1

Deliverable D3.1

Horizon Project

September 2009

Adaptive Virtual Network Provisioning
[image: image7.wmf]
ANR call for proposals number ANR-08-VERS-010

FINEP settlement number 1655/08
Institutions

Devoteam

Ginkgo Networks

GTA-COPPE/UFRJ

LIP6 - Université Pierre et Marie Curie

Netcenter Informatica ltda
PUC-Rio
Telecom SudParis

UNICAMP
VirtuOR
Sous la direction de Telecom SudParis, Evry, France

Abstract

This document provides an adaptive virtual network provisioning scenario to maintain virtual network topologies and established contracts despite dynamic variations in physical resources, in service demand, in the networking and the virtual networks themselves. The design, implementation and evaluation of an adaptive embedding algorithm relying on a Multi-Agent based approach to achieve distributed fault-tolerant embedding and resource allocation algorithms to repair resource failures and dynamically optimize substrate networks utilisation. Performance evaluation results are reported for the adaptive embedding algorithms.

1 Introduction

This document presents an overview of our ongoing work on adaptive VN provisioning. The objective is to address the dynamic provisioning of virtual resources acquired from infrastructure providers when the composed virtual networks are activated and running. Indeed, running virtual networks will be subject to dynamic variations due to changes in services demands, in traffic loads, in physical resources and infrastructures and subject to mobility induced variations. Adaptive provisioning frameworks and algorithms are required to maintain virtual network topologies, respect established contracts, expand initial allocations on demand, release resources no longer useful, optimise resource utilisation and respond to anomalies, faults and evolving demands.

The purpose of this document is to design and evaluate adaptive embedding algorithms to handle resource re-optimization and fault-tolerant embedding. The proposed adaptive embedding algorithms are carried out in a decentralized manner by autonomous agents integrated in the substrate nodes. The goal is to deal with highly dynamic environments and to react quickly to node failures, performance degradation, etc. Performance results of the embedding algorithms are reported in terms of time delay and message exchange cost.

2 Adaptive Virtual Network Provisioning Scenario

VN provisioning includes matching, embedding and binding of virtual resources. VN embedding consists in assigning the required VN nodes and VN links, specified in the VN request, to a specific set of substrate nodes and paths extracted from substrate network. The VN embedding relies on a selection process run (or executed) by the infrastructure provider. Among the matched resource candidates, the embedding step consists in choosing and selecting the best (or optimal) resource candidates. Finding the optimal VN embedding satisfying multiple objectives and constraints is a NP-hard problem that has been addressed in several research studies (1; 2; 3; 4; 5). The general aim is to allow a maximum number of VNs to co-exist in the same substrate while reducing the cost for users and increasing revenue for providers. In our previous work (5), we suggested the use of a decentralized selection and embedding process across the substrate nodes. The distributed embedding relies on the resources non-functional (or dynamic) attributes like actual CPU and bandwidth.

Once the VN is entirely deployed and activated following initial provisioning, the adaptive and dynamic provisioning and maintenance of the VN comes into play. Dynamic changes are induced by variations in the substrates and VNs and are related to resource failures, mobility, migration and maintenance needs. Dynamic and adaptive provisioning deals with the highly dynamic changes expected in VN requests and in the substrate and aims at maintaining topologies and respecting established contracts and service level agreements (SLA).

This document deals with the case where virtual or physical resources supporting VNs fail or suffer from anomalies (e.g. substrate node or virtual node crash or performance degradation). The Infrastructure Provider maintains the VN topologies (affected by the failures) by selecting new substrate or virtual resources to replace or compensate for the affected resources. Infrastructure Providers need also to optimize the use of their resources to accept as many requests as possible thus making room for more users. Several mechanisms can be used to regularly optimize the allocation of resources. Virtual node migration (7; 8) or path splitting/migration (3) are example solutions. This document proposes a Multi-Agent based adaptive embedding framework to handle two algorithms (fault-tolerant embedding and resource re-optimization algorithms) to repair resource failures and dynamically optimize the substrate networks.

2.1 Multi-Agent based adaptive embedding framework
This section provides the design and implementation of an adaptive VN embedding framework to deal with dynamic changes requiring automatic and runtime reparation (scenario 1) and re-optimization (scenario 2). The framework is responsible for:

1. Detecting and identifying local changes through monitoring (e.g. node/link failure, performance degradation)

2. Selecting new substrate resources to maintain VN topologies

3. Migrating virtual nodes from a substrate node to another

4. Running the binding step

The adaptive embedding framework relies on the Multi-Agent based approach to ensure distributed negotiation and synchronization between the substrate nodes. As depicted in figure 1, the Multi-Agent based adaptive embedding framework is composed of autonomous agents integrated in substrate nodes. These autonomous agents communicate, collaborate and interact with others to plan collective reselection of resources for adaptive VN embedding. The agents monitor, supervise and extract the non-functional (i.e. dynamic) attributes from the local repositories and decide locally which reselection actions to undertake. As detailed in next sections, the autonomous agents are responsible for carrying out two proposed algorithms: Distributed fault-tolerant embedding algorithm and Distributed resource re-optimization algorithm.

The proposed adaptive embedding algorithm relies on situation awareness approaches. In fact, the conceptual clustering technique used during the matching phase can provide a generic model for a situated multi-agent based infrastructure. The situated view of agents is determined based on similarities between substrate nodes determined by the conceptual clustering algorithms. Only agents within the same cluster can negotiate and cooperate. The situation awareness involves that each agent is aware of what is happening around it. In our case, the agent's situation awareness consists in being aware about its situation and its logic position in the infrastructure and also being able to know the level of perception of other agents (i.e. to which cluster it belongs to and with what agents it should negotiate and synchronize to handle the distributed adaptive embedding decision making).

[image: image2]
Figure 1. Multi-Agent based adaptive embedding framework
2.2 Distributed fault-tolerant embedding algorithm
This work proposes a distributed fault-tolerant embedding algorithm to maintain the VN topologies by reselecting new resources to replace the no longer available ones. There is no need to consult a central entity upon failures since distributed localized control can react quickly to local changes. The algorithm assumes the existence of supervision (monitoring) and fault diagnosis mechanisms to detect resource failures.

The Multi-Agent based adaptive embedding framework is used to carry out the distributed fault-tolerant embedding algorithm. The substrate node agents exchange messages and cooperate to plan collective reselection decisions. The cooperation between substrate node agents relies on the matching results. When a substrate node ns supporting a virtual node nv fails, the fault-tolerant embedding algorithm can quickly localize the failed node and reselect a new alternative substrate node. This alternative node is selected among the candidate substrate nodes matching the node nv. Thus, only substrate node agents that belong to the same cluster will collaborate to choose an alternative/backup substrate node.

Figure 2 depicts a step by step scenario describing the implementation of the distributed fault-tolerant embedding algorithm using the Multi-Agent framework. Each substrate node agent runs the algorithm depicted in Algorithm1. Upon detecting a substrate node failure, each agent sends a failure notification message (ErrorMSG(ns)) to all agents in the same cluster to notify them that the substrate node supporting the request node nv is no longer available. Next, each agent should check the ability of its associated substrate node to support the request node on behalf of the failed one. To achieve that, each agent extracts the non functional (NF) (or dynamic) attributes of the affected virtual node nv as well as the NF attributes of its own substrate node. The NF attributes are presented in the form of attribute-value pairs: (att, x).
The NF attributes of an arbitrary request node nv are represented as follow:

nv =((att1, xv1), (att2, xv2),..., attf, xvf),..., (attp, xvp)).

The NF attributes of the substrate node (agent host) ns are expressed as:

ns =((att1, xs1), (att2, xs2),..., (attf, xsf),..., (attp, xsp)).

The objective is to check how much the associated substrate node capabilities can respond to the virtual node nv requirements. The substrate node ns that should be reselected must be as similar as possible to the virtual node nv. As stated, each agent computes a dissimilarity metric dism between the NF attributes of request node nv and the NF attributes of its associated substrate node. An example of the dissimilarity function expression is provided below. Once the dissimilarity metrics dism are computed for the affected request node nv, the agent exchanges these metrics, via MSG(nv, dism)) message, with the other agents running in the same cluster. Each agent compares its dissimilarity metrics with those computed by the other agents. For the request node nv, the (substrate node ns, request node nv) pair that has the minimum dissimilarity metric will be selected for the adaptive embedding decision.

[image: image3]
Figure 2. Multi-agents based distributed fault-tolerant embedding Scenario

Our proposed Distributed fault-tolerant embedding algorithm operates as follows:

[image: image1.png]P>

Algorithm 1 : Distributed fault-tolerant embedding algorithm running in each sub-

strate node agent ns
[image: image6.png]

1) Upon detecting a substrate node failure, send a notification message (ErrorMSG(ns)) to all agents

in the same cluster

2) Compute a dissimilarity metric between the NF attributes of the affected request node nv and the

NF attributes of the substrate node ns
3) Exchange, via (MSG(nv; dism)) messages, the computed dissimilarity metrics dism within the same

cluster. The agent compares its dissimilarity metric of the request node nv with all substrate nodes

4) If the dissimilarity metric of the request node nv is the minimal one compared to the other computed

dissimilarity metrics

5) then The substrate node hosting the agent will support the request node nv.

Once the request node nv are mapped to the reselected substrate node in the substrate, the next step is to map its associated virtual links to the substrate paths. A shortest path algorithm (2; 6) (in the case of unsplittable flows) or a multi-commodity flow algorithm (where the substrate supports splittable flows (3)) can be used for link mapping. These algorithms should be carried out in a distributed manner across the substrate node agents.
2.3 Performance Results
The experimental facility GRID5000n (9) has been used to generate full mesh substrate topologies with different sizes (from 0 up to 100 nodes) to evaluate the Distributed fault-tolerant embedding algorithm. Autonomous agents (10) are deployed in the GRID5000 machines to emulate the substrate node agents in the multi-agent based embedding framework and to handle the distributed fault-tolerant embedding algorithm.

Our objective is to evaluate the time delay and the number of messages required by the distributed fault-tolerant embedding algorithm to adapt a VN (by reselecting a new node) in the case of substrate node failure. The aim is to show the benefits of using the clustering approach to reduce the time delay and the number of messages needed to reselect a new substrate node. Clustering refers to set of candidate substrate nodes sharing the same colour in the substrate.

Figure 3 depicts the time delay required to adapt a VN in full mesh substrate topologies. Four cases are evaluated and compared: substrate topology without clustering (corresponds to curve with one cluster in figure 3) versus substrate topology with 2, 5 or 10 clusters. As shown in figure 3, the time delay required to reassign a VN request to a substrate network without clustering is in order of 2 s. This time delay does not exceed 0.75 s when using clustering in substrate networks. The number of messages exchanged between substrate nodes decreases with clustering. The number of messages is reduced in the distributed localized fault-tolerant embedding algorithm since messages are exchanged per cluster. Figure 4 corroborates the delay results shown in the figure 3.

As there are currently no known distributed fault-tolerant embedding algorithms available in the literature, at least to our knowledge, this document is not in a position to provide any comparison with existing algorithms. We rather compare our algorithm to a centralized fault-tolerant embedding algorithm. As shown in figure 3, the upper curve represents the time delay required to reselect a substrate node in a centralised greedy manner. Results show that the time delay required by our distributed fault-tolerant embedding algorithm to adapt a VN upon failures is much lower than that of the centralised approach. This is due to the important number of messages exchanged between a centralized coordinator and substrate nodes in the case of centralised reselection.

[image: image4.emf]
Figure 3. Average time delay required to adapt a VN topology in the case of node failure

[image: image5.emf]
Figure 4. Number of messages exchanged to adapt a VN topology in the case of node failure

2.4 Distributed resource re-optimization algorithm
To make efficient use of the substrate resources and to maximize revenue and acceptance ratio, the Infrastructure Provider needs to re-optimize its resources to make room for other VN requests. Several mechanisms have been proposed in the literature to re-optimize the allocation of substrate resources including virtual node migration (7; 8).

This document provides an overview of a distributed resource re-optimization algorithm responsible for migrating a virtual node from a substrate node to another. The substrate agents, integrated in the Multi-agent based adaptive embedding algorithm, carry out the distributed resource re-optimization algorithm. The substrate agents collaborate to make a common migration decision. Each agent runs the algorithm depicted in Algorithm2.

Algorithm2 : Distributed resource re-optimization algorithm running in each agent based substrate node ns

(S1) If the substrate node ns decides to migrate its virtual node nv to other substrate node Then sends a MIGRATION message to all substrate nodes.

(S2) Upon receiving a MIGRATION message Do

a. If there is a room for the virtual node nv Then send an ACCEPT-MIGRATION message along with ns-id identifier
b. Else Send REJECT-MIGRATION message

(S3) Upon receiving an ACCEPT-MIGRATION message from substrate node ns - id Do

a. Migrate virtual node nv to substrate node ns-id

Implementation and evaluation of the distributed resource re-optimization algorithm are work in progress which is not achieved yet.

3 Conclusion and future work
To deal with changing virtual networking environments, adaptive provisioning algorithms are proposed to maintain virtual network topologies. The design, implementation and evaluation of an adaptive embedding framework relying on the Multi-Agent based approach is also proposed. The framework handles distributed fault-tolerant embedding and resource re-optimization algorithms to repair resource failures and dynamically optimize the substrate networks. Future work will consist of implementing the agent based adaptive embedding algorithms using the DIMA (11) - a multi-agents model proposed by one HORIZON partner.

4 Reference
[1] J. Fan and M. Ammar, "Dynamic topology con_guration in service overlay networks: A study of recon_guration policies". In Proceedings of the IEEE INFOCOM 2006.

[2] Y. Zhu and M. Ammar, "Algorithms for assigning substrate network resources to virtual

network components". In Proceedings of the IEEE INFOCOM 2006.
[3] M. Yu, Y. Yi, J. Rexford, and M. Chiang, "Rethinking virtual network embedding: Substrate support for path splitting and migration". ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17-29, April 2008.
[4] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, "In VINI veritas: Realistic and controlled network experimentation". In Proceedings of ACM SIGCOMM, Pisa, Italy, September 2006.

[5] R. ricci, et al. "A solver for the network testbed mapping problem", ACM Computer Communication Review, vol. 33, no. 2, pp. 65-81, January 2003.
[6] I. Houidi, W. Louati and D. Zeghlache, "A Distributed Virtual Network Mapping Algo-

rithm". In Proceedings of the 2008 IEEE International Conference on Communications,

May 19-23, 2008, Beijing, China, p 5634 - 5640.
[7] Yi Wang, Eric Keller, Brian Biskeborn, J. Merwe and J. Rexford, "Virtual Routers on the Move: Live Router Migration as a Network Management Primitive", ACM SIGCOMM Computer Communication Review, Vol. 38, No. 4, pp. 231-242, October 2008.

[8] W. Louati, "On demand Virtual Network Service for Dynamic Networks". PH.D Thesis Number07INT003, March 2007, UPMC & GET-INT, FRANCE. http://www-public.int-edu.eu/_louati/Publications/thesis.pdf
[9] GRID 5000, https://www.grid5000.fr/
[10] JADE (Java Agent DEvelopment Framework), http://jade.tilab.com/
[11] Z. Guessoum. DIMA: Une plate-forme multi-agents en Smalltalk. Revue Objet, Volume 3 No 4, pp. 393-410, Décembre 1998.
 Horizon.

