and
increasing revenue for providers. In our previous work [32], we suggested the
use of a decentralized selection and embedding process across the substrate
nodes. The distributed embedding relies on the resources non-functional (or
dynamic) attributes like actual CPU and bandwidth.

Once the VN is entirely deployed and activated following initial provi-
sioning, the adaptive and dynamic provisioning and maintenance of the VN
comes into play. Dynamic changes are induced by variations in the substrates
and VNs and are related to resource failures, mobility, migration and main-
tenance needs. Dynamic and adaptive provisioning deals with the highly
dynamic changes expected in VN requests and in the substrate and aims at
maintaining topologies and respecting established contracts and service level
agreements (SLA).

This section deals with the case where virtual or physical resources sup-
porting VNs fail or suffer from anomalies (e.g. substrate node or virtual node
crash or performance degradation). The Infrastructure Provider maintains
the VN topologies (affected by the failures) by selecting new substrate or
virtual resources to replace or compensate for the affected resources. Infras-
tructure Providers need also to optimize the use of their resources to accept
as many requests as possible thus making room for more users. Several
mechanisms can be used to regularly optimize the allocation of resources.
Virtual node migration [33, 34| or path splitting/migration [30] are example
solutions. This section proposes a Multi-Agent based adaptive embedding
framework to handle two algorithms (fault-tolerant embedding and resource
re-optimization algorithms) to repair resource failures and dynamically opti-
mize the substrate networks.

4.1.1 Multi-agent based adaptive embedding framework

This subsection provides the design and implementation of an adaptive VN
embedding framework to deal with dynamic changes requiring automatic
and runtime reparation (scenario 1) and re-optimization (scenario 2). The
framework is responsible for:

39

1. Detecting and identifying local changes through monitoring (e.g. node/link
failure, performance degradation)

2. Selecting new substrate resources to maintain VN topologies
3. Migrating virtual nodes from a substrate node to another
4. Running the binding step

The adaptive embedding framework relies on the Multi-Agent based ap-
proach to ensure distributed negotiation and synchronization between the
substrate nodes. As depicted in Figure 4.1, the Multi-Agent based adaptive
embedding framework is composed of autonomous agents integrated in sub-
strate nodes. These autonomous agents communicate, collaborate and inter-
act with others to plan collective reselection of resources for adaptive VN em-
bedding. The agents monitor, supervise and extract the non-functional (i.e.
dynamic) attributes from the local repositories and decide locally which res-
election actions to undertake. As detailed in next sections, the autonomous
agents are responsible for carrying out two proposed algorithms: Distributed
fault-tolerant embedding algorithm and Distributed resource re-optimization
algorithm.

Substrate | | Substrate | | Substrate
Node MNode Node
Agert

Agent A
."._ ~ Tr ki
- 5\ g
- \ Substrate
& ’) Cluster3 _ . Naode
. : et
Substrate
L] #
MNode
Cluster1 s fa=
& Substrate
Node

Figure 4.1: Multi-Agent based adaptive embedding framework

The proposed adaptive embedding algorithm relies on situation aware-
ness approaches. In fact, the conceptual clustering technique used during

40

the matching phase can provide a generic model for a situated multi-agent
based infrastructure. The situated view of agents is determined based on
similarities between substrate nodes determined by the conceptual clustering
algorithms. Only agents within the same cluster can negotiate and cooper-
ate. The situation awareness involves that each agent is aware of what is
happening around it. In our case, the agent’s situation awareness consists
in being aware about its situation and its logic position in the infrastructure
and also being able to know the level of perception of other agents (i.e. to
which cluster it belongs to and with what agents it should negotiate and
synchronize to handle the distributed adaptive embedding decision making).

4.1.2 Distributed fault-tolerant embedding algorithm

This work proposes a distributed fault-tolerant embedding algorithm to main-
tain the VN topologies by reselecting new resources to replace the no longer
available ones. There is no need to consult a central entity upon failures
since distributed localized control can react quickly to local changes. The
algorithm assumes the existence of supervision (monitoring) and fault diag-
nosis mechanisms to detect resource failures.

The Multi-Agent based adaptive embedding framework is used to carry
out the distributed fault-tolerant embedding algorithm. The substrate node
agents exchange messages and cooperate to plan collective reselection deci-
sions. The cooperation between substrate node agents relies on the matching
results. When a substrate node ns supporting a virtual node nv fails, the
fault-tolerant embedding algorithm can quickly localize the failed node and
reselect a new alternative substrate node. This alternative node is selected
among the candidate substrate nodes matching the node nv. Thus, only sub-
strate node agents that belong to the same cluster will collaborate to choose
an alternative/backup substrate node.

Figure 4.2 depicts a step by step scenario describing the implementation
of the distributed fault-tolerant embedding algorithm using the Multi-Agent
framework. Each substrate node agent runs the algorithm depicted in Algo-
rithm 3. Upon detecting a substrate node failure, each agent sends a failure
notification message (ErrorMSG(ns)) to all agents in the same cluster to no-
tify them that the substrate node supporting the request node nv is no longer
available. Next, each agent should check the ability of its associated substrate
node to support the request node on behalf of the failed one. To achieve that,
each agent extracts the non functional (NF) (or dynamic) attributes of the
affected virtual node nv as well as the NF attributes of its own substrate
node. The NF attributes are presented in the form of attribute-value pairs:
(att,).

41

Agent based Agent based Agent based Agent based

Substrate Node Substrate Node Substrate Node Substrate Node
I | |
. Running Running Running
Monitgrin
|:. 9 VN (n,) VN VN
|Muni‘aring |Monl“:m‘ng |Monimring
Substrate node
failure (n,)
x ——EmoMSGI—— o
ErrorMSG(N,) 2g
ER
i o
! EmorMSG(T, ———ErrarMSG(N,) g-, s
ErroMSG(N,} .
EmorMSGIn.)
New New New
Selection Selection Selection
Dissimilarity
Metric Dissimilarity Dissimilarity
Metric Metric o m
, dismy———— i 0 x
MSG(1, dism MSG(1y, dism N % %’. 2
——MSG(Ny, dismj——| S =8
MSG(N, dismy “8a
MSG(1y, dism "
T MSG(Ny, dism)
Reselected
Substrate Node
Support the
request node n,

Figure 4.2: Multi-agents based distributed fault-tolerant embedding Scenario

The NF attributes of an arbitrary request node nv are represented as

follow:
nv = ((attl, zvl), (att2, zv2), ..., attf, zvf), ..., (attp, xvp)). (4.1)
The NF attributes of the substrate node (agent host) ns are expressed as:
ns = ((attl, xsl), (att2,xs2), ..., (attf,xsf), ..., (attp, xsp)). (4.2)

The objective is to check how much the associated substrate node capabilities
can respond to the virtual node nv requirements. The substrate node ns that
should be reselected must be as similar as possible to the virtual node nv.
As stated, each agent computes a dissimilarity metric dism between the NF
attributes of request node nv and the NF attributes of its associated substrate
node. An example of the dissimilarity function expression is provided below.
Once the dissimilarity metrics dism are computed for the affected request
node nv, the agent exchanges these metrics, via M SG(nv,dism) message,

42

with the other agents running in the same cluster. Each agent compares
its dissimilarity metrics with those computed by the other agents. For the
request node nv, the (substrate node ns, request node nv) pair that has the
minimum dissimilarity metric will be selected for the adaptive embedding
decision.

Our proposed Distributed fault-tolerant embedding algorithm operates as
follows:

Algoritmo 3: Distributed fault-tolerant embedding algorithm running
in each substrate node agent ns

input : Network State
output: dissimilarity metric, new allocation map
1 if detect a substrate node failure then

2 Send a notification message (ErrorMSG(ns)) to all agents in the same cluster.

3 Compute a dissimilarity metric between the NF attributes of the affected
request node nv and the NF attributes of the substrate node ns.

4 Exchange, via (M SG(nv;dism)) messages, the computed dissimilarity metrics
dism within the same cluster.

5 The agent compares its dissimilarity metric of the request node nv with all
substrate nodes.

6 if the dissimilarity metric of the request node nv is the minimal one compared
to the other computed dissimilarity metrics then

7 ‘ The substrate node hosting the agent will support the request node nv.

8 end

9 end

Once the request node nv is mapped to the reselected substrate node
in the substrate, the next step is to map its associated virtual links to the
substrate paths. A shortest path algorithm |29, 35| (in the case of unsplittable
flows) or a multi-commodity flow algorithm (where the substrate supports
splittable flows [30]) can be used for link mapping. These algorithms should
be carried out in a distributed manner across the substrate node agents.

4.1.3 Performance results

The experimental facility GRID5000n [36] has been used to generate full
mesh substrate topologies with different sizes (from 0 up to 100 nodes) to
evaluate the Distributed fault-tolerant embedding algorithm. Autonomous
agents [37] are deployed in the GRID5000 machines to emulate the substrate
node agents in the multi-agent based embedding framework and to handle
the distributed fault-tolerant embedding algorithm.

Our objective is to evaluate the time delay and the number of messages
required by the distributed fault-tolerant embedding algorithm to adapt a
VN (by reselecting a new node) in the case of substrate node failure. The

43

aim is to show the benefits of using the clustering approach to reduce the
time delay and the number of messages needed to reselect a new substrate
node. Clustering refers to set of candidate substrate nodes sharing the same
color in the substrate.

Figure 4.3 depicts the time delay required to adapt a VN in full mesh sub-
strate topologies. Four cases are evaluated and compared: substrate topology
without clustering (corresponds to curve with one cluster in Figure 4.3) ver-
sus substrate topology with 2, 5 or 10 clusters. As shown in Figure 4.3, the
time delay required to reassign a VN request to a substrate network without
clustering is in order of 2 s. This time delay does not exceed 0.75 s when
using clustering in substrate networks. The number of messages exchanged
between substrate nodes decreases with clustering. The number of messages
is reduced in the distributed localized fault-tolerant embedding algorithm
since messages are exchanged per cluster. Figure 4.4 corroborates the delay
results shown in the Figure 4.3.

3 T T T T T T T
o
S5l —#—1 Cluster ,"/_
—&—2 Clusters I
—+—5 Clusters o
Sl —F— 10 Clusters - X
_ Centrelized ‘,--/
Greedy Algarithm

Tirme delay required to repair a node failure (s)
Heuristic Adaptive Distributed Algaorithm

1 1 1
20 a0 40 a0 G0 70 ao a0 100
Mumber of substrate nodes

Figure 4.3: Average time delay required to adapt a VN topology in the case
of node failure.

As there are currently no known distributed fault-tolerant embedding
algorithms available in the literature, at least to our knowledge, this section
is not in a position to provide any comparison with existing algorithms.

44

1 EDDD T T T T T T T T

D

E;

&

2 1oooo b —+— 1 Cluster Je
2 —=— 2 Clusters

it —+— 5 Clusters

= K

E- 8000 - —B—10 Clugiers 7 |
- —B& — Centrelized e

= K

g, P

& B000+ i
— -

5 .

=

@ -

(]

@ -
= 4000 -

w

w

a

£

o 2000+ 4
@

=

£

=

=

s L =
10 20 30 40 50 B0 70 a0 90 100
Mumber of substrate nodes

Figure 4.4: Number of messages exchanged to adapt a VN topology in the
case of node failure.

We rather compare our algorithm to a centralized fault-tolerant embedding
algorithm. As shown in Figure 4.3, the upper curve represents the time
delay required to reselect a substrate node in a centralized greedy manner.
Results show that the time delay required by our distributed fault-tolerant
embedding algorithm to adapt a VN upon failures is much lower than that of
the centralized approach. This is due to the important number of messages
exchanged between a centralized coordinator and substrate nodes in the case
of centralized reselection.

4.1.4 Distributed resource re-optimization algorithm

To make efficient use of the substrate resources and to maximize revenue
and acceptance ratio, the Infrastructure Provider needs to re-optimize its
resources to make room for other VN requests. Several mechanisms have
been proposed in the literature to re-optimize the allocation of substrate
resources including virtual node migration [33, 34].

This section provides an overview of a distributed resource re-optimization
algorithm responsible for migrating a virtual node from a substrate node to

45

another. The substrate agents, integrated in the Multi-agent based adap-
tive embedding algorithm, carry out the distributed resource re-optimization
algorithm. The substrate agents collaborate to make a common migration
decision. Each agent runs the algorithm depicted in Algorithm 4.

Algoritmo 4: Distributed resource re-optimization algorithm running
in each agent based substrate node ns

©C 00N Tk WN

- e
W N = O

input : Current topology
output: Next topology
if the substrate node ns decides to migrate its virtual node nv to other substrate
node then
‘ Send a MIGRATION message to all substrate nodes.
end
if receive a MIGRATION message then
if there is a room for the virtual node nv then
‘ Send an ACCEPT-MIGRATION message along with ns-id identifier.
else
| Send REJECT-MIGRATION message.
end
if receive an ACCEPT-MIGRATION message from substrate node ns-id then
‘ Migrate virtual node nv to substrate node ns-id.
end

end

Implementation and evaluation of the distributed resource re-optimization

algorithm are work in progress which is not achieved yet.

46

Chapter 5

Conclusions

In this document we explain the developed algorithms to control the virtual
networks SLAs. We detail the internal mechanism of our proposals and
expose how they provide to the piloting plane an interface for controlling the
virtual networks environment according to the desired policies and primitives.

To deal with changing virtual networking environments, adaptive provi-
sioning algorithms are proposed to maintain virtual network topologies. The
design, implementation and evaluation of an adaptive embedding framework
relying on the Multi-Agent based approach is also proposed. The framework
handles distributed fault-tolerant embedding and resource re-optimization al-
gorithms to repair resource failures and dynamically optimize the substrate
networks. Future work will consist of implementing the agent based adaptive
embedding algorithms using the DIMA [38] - a multi-agents model proposed
by one HORIZON partner.

The Piloting Plane plays an important role in the Horizon project because
it works as a “brain” in the network. Hence, it must be able to react under
different circumstances, such as attacks, wrong configurations, and networks
that do not respect the SLAs. The proposed algorithms act pro-actively in
the global optimization of the network performance.

47

Bibliography

[1] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless,
A. Greenhalgh, A. Wundsam, M. Kind, O. Maennel, and L. Mathy,
“Network virtualization architecture: proposal and initial prototype,”
in Proceedings of the 1st ACM Workshop on Virtualized Infrastructure
Systems and Architectures, VISA ’09, (New York, NY, USA), pp. 63-72,
ACM, 2009.

[2] “Geni spiral 1 annual report 2009,” tech. rep., National Science Founda-
tion, Dec. 2009.

[3] I. Houidi, W. Louati, D. Zeghlache, P. Papadimitriou, and L. Mathy,
“Adaptive virtual network provisioning,” in Proceedings of the 2nd ACM
workshop on Virtualized Infrastructure Systems and Architectures, VISA
10, (New York, NY, USA), pp. 41-48, ACM, Sept. 2010.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” Operating Systems Review, vol. 5, no. 34, pp. 217—
231, Dec. 1999.

[5] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, L. Mathy, and T. Schoo-
ley, “Evaluating Xen for router virtualization,” in International Confer-

ence on Computer Communications and Networks, ICCCN’07, pp. 1256—
1261, Aug. 2007.

[6] S.-M. Han, M. M. Hassan, C.-W. Yoon, and E.-N. Huh, “Efficient service
recommendation system for cloud computing market,” in 1C15°09: Pro-

ceedings of the 2nd International Conference on Interaction Sciences,
pp. 839-845, 2009.

[7] X. Jin, H. Chen, X. Wang, Z. Wang, X. Wen, Y. Luo, and X. Li, “A sim-
ple cache partitioning approach in a virtualized environment,” in 2009

IEEFE International Symposium on Parallel and Distributed Processing
with Applications, pp. 519-524, 2009.

48

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Mcllory and J. Sventek, “Resource virtualisation of network routers,”
in Workshop on High Performance Switching and Routing, (New Yok,
NY, USA), pp. 1-6, IEEE, 2006.

S. Bhatia, M. Motiwala, W. Muhlbauer, V. Valancius, A. Bavier,
N. Feamster, L. Peterson, and J. Rexford, “Hosting virtual networks on
commodity hardware,” Tech. Rep. GT-CS-07-10, Princeton University,
Georgia Tech, and T-Labs/TU Berlim, Jan. 2008.

VINI - A Virtual Network Infrastructure. http://www.vini-veritas.net/,
Accessed in August 2010.

N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy,
“Fairness issues in software virtual routers,” in Proceedings of the ACM

workshop on Programmable routers for extensible services of tomorrow,
PRESTO 10, pp. 33-38, Aug. 2008.

Y. Wang, E. Keller, B. Biskeborn, J. V. der Merwe, and J. Rexford,
“Virtual routers on the move: Live router migration as a network-
management primitive,” in ACM SIGCOMM, pp. 231-242, Aug. 2008.

M. Zec, “Implementing a clonable network stack in the FreeBSD ker-
nel,” in Proceedings of the 2003 USENIX Annual Technical Conference,
pp. 137-150, 2003.

M. E. Kounavis, A. T. Campbell, S. Chou, F. Modoux, J. Vicente, and
H. Zhuang, “The Genesis kernel: A programming system for spawning
network architectures,” IEEE Journal on Selected Areas in Communi-
cations, vol. 19, no. 3, pp. 511-26, Mar. 2001.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peter-
son, J. Rexford, S., and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication Re-
view, vol. 38, no. 2, pp. 69-74, Apr. 2008.

R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Hand-
igol, T.-Y. Huang, P. Kazemian, M. Kobayashi, J. Naous, S. Seethara-
man, D. Underhill, T. Yabe, K.-K. Yap, Y. Yiakoumis, H. Zeng, G. Ap-
penzeller, R. Johari, N. McKeown, and G. Parulkar, “Carving research
slices out of your production networks with OpenFlow,” ACM SIG-
COMM Computer Communication Review, vol. 40, no. 1, no. 1, pp. 129~
130, 2010.

49

[17] E. Keller and E. Green, “Virtualizing the data plane through source code
merging,” in PRESTO ’08: Proceedings of the ACM workshop on Pro-
grammable routers for extensible services of tomorrow, pp. 9-14, Aug.
2008.

[18] N. C. Fernandes, M. D. D. Moreira, and O. C. M. B. Duarte, “Xnet-
mon: A network monitor for securing virtual networks,” in Accepted in
1CC 2011 Next Generation Networking and Internet Symposium, ICC’11
NGNI, 2011.

[19] N. C. Fernandes, M. D. D. Moreira, I. M. Moraes, L. H. G. Ferraz,
R. S. Couto, H. E. T. Carvalho, M. E. M. Campista, L. H. M. K. Costa,
and O. C. M. B. Duarte, “Virtual networks: Isolation, performance, and
trends,” Annals of Telecommunications, pp. 1-17, 2010.

[20] R. S. Couto, M. E. M. Campista, and L. H. M. K. Costa, “XTC: Um
controlador de vazao para roteadores virtuais baseados em xen,” in To
be published in SBRC 2011, may 2011.

[21] W. Almesberger et al., “Linux network traffic control - Implementation
overview.” White Paper available in http://diffserv.sourceforge.net/,
2001.

[22] R. S. Couto, H. E. T. Carvalho, L. H. G. Ferraz, M. E. M. Campista,
L. H. M. K. Costa, and O. C. M. B. Duarte, “Cpu resource allocation on
xen virtual network environments,” in WNetVirt 2010 First Workshop
on Network Virtualization and Intelligence for the Future Internet, 2010.

[23] D. Ongaro, A. Cox, and S. Rixner, “Scheduling I/O in virtual machine
monitors,” in ACM VEE, pp. 1-10, 2008.

|24] Z. Wang, X. Zhu, and S. Singhal, “Utilization and SLO-based control
for dynamic sizing of resource partitions,” Ambient Networks, vol. 3775,
no. 1, no. 1, pp. 133-144, 2005.

[25] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs,
“Iperf: The TCP/UDP bandwidth measurement tool.”
http://dast.nlanr.net/Projects/Iperf - Accessed in January/2010,
2004.

[26] MathWorkstex, Simulink, 2001.

[27| J. Liu, W. Huang, B. Abali, and D. Panda, “High performance VMM-
bypass I/O in virtual machines,” in USENIX, pp. 29-42, 2006.

20

28]

29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

137]
[38]

J. Fan and M. H. Ammar, “Dynamic topology configuration in service
overlay networks: A study of reconfiguration policies,” in INFOCOM
2006. 25th IEEE International Conference on Computer Communica-
tions. Proceedings, pp. 1 —12, Apr. 2006.

Y. Zhu and M. Ammar, “Algorithms for assigning substrate network re-
sources to virtual network components,” in INFOCOM 2006. 25th IEEE
International Conference on Computer Communications. Proceedings,
pp. 1 —12, Apr. 2006.

M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” SIG-
COMM Comput. Commun. Rev., vol. 38, pp. 17-29, March 2008.

A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In vini
veritas: realistic and controlled network experimentation,” in Proceed-
ings of the 2006 conference on Applications, technologies, architectures,
and protocols for computer communications, SIGCOMM ’06, (New York,
NY, USA), pp. 3-14, ACM, 2006.

R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed
mapping problem,” SIGCOMM Comput. Commun. Rev., vol. 33, pp. 65—
81, April 2003.

Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rex-
ford, “Virtual routers on the move: live router migration as a network-
management primitive,” in Proceedings of the ACM SIGCOMM 2008
conference on Data communication, SIGCOMM 08, (New York, NY,
USA), pp. 231-242, ACM, 2008.

W. Louati, “On demand virtual network service for dynamic networks,”
Ph.D. dissertation, UPMC / GET-INT, France, 2007.

I. Houidi, W. Louati, and D. Zeghlache, “A distributed virtual network
mapping algorithm,” in Communications, 2008. 1CC ’08. IEEE Inter-
national Conference on, pp. 5634 —5640, May 2008.

GRID 5000. https://www.grid5000.fr/.
JADE (Java Agent DEvelopment Framework). http://jade.tilab.com/.

7. Guessoum, “Dima: Une plate-forme multi-agents en smalltalk,” Revue
Objet, vol. 3, pp. 393-410, dec 1998.

o1

