
Horizon Project
ANR call for proposals number ANR-08-VERS-010
FINEP settlement number 1655/08

Horizon - A New Horizon for Internet
WP2 - TASK 2.3: Identified Virtualization Solution Modification/Adoption

Report and Tools Tests
(Annex F)

Institutions

Brazil France
GTA-COPPE/UFRJ LIP6 Université Pierre et Marie Curie
PUC-Rio Telecom SudParis
UNICAMP Devoteam
Netcenter Informática ltda. Ginkgo Networks

VirtuOR

Contents

1 General Prototype Modifications Description 4
1.1 Introduction . 4
1.2 General Prototype Description 6

1.2.1 Sensors . 6
1.2.2 Actuators . 7

1.3 Document Outline . 7

2 Xen 8
2.1 Xen CPU Scheduler . 10

2.1.1 Xen Credit Scheduler 11
2.1.2 Use of Scheduling Parameters in Piloting Plane 13
2.1.3 CPU and Scheduling Parameters Adjustment 14
2.1.4 CPU and Scheduling Parameters Adjustment in Xen

using Libvirt . 15
2.2 Xen Migration . 16

2.2.1 Standard Xen Migration: Qualities and Flaws 17
2.2.2 Proposal for Xen Migration: Data Plane and Control

Plane Separation . 18
2.2.3 Implementation Overview 19
2.2.4 Implementation Details 21

2.3 Xen Statistics . 23
2.3.1 Measures Gatherer Handler Component 24
2.3.2 Measures Gatherer Main Component 26
2.3.3 Xentop Gatherer Component 27
2.3.4 Memory Gatherer Component 30
2.3.5 Ifconfig Gatherer Component 31
2.3.6 Latency Gatherer Component 34

2.4 Xen Topology . 35
2.4.1 Methodology . 36

2.5 New I/O Virtualization Techniques 38
2.5.1 Introduction . 38

1

2.5.2 Techniques . 40
2.5.3 Implementation . 40
2.5.4 Installation . 41

3 OpenFlow 43
3.1 FlowVisor . 45

3.1.1 Introduction . 45
3.1.2 Isolation Mechanisms 46

3.2 OpenFlow Migration . 47
3.2.1 Introduction . 47
3.2.2 Implementation . 48

3.3 OpenFlow Statistics . 50
3.3.1 Introduction . 50
3.3.2 Stats XML Message 51
3.3.3 Information Classes . 51

3.4 Openflow Discovery . 55
3.5 Openflow Spanning Tree . 58

4 Performance Tests 62
4.1 Migration Tests . 62

4.1.1 Introduction . 62
4.1.2 Results . 63
4.1.3 Conclusions . 65

4.2 Bandwidth Control Tests . 66
4.2.1 Introduction . 66
4.2.2 Results . 67
4.2.3 Conclusions . 68

5 Conclusions and Ongoing Work 70

Bibliography 76

2

List of Figures

1.1 Architecture of the prototype. 5
1.2 Prototype overview. 7

2.1 Detailed Xen prototype architecture. 9
2.2 A physical CPU and its queues. 12
2.3 The self balancing mechanism. 12
2.4 Cap Adjustment Experiment. 14
2.5 Example of router migration in Xen when a virtual link is

mapped to a multiple-hop path in the physical network. 20
2.6 Measures Gatherer architecture, along with its components . . 24
2.7 The Topology Consolidate component. 37
2.8 The Node Consolidate component. 38
2.9 The Scanning Neighbors component 39

3.1 OpenFlow prototype architecture. 44
3.2 FlowVisor Working . 45
3.3 FlowVisor hierarchy . 46
3.4 Flow Migration Schema. 47
3.5 LLDP frame format for IEEE 802.3. 55
3.6 Behavior of the original and the modified Discovery algorithm. 57
3.7 An example of topology with a loop. 59
3.8 Example of a network graph. 60

4.1 Experimental scenarios for virtual network migration. 63
4.2 Migration downtime as a function of the data packet rate. . . 64
4.3 Number of lost packets during downtime as a function of the

data packet rate. 64
4.4 Total migration time as a function of the data packet rate. . . 65
4.5 The Test Environment . 66
4.6 TCP-UDP Test . 67
4.7 UDP-UDP Test . 68
4.8 TCP-TCP Test . 69

3

Chapter 1

General Prototype
Modifications Description

1.1 Introduction

The Horizon Project fits within the current research community initiative
in rethinking the Internet architecture to cope with its current limitations
and support new requirements. Many researchers conclude that there is no
one-size-fits-all solution for all requirements from users and network-providers
and, thus, advocate for pluralist approaches which allow coexistence of differ-
ent network architectures and gradual migration from the current architec-
ture to its successor. Network virtualization is a key enabling technology for
pluralist architectures because it allows multiple virtual networks to run over
the same physical infrastructure [1]. Each virtual network can run specific
network protocol stacks independently from the others, and hence network
virtualization allows the coexistence of multiple specialized networks running
at the same time [2].

The Horizon Project proposes a virtualized infrastructure which requires
a piloting system to manage and control virtual networks [3]. The piloting
system runs intelligent algorithms [4, 5] to automatically instantiate/delete
and monitor virtual networks and also to migrate network elements and set
its resource-allocation parameters [6, 7].

The network virtualization infrastructure provides five primitives (instan-
tiate, delete, migrate, monitor, and set) for the piloting system to control and
manage the virtual network elements. The relationship between the piloting
system and the network virtualization infrastructure is shown in Fig. 1.1.

The piloting system needs information to pilot the network. To acquire
the required information, the piloting system uses the monitor primitive,

4

Figure 1.1: Architecture of the prototype. The piloting system uses the
instantiate, delete, monitor, migrate and set primitives from the network
virtualization infrastructure.

which calls the monitoring tools required to measure variables of interest,
such as available bandwidth, processor and memory usage, link, and end-
to-end delay. After monitoring, the piloting system is able to act on the
network using the instantiate, delete, migrate, and set primitives. Our archi-
tecture supports real-time control of virtual network resources, allowing set-
ting resource-allocation parameters of each virtual network element (routers,
switches, links, gateways, etc.). The available parameters include low level
and specific hardware parameters such as the number of virtual processors
given to a virtual router and priority of processor usage in a contention sce-
nario. Thus, the piloting system dynamically adapts the resources allocated
to each virtual network according to the current network condition, number
of users, priority of each virtual network, Service Level Agreements (SLAs),
etc.

This report presents the two virtual network prototypes developed by the
Horizon project team [8]. The first prototype is based on Xen [9, 10], a x86
platform virtualization tool, and the second prototype is based on Open-
Flow [11], a network virtualization tool. For both prototypes, we present the
performed modifications on the virtualization tools to support the piloting
system primitives. The modifications are needed because the virtualization
tools do not support all the required functionalities [12, 13, 14]. For ex-
ample, the primitive monitor, should inform some measurements about the
virtual networks that are not provided by the virtualization tools, such as
the Round Trip Time (RTT) to neighbors or the exact virtual router memory
usage when running Xen virtualization tool. Another example is the support
for live migration with no packet loss, which was another feature we added

5

to Xen [15].

1.2 General Prototype Description

The Horizon network virtualization approach divides a virtual network
element into two main planes: the virtualization plane and the piloting plane.
The virtualization plane provides the substrate for running logical network
elements over a single shared physical network. The piloting plane provides
the intelligence for optimizing the network, according to Service Level Agree-
ments (SLAs) and to each virtual network requirements.

Our network virtualization prototype must address the Future Internet
requirements [16]. In order to accomplish them, we use two virtualization
techniques: router virtualization, which creates logical routers over physical
routers; and network virtualization, which virtualizes network flows. Xen hy-
pervisor [9] virtualizes routers and OpenFlow Switches [11] create virtualized
networks. Both Xen and OpenFlow are well suited for achieving our archi-
tectural goals, therefore, our prototype is divided into two, each one uses
a different network virtualization tool: the Xen-based and the OpenFlow-
based prototypes. In this sense, both prototypes must support the required
primitives for piloting the network. Nevertheless, because they only par-
tially support the required primitives, we modified Xen and OpenFlow by
developing applications to provide all the missing features.

The prototypes basic architecture, shown in Fig. 1.2, are independent
of the virtualization tool and run over each network. The virtualization
system is an abstraction of which virtualization tool is being used, it can
be either Xen or OpenFlow. Depending on the virtualization tool adopted,
there are specific modifications required on each tool. Network nodes must
have their own set of sensors and actuators. The sensors are responsible
for collecting information about the element environment and state. The
actuators are responsible for actuating on the network elements according to
the piloting plane policies. All network nodes are associated to a Controller,
which aggregates nodes information and issues commands to each node.

1.2.1 Sensors

All nodes should describe the context they belong to as well as they
should be able to inform their state. In order to collect information, all
nodes implement a set of sensors. Each virtualization technique introduces
a different set of sensors. For instance, Xen virtualization tool introduces
a set of sensors for monitoring the virtual router state, whereas OpenFlow

6

Figure 1.2: Prototype overview.

virtualization tool introduces another set of sensors for monitoring the flows
going through a node. There are, however, five composed measures that are
common to both virtualization techniques and should be monitored: CPU
usage, memory usage, network throughput, dropped packet rate, and network
topology.

1.2.2 Actuators

All network nodes should provide an interface for the piloting plane net-
work control. The actuators are the software components that apply the pi-
loting plane required actions. Each virtualization system has different means
and methods to control the network. Xen provides built-in actuators, such
as the creation and destruction of virtual machines, but there are some prim-
itives, such as no packet loss migration, that had to be implemented. Open-
Flow also provides some actuators, like flow creation and destruction, but
similarly to Xen, it lacks some features that had to be implemented, such as
a native flow migration mechanism.

1.3 Document Outline

The rest of this report is organized as follows. Chapter 2 presents the
Xen virtualization tool modifications and applications developed for our Xen-
based prototype. Similarly, Chapter 3 presents the applications developed for
our OpenFlow-based prototype. In chapter 4 we present some performance
tests of the virtualization tools. Finally, Chapter 5 concludes this work and
presents future work directions.

7

Chapter 2

Xen

Xen is an open-source hypervisor proposed to run on commodity hard-
ware platforms, and it uses paravirtualization techniques to improve perfor-
mance [9]. Xen allows to simultaneously run multiple virtual machines on
a single physical machine. Xen architecture is composed of one hypervisor
located above the physical hardware and several virtual machines over the
hypervisor. Each virtual machine can have its own operating system and
applications. The hypervisor controls the access to the hardware and also
manages the available resources shared by virtual machines. In addition,
device drivers are kept in an isolated virtual machine, called Domain 0, in
order to provide reliable and efficient hardware support [17]. Because it has
total access to the hardware of the physical machine, Domain 0 has special
privileges compared with other virtual machines, referred to as user domains
(Domains U).

This chapter presents our Xen-based prototype of a virtual network envi-
ronment. The Xen-based prototype is composed of three main modules: the
Graphical User Interface (GUI), the controller, and the network substrate.
The GUI presents prototype information for user monitoring and also a sim-
ple control interface for user interaction. The controller, a special node that
consolidates network data, acts on the physical and virtual networks issuing
commands and interfaces with the piloting plane. Finally, the network sub-
strate is mainly composed of physical and virtual routers in which several
modules were developed for coping with our architecture requirements [18].
Fig. 2.1 details the prototype modules and their interfaces.

The User Client Node shown in Fig. 2.1 represents the user computer
for manual monitoring and control of the prototype. The User Client Node
contains a GUI that shows both physical and virtual network topologies and
additionally allows fine grain monitoring by exposing detailed information
upon a physical or virtual router selection. The Client node also allows send-

8

Figure 2.1: Detailed Xen prototype architecture. The modules that compose
the prototype parts are shown as well as their interfaces and interactions.

ing commands to the prototype, such as issuing a virtual router migration
from a physical router to another one. In order to interact with the controller
node, the GUI interfaces with the Wrapper module, which is responsible for
converting the GUI issued commands into Simple Object Access Protocol
(SOAP) calls the controller node and converts the SOAP responses into its
expected response pattern [19].

The controller node is composed of the Virtual Machine Server module
and the Client Communication module. The Virtual Machine Server is the
core module of the controller. It has a SOAP interface for interacting with
the piloting plane and User Client Node. It is the module responsible to
consolidate all prototype information, and to execute all the control and
maintenance algorithms. The Virtual Machine Server module extensively
uses the libvirt library to accomplish its tasks using native virtualization
tool support and also to accomplish tasks that demand non-native enabled

9

functionalities. The Virtual Machine Server module uses special modules to
run inside the physical and the virtual routers. The Virtual Machine Server
uses the Client Communication module in order to interface with these special
modules.

The physical router nodes provide the physical infrastructure used by the
virtual networks. There is a Server Communication module within each phys-
ical router. This module receives requests from the controller node Client
Communication module and forwards the request to the appropriate module.
If a request is addressed to a virtual router, it is forwarded to the correct
virtual router, passing through the Proxy module. Otherwise, it is forwarded
to one of the special modules of the physical router. If the received request
regards a monitoring task, it is forwarded to the Measures Gatherer module,
with the purpose of obtaining measures from the physical and virtual routers.
If the received request is to act on the resources division among the virtual
routers, the Scheduler module handles the request. Requests of discovering
physical or virtual networks topologies are handled by the Topology Discov-
ery module. Migration requests are handled by our Migration module, which
provides virtual router migration without packet losses.

In the following sections we describe Xen modifications and our Xen-based
prototype modules. Section 2.1 presents the Xen Credit Scheduler. We show
the effect of weight and cap on the CPU assignment and a proposal of using
them as a control mechanism. Section 2.2 explains our migration feature that
allows reconfigure the network topologies while the routers are running and
without losing packets. In Section 2.3, we present our resource monitoring
module. Section 2.4 describes the module responsible for discovering the
physical and virtual network topologies. Finally, Section 2.5 presents the
new virtualization hardware support technologies. These technologies are
available to enhance I/O virtualization performance and their effect in virtual
network environment.

2.1 Xen CPU Scheduler

Xen virtualizes the processor (Central Processing Unit - CPU) by assign-
ing virtual CPUs (vCPUs) to virtual machines. Virtual CPUs correspond
to the CPUs that the running processes within the virtual machine can see.
The hypervisor maps vCPUs to physical CPUs. Xen hypervisor implements
a CPU scheduler that dynamically maps a physical CPU to each vCPU un-
der a certain period, based on a scheduling algorithm. Xen implements two
scheduler algorithms, the Simple Earliest Deadline First (SEDF) scheduler
and the Credit Scheduler [20].

10

The SEDF scheduler was implemented on Xen hypervisor first and now it
is a legacy scheduler. The main idea is to pick the vCPU that is closest to the
deadline. Each domain has time parameters, a time slice, that determines
the continuous time that the domain must run, and a period of time, in which
this domain must run its time slice. The scheduled domain is the one which
is closest to run out of its period without running its time slice.

The Credit scheduler is the default Xen scheduler. This scheduler makes
a proportional CPU share. This means that Credit scheduler allocates CPU
resources to each virtual machine (or, more specifically, to each vCPU) ac-
cording to weights assigned to virtual machines. Credit scheduler can also be
work conserving on SMP (Symmetric Multi-Processing) hosts. This means
that the scheduler permits the physical CPUs to run at 100% if any virtual
machine has work to do. In a work-conserving scheduler there is no limit on
the amount of CPU resources that a virtual machine can use.

2.1.1 Xen Credit Scheduler

Xen Credit Scheduler is the default scheduler on recent Xen Hypervisor
versions. The basic idea is to distribute credits among the domains and,
when a domain wants to run, the domain must pay for the running time.
In order to share the CPU utilization, the scheduler distributes the credits
among domains, including the Domain 0, based on two parameters associ-
ated with each domain, weight and cap. When a domain is active executing,
it consumes credits. Based on credit accounting, the scheduling determines
which CPU is able to execute. The scheduler, however, only takes into ac-
count if the domains have spent or not their credits, and does not consider
the absolute value of current credit of the domain.

In the basic Xen Credit Scheduler implementation, each physical CPU
has two queues. One is for the vCPUs that still have credits to spend, the
UNDER queue, and another, to the vCPUs that have over spent their credits,
the OVER queue. Each queue works in a round robin manner. The scheduler
picks one vCPU from the UNDER queue, and let it run for a given period.
After that, it picks another vCPU. Each vCPU is allowed to run up to 30 ms,
without the scheduler interruption, as long as the vCPU has sufficient credits
to do it. This amount of time is called quantum.

The scheduler ticks every 10 ms. Every 10 ms, credits are debited from
each domain that has a vCPU running. When a vCPU over spend its credits,
it goes to the OVER queue. If a physical CPU has no vCPUs in the UNDER
queue, it tries do pull a vCPU from other physical CPUs queue [20]. A
vCPU in the OVER queue can only run, if all vCPU in the UNDER queue
are blocked. This mechanism allows a vCPU to use more than its share of

11

Figure 2.2: A physical CPU and its queues: the UNDER, green, and the
OVER, red. The physical CPU picks an OVER vCPU, because there are
only blocked vCPUs in the UNDER queue, dark blue.

Figure 2.3: The self balancing mechanism. The physical CPU, which is able
to run vCPUs, picks one vCPU from the queue of the other physical CPU.
The vCPUs, which have credits, always have the priority.

the resources, when a physical CPU is idle.

2.1.1.1 Scheduling Parameters: Weight and Cap

Xen Credit Scheduler has two parameters that influence in credit distri-
bution, weight and cap. Those parameters can be set while a domain is
running. The weight parameter determines the proportional share of the
physical CPU time that each domain gets. The weights of the domains are
relative to each other. For example, in an environment with two domains,

12

in which domain A has a weight of 256 and domain B has a weight of 128,
domain A can get twice more CPU resources than domain B. As the weight
is relative, the same effect occurs, in an environment that domain A has a
weight of 512 and domain B has a weight of 256. If a domain, however,
with high weight does not need all the allocated CPU resources, domains
with lower weights can get the unused resources. The cap, in its turn, is
an absolute value that limits the amount of physical CPU resource that a
domain is able to use. It forces the Credit Scheduler to work in a non-work-
conserving mode. The cap is expressed in percentage of one physical CPU,
e.g. 50 is half of a CPU, 100 is an entire CPU and 400 is 4 CPUs. The cap of
each domain is set by default to zero. A 0 cap value means that the domain
CPU utilization is unrestricted [20].

2.1.2 Use of Scheduling Parameters in Piloting Plane

Xen Credit Scheduler parameters may be used in the Piloting Plane to
control the amount of CPU resources that each virtual router is allowed to
run. Taking into account these parameters, we offer different performance
levels [21, 22]. To illustrate the use of Xen Credit Scheduler parameters, we
conduct an experiment with cap adjustment [23]. Our goal is to show the
influence of this parameter on the forwarded packet rate of virtual routers
sharing CPU resources. We use cap instead of weight, because cap gives
more control of the CPU usage to the system administrator. This is a de-
sirable feature, because the Piloting Plane must have the control of CPU
usage in order to ensure performance levels. The experiment takes place in
a testbed, in which traffic generators (TGs) send packets to traffic receivers
(TRs) passing through a traffic forwarder (TF).

The experiment consists on sending packets from a TG to a TR at a fixed
rate of 150 kilopackets per second. Virtual routers instantiated over the Xen
platform, in TF, forward the packets. TF has two virtual routers that share
the same CPU core, and each one has its own network interface pair. Thus,
we ensure that the main resource shared by the virtual routers is the CPU.
Domain 0 has its own CPU core. We have two virtual networks running in
parallel in TF. We assign a fixed cap of 100 to a virtual machine (VM2)
and we vary the cap of the other virtual machine (VM1). Results, shown on
Fig. 2.4, evidence that maximum packet rate obtained is less than the total
sent. This happens because Domain-0 must forward packets from and to the
virtual routers. Furthermore, the packet forwarding rate of VM1 decreases
with its cap reduction, whereas the packet forwarding rate of VM2 increases.
This happens because both virtual routers share the same core and reducing
the CPU given to VM1 frees VM2 to use the CPU.

13

Thus, we show that we assure a maximum packet forwarding rate to
each virtual router, adjusting its cap. This strategy helps the Piloting Plane
controlling the maximum throughput. Limiting the throughput of individual
virtual routers is a strategy to ensure a performance level to each virtual on
the network. This performance level is based on QoS (Quality of Service),
parameters specified in SLAs.

 0

 20

 40

 60

 80

 100

 120

 140

 5 10 15 20 25 30 35 40 45 50

Pa
ck

et
 R

at
e(

kp
/s

)

VM1 Cap

VM1
Vm2

Vm2 + Vm1

Figure 2.4: Cap Adjustment Experiment.

2.1.3 CPU and Scheduling Parameters Adjustment

In this subsection we provide Xen commands to configure physical CPU
allocation and scheduling parameters. All commands specified below are
executed while a domain is running. Those commands are executed locally.

2.1.3.1 xm sched-credit command

This command sets the weight or the cap of a certain domain. The
general format of this command is as follows:

$ xm sched-credit [-d <DOMAIN> [-w WEIGHT] [-c CAP]]

To adjust the weight of a specific domain we use:
$ xm sched-credit -d <DOMAIN> -w <WEIGHT>

To adjust the cap of a specific domain we use:

14

$ xm sched-credit -d <DOMAIN> -c <CAP>

In both cases above, the domain is specified by its ID or its name.
To list the current scheduler settings we use:
$ xm sched-credit

2.1.3.2 xm vcpu-set command

This command sets the number of VCPUs of a domain. This command,
however, only sets a number equal or less than the number of VCPUs specified
in domains configuration file. The format of this command is the following:

$ xm vcpu-set <DOMAIN> <#VCPUs>

2.1.3.3 xm vcpu-pin command

This command assigns a vCPU to one or more physical CPUs. If this
command is used, the scheduler cannot assign this vCPU to another physical
CPU that is not specified. The format of this command is the following:

$ xm vcpu-pin <DOMAIN> <VCPU|all> <PCPUs|all>

In this command a vCPU of a certain domain is chosen to be pinned in
one or more physical CPU denoted by pCPUs. In order to give the scheduler
the independence to assign a vCPU to any physical CPU, we use all as the
pCPU argument. Nevertheless, this is the default Xen vCPU assignment.

2.1.3.4 xm vcpu-list command

This command lists the current CPU assignment. It shows whether a
vCPU is pinned in one or more physical CPUs and the current physical
CPUs used by the running vCPUs. This command is used as follows:

$ xm vcpu-list

2.1.4 CPU and Scheduling Parameters Adjustment in
Xen using Libvirt

Libvirt [24] is an API (Application Programming Interface) used to in-
teract with different virtualization solutions. Using Libvirt, we manage the
virtual machine locally or remotely. Libvirt is used with different program-
ming languages, such as python, java or C. The remote management of vir-
tual routers plays an important role in the Piloting Plane of Horizon project.
Hence, we develop a python module to simplify the usage of Libvirt. This
module, called VirtualManagement, aggregates Libvirt classes and encapsu-
lates them. Currently, the VirtualManagement module has one class called

15

PhysicalHost. An object of this class represents a physical Xen host. This ob-
ject is instantiated in any machine that has the Libvirt client and a network
connection with the physical host. At the moment of the object instantiation,
the connection between the client and Xen host is established.

In the class PhysicalHost we define methods, according to Piloting Plane
programming requirements. The methods listed above are to set scheduler
parameters. These methods functionality equivalent to the commands spec-
ified in Section 2.1.3.1. The methods implement on PhysicalHost class, how-
ever, may be called remotely, while the Xen native commands are called
locally.

2.1.4.1 PhysicalHost::setSchedParametersWeight(weight,domainID)

Sets the weight of a domain specified by “domainID”.

2.1.4.2 PhysicalHost::setSchedParametersCap(cap,domainID)

Sets the cap of a domain specified by “domainID”.

2.1.4.3 PhysicalHost::printSchedParameters()

Prints, in console, the information of current scheduler settings.

2.2 Xen Migration

Experimenting new alternatives in the Internet core using production
traffic is considered a hard task, as Internet providers do not feel comfortable
to perform modifications that could damage their service. This is a problem
because, on one hand, Internet must evolve to handle new demands, but,
on the other hand, new mechanisms that change the Internet cannot be
applied in the underlying infrastructure. Many works tackle this problem
by using virtualization techniques [1, 25]. In a virtualized environment, the
physical substrate is shared among many virtual networks which are isolated
and, consequently, new proposals can run together with the current Internet
without disturbing the production traffic.

Network virtualization requires new control and management primitives
for redistributing physical resources among the virtual nodes. One of these
primitives is the live virtual network migration. The idea is to move vir-
tual networks among the available physical resources without disrupting the
packet forwarding and network control services [26]. In Horizon project

16

scope, live migration allows the dynamic reconfiguration of the network
topologies without shutting down the running routers.

Virtual network migration allows dynamic planning of physical resources
and traffic management on demand. Network migration can also be applied
to create green networks [27], because virtual networks could be placed on
different physical routers according to the traffic demand to reduce energy
consumption. This concept is also compatible with the idea of cloud com-
puting, which is an attempt to efficiently share power, storage devices, user
applications, and network infrastructure over the Internet as if they were
services [28].

We analyze the standard Xen migration scheme and we also propose a
new migration model that fixes the issues that were found on the standard
mechanism. The migration proposal is meaningful to the project because
it gives the piloting plane the capacity to dynamically rearrange the logical
network topology, without disrupting running services and with no packet
loss. After the formal definition of these technologies, we present a detailed
documentation of the prototype with its overview and its functionalities.

2.2.1 Standard Xen Migration: Qualities and Flaws

When we use Xen to create virtual networks, we assume that each VM
works as a virtual router. Hence, migrate a VM is equivalent to migrate
a router. Because the VM is running a live service, we need to reduce the
migration downtime, which is the time that the virtual machine is unavailable
during the migration. It is also important to minimize the total migration
time to guarantee that we can quickly free the resources of the initial physical
machine. Xen has a built-in mechanism to migrate virtual machines [29].
This mechanism is based on some assumptions: the migration occurs inside
a local network and the machine disk is shared over the network1. The main
idea of this procedure is that migrating a virtual machine is the same of
copying the memory of the virtual machine to the new physical location and
reconfiguring the network links without breaking connections.

The simplest way to migrate the VM memory is to suspend the VM,
transfer all the memory pages to the new physical location, and then resume
the VM. To reduce the downtime, this procedure is evolved to a pre-copy mi-
gration, in which the memory copy is accomplished through two phases. The

1This shared disk assumption can be relaxed in our scenario, because routers from the
same vendor usually implement the same small set of applications [26]. Then, we assume
that the new physical router also has this set of programs and is able to load them onto
the file system of the new VM. Hence, only virtual router memory and configuration files
must be migrated.

17

first phase, called iterative pre-copy, transfers all memory pages to the new
physical machine, except for the “hot pages”, which are frequently modified
pages. Consequently, the downtime is reduced, because only a few pages,
instead of the whole memory, are transmitted while the VM is down. Hence,
in the first round, all the memory pages are transferred from source to desti-
nation with a minimum rate specified by the network administrator. Then,
on the other rounds, only the memory pages that were dirtied by the oper-
ating system will be transferred. The transfer rate is updated at each round
according to an adaptive mechanism based on the “dirtying rate”. In each
round, the dirtying rate is calculated as the ratio of number of dirtied pages
on the last round and the duration of the last round. The maximum rate of
the next round is then obtained by adding a constant increment of 50Mb/s
to the calculated dirtying rate. The pre-copy ends if the maximum rate of
the round is equal to the maximum rate specified by the administrator or
less then 256kB of dirtied pages remains to be transferred. The next phase is
called stop-and-copy. In this phase the VM is suspended and the hot-pages
are transferred with the maximum transfer rate. Then, the new physical
node confirms the reception of the whole memory to the old physical node.
The Xen built-in migration is inadequate for virtual networks due to the high
packet loss rate during the VM downtime. Other problem of Xen built-in
migration for virtual routers is that it assumes a migration within a local
area network, which does not fulfill our objectives of migrating routers. In-
deed, we cannot assume that physical nodes always belong to the same local
network.

2.2.2 Proposal for Xen Migration: Data Plane and
Control Plane Separation

The Horizon Xen-based Live Migration aims at obtaining a virtual router
that is able to migrate to different physical network elements with no packet
loss. To obviate the packet loss during live migration, we propose a plane
separation in Xen [30, 15]. The plane separation is a technique for dividing
each network node into two parts: a control plane, responsible for running all
the control algorithms and for constructing the routing table; and the data
plane, which is responsible for forwarding the traffic. A similar approach was
proposed for OpenVZ, a virtualization platform that provides multiple virtual
user spaces over the same operating system [26]. Xen, however, presents a
more programmable virtualization platform, because each virtual router can
have its own software set, including operating system and protocol stack.

We developed a prototype that maintains in the VM the control plane,

18

while the data plane is implemented in Domain 0. Each virtual router has
its own forwarding table in Domain 0 and each table is a copy of the origi-
nal forwarding table created by routing software running in the VM. When
Domain 0 receives a control message, it checks which network the message be-
longs to and forwards the message to the corresponding VM. When Domain
receives a data message, it is forwarded by Domain 0 using the forwarding
table that corresponds to that virtual network.

The proposed migration mechanism works as follows. First, the Xen
standard migration is started to migrate the VM. After the iterative pre-
copy phase, the VM is paused and the remaining dirty memory pages are
transferred. During this time, the data path is still working at Domain 0,
with no interruptions or packet losses. Also, a daemon is started in Domain 0
to buffer the control packets for the VM that is being migrated. When the
whole memory is copied, the VM is resumed on the new physical machine
(PM) and the network connections are created in the new Domain 0 using
a dynamic interface binding module, which is responsible for mapping the
virtual network interfaces to the physical network interfaces of the new PM.
After that, a tunnel from the old PM to the new PM is created in order to
transfer the control packets that were buffered in the old Domain 0 and also
the new control packets. Finally, the ARP reply is broadcast to update the
links and the data path in the old PM is removed.

This migration mechanism guarantees no packet loss in the data plane
during the VM migration, which is an important characteristic for a virtual
router. Moreover, there is also no control packet loss. The mechanism inserts
only a delay in the control packet delivery. The proposed mechanism, how-
ever, is based on Xen default migration, which means that it still needs that
routers are within the same local area network. In addition, the mapping of
a virtual link over multiple physical links is still an open issue that depends
on solutions such as IP tunnels or instantiating new virtual routers on the
network. For instance, in Fig. 2.5, we migrate virtual node B from physical
node 2 to physical node 6. Physical node 6, however, is not a one-hop neigh-
bor of physical node 1. Consequently, to complete the link migration, we
need to create a tunnel from physical node 6 to physical node 1 to simulate
a one-hop neighborhood. The other solution is to instantiate a new virtual
router to substitute the tunnel. This solution, however, modifies the virtual
topology and influences the routing protocol operation.

2.2.3 Implementation Overview

As seen in section 2.2.2, our proposal is currently implemented as a proto-
type built on Xen with plane separation approach. From now on, the proposal

19

Figure 2.5: Example of router migration in Xen when a virtual link is mapped
to a multiple-hop path in the physical network.

will be referred as the Horizon Xen-based Live Migration functionality.
It is necessary to create the separated control and data planes, in order to

implement the Xen-based Live Migration functionality. The Domain 0 should
know all VMs that are in the same physical machine, with the purpose of
sending control messages to the correct VM. Furthermore, control and data
planes should interact in order to maintain the forwarding base consistent.
Therefore, we create two components: the Hello component and the Route
Change component. There is also another component that actually migrate
the virtual machine from one physical machine to other, the Migration Advise
component. This component runs on both source and destination Domains 0
and it is responsible for the migration of information communication.

When the virtual router is instantiated, a daemon is started within the
virtual router. This daemon creates a connection to a daemon running in
Domain 0. The first step of this communication aims at activating the sepa-
rated plane mechanism. The first component is the Hello component, which
informs to Domain 0 about the virtual router, sending hostname and network
interfaces information. The Domain 0, with this information, creates a route
table for this virtual router and the rules for using this table. From this
moment on, all the packets of this router are forwarded by Domain 0 using
the virtual router specific route table. After that, control plane monitoring
starts. When a route is changed, this change are also executed in Domain 0.

20

The Route Change component monitors the route modifications.
The router keeps forwarding packets using data plane in this Domain 0

until the network manager decides to migrate it to another physical machine.
The standard Xen migration is our prototype first step. Using this mecha-
nism, we migrate the control plane, but we keep the data plane in its current
physical machine, also called source Domain 0. After that, the forwarding
environment, the route table and the rules, of this virtual router is created
on the destination physical machine, also called destination Domain 0. The
new route table is populated with the control plane routes in the migrated
virtual machine. At this moment, we have the source Domain 0 forward-
ing the packets and the destination Domain 0 ready to forward. We start
migration of links.

In order to migrate the links, we use the ARP mechanism, which forces
our prototype to map one logical hop into two or more physical hops. Because
of that, our migration takes place between machines that has connectivity
with all the logical neighbors. The ARP reply message is sent for notifying
the MAC address of the interface with the given IP address. Hence, the
destination physical machine sends the ARP reply message for each interface
used by this virtual router, notifying the neighbors that the router is currently
in another location. Thereafter, all the links are migrated and the data plane,
that is running over the source Domain 0, is dropped. The Migration Advise
module accomplishes the migrating process and calls the Hello and Route
Change modules following its demands.

These are the main steps of the Horizon Xen-based Live Migration func-
tionality implemented. The Section 2.2.4 gives more implementation details
of each module used in the prototype.

2.2.4 Implementation Details

In this section, we describe the main objectives and the steps of each
message in our services. There are activities executed before sending the
request message in the client side and after receiving the request message
in the server side. In most cases, the response message is an application
acknowledgement message, returning to client whether the task invoked was
done correctly. Because of that, we do not talk about the activities done
involving the reception of response messages.

2.2.4.1 Hello Component

The Hello message informs the Domain 0 about the existence of the vir-
tual machine which has sent the message. The message contains the virtual

21

machine name and information about the virtual machine network interfaces.
The Hello message is a request that the virtual machine makes to Do-

main 0. The virtual machine must prepare the request message and, then,
Domain 0 process this information in order to create the environment that
allows the virtual machine to forward packets through Domain 0. The pro-
cedure of the Hello component is represented in Table 2.1.

Client Server
1. User starts the separated router
mechanism inside virtual machine

1. Save node information

2. Get node hostname and informa-
tion about interfaces

2. Create virtual machine route table

3. Send Hello Request Message to
Domain 0

3. Create rules to use this table

4. Add routes to reach virtual ma-
chine
5. Bind the virtual interfaces to
physical interfaces
6. Send Hello Response to virtual
machine

Table 2.1: Hello module algorithm.

2.2.4.2 Route Change Component

The Route Change message aims at informing Domain 0 that the control
plane has detected a change in one route. Domain 0 is able to change the
updated route in the virtual machine forwarding table. A route is defined by
the network and the mask of the destination field of the IP protocol and has
some parameters such as next hop, metric, and output interface.

The control plane monitors three kinds of modification: adding, alter-
ing and removing. The adding modification consists in a new entry to the
routing and forwarding table. The altering modification represents that any
parameter of a route has been changed when the route was updated. Finally,
the removing modification detects the routes that had disappeared from the
routing table and must then be removed from the forwarding table.

After Domain 0 finishes the modifications in forwarding table, it must
notify the virtual machine that the process was successful. If the process
fails, the virtual machine must resend the route change information to Do-
main 0. The procedure of the Route Update component is represented in the
Table 2.2.

22

Client Server
1. Monitor FIB changes 1. Discover the virtual machine that

sent the route change
2. Triggered by route changes 2. Get the virtual machine route ta-

ble
3. Discover the change type (Add,
Alter, Remove)

3. Change the route in the virtual
machine route table

4. Send Route Change Request to
Domain 0

4. Send Route Change Response to
virtual machine

Table 2.2: Route Change module algorithm.

2.2.4.3 Migration Advise Component

The Migration Advise component, which runs in the migration source
Domain 0, interacts with the destination Domain 0. The main objective of
this component is to prepare the destination Domain 0 to forward the packets
of the migrated virtual machine. When the control plane migration process
ends, the module recreates the data plane. This procedure is represented in
Table 2.3.

Client Server
1. User starts the migration process 1. Forward the message to VM using

Communication Channel
2. Get the destination Dom 0 and
VM

2. VM resend Hello Message Request
to Domain 0

3. Get VM communication channel
IP

3. VM re-send the routes to Do-
main 0

4. Send Migration Advise Request to
destination Domain 0

4. VM notify the Domain 0 that the
all the messages were sent
5. Send Message Advise Response to
source Domain 0

Table 2.3: Migration Advise module algorithm.

2.3 Xen Statistics

The Measures Gatherer is an important module of the Horizon prototype.
The module retrieves information about resource allocation and resource us-
age of Domains 0 and Domains U. With this information, the prototype can

23

be aware of the resource allocation status of the entire Xen Network. The
services provided by the Measures Gatherer can be accessed through XML
message requests. The response is also a XML message.

The Measures Gatherer module is composed of several components that
are specialized in gathering information from different measurement tools.
The current version of the module contemplates the Xentop Gatherer, Ifcon-
fig Gatherer, Memory Gatherer and Latency Gatherer Measures components.
The Measures Gatherer subsystem has also two special components, the Mea-
sures Gatherer Handler, which is responsible for allowing the communication
with the other modules of the Xen prototype, and the Measures Gatherer
main component, which is responsible for calling specific measurement mod-
ules and consolidating the output to fulfill the requests.

The Measures Gatherer module architecture is shown in Fig. 2.6.

Figure 2.6: Measures Gatherer architecture, along with its components

2.3.1 Measures Gatherer Handler Component

The Measures Gatherer Handler component is responsible for interacting
with the basic communication module of the prototype. The component
receives and answers requests in a XML message exchange fashion. The
component has a built-in XML parser, which decodes the requests and passes

24

it to the Measures Gatherer Main component. The requests must be fulfilled
through the getMeasures() directive. Upon the receiving of the directive,
the Measures Gatherer Main Component retrieves the needed information
and returns it as a XML message.

The XML request received by the Measures Gatherer Handler component
is in the pattern of the Listing 2.1:

Listing 2.1: XML received by the Measures Gatherer Handler module.
<XenPrototype>

<NodePK>NODE PUBLIC KEY</NodePK>
<Appl i ca t ion>

<Appl i ca t i on Id>4</App l i ca t i on Id>
<Appl icat ionRequest>

<Measures>
<UsedGatherers>

< i f c o n f i gGa th e r e r>1</ i f c on f i gGa th e r e r>
<xentopGatherer>0</xentopGatherer>
<l a tencyGatherer>1</ latencyGatherer>
<memGatherer>1</memGatherer>

</UsedGatherers>
<GathererParameters>

< i f c o n f i gGa th e r e r>
< i t e r a t i o n s>4</ i t e r a t i o n s>

</ i f c on f i gGa th e r e r>
</GathererParameters>

</Measures>
</Appl icat ionRequest>

</Appl i ca t ion>
</XenPrototype>

Meaning of the tags:

• <XenPrototype>: Indicates the beginning of a Xen Prototype message

• <NodePK>:Contains the public key of the node that generated the mes-
sage

• <Application>:Indicates that the following content is directed to or
originated from an application

• <ApplicationId>:Identification of the application, which the message
is directed to or originated from

• <ApplicationRequest>:Indicates that the following content is an ap-
plication request

25

• <Measures>:Indicates that the following content specifies how the mea-
sures should be done

• <UsedGatherers>:Indicates that the following content will specify which
gatherers to use

• <ifconfigGatherer>:Indicates whether the Ifconfig Gatherer should
be used. 1 indicates it should be used, 0 indicates it should not.

• <xentopGatherer>:Indicates whether the Xentop Gatherer should be
used. 1 indicates it should be used, 0 indicates it should not.

• <latencyGatherer>:Indicates whether the Latency Gatherer should
be used. 1 indicates it should be used, 0 indicates it should not.

• <memGatherer>:Indicates whether the Latency Gatherer should be used.
1 indicates it should be used, 0 indicates it should not.

• <GathererParameters>:Indicates that the following content will spec-
ify gatherer parameters

• <ifconfigGatherer>:Indicates that the following content will specify
ifconfig gatherer parameters

• <iterations>:Indicates the number of iterations ifconfig should use

In the previous XML example all the gatherers must be specified within
the UsedGatherers scope in order to know which gatherers should be used.
The GathererParameters scope should only contain parameters tags for the
parameters that should not be used with their default values.

2.3.2 Measures Gatherer Main Component

The Measures Gatherer Main component is responsible for accessing the
required gatherer modules to collect the desired measures and consolidate
their measures in a single XML response. The Measures Gatherer Main
component is accessed by the Measures Gatherer Handler whenever a new
request arrives. The XML generated by the Measures Gatherer Main com-
ponent is in the pattern of the Listing 2.2:

Meaning of the new tags:

• <MeasureToolResponse>:Indicates that the following data contains
the measures of a gatherer

26

Listing 2.2: XML generated by the Measures Gatherer Main module.
<XenPrototype>

<NodePK>NODE PUBLIC KEY</NodePK>
<Appl i ca t ion>

<Appl i ca t i on Id>1</App l i ca t i on Id>
<Appl icat ionResponse>

<MeasureToolResponse>
<MeasureToolId>1</MeasureToolId>
MEASURE TOOL MEASURES DATA

</MeasureToolResponse>
<MeasureToolResponse>

MEASURE TOOL DATA
</MeasureToolResponse>

</Appl icat ionResponse>
</Appl i ca t ion>

</XenPrototype>

• <MeasureToolId>:Identification of the gatherer from which the follow-
ing measures belong

The other tags inside the XML are specific for each gatherer and will be
specified in sections describing each specific gatherer.

2.3.3 Xentop Gatherer Component

The Xentop Gatherer component is responsible for gathering information
acquired from the xentop measurement tool. The Xentop Gatherer module
executes only in Domain 0 and provides non-invasive information from all
the domains running inside the physical machine.

The Xentop Gatherer component receives the parameters of how it should
collect the measures and provides a method called getMeasures() to retrieve
the acquired measures in XML format. The measures are sent to the Mea-
sures Gatherer Main module.

The Xentop Gatherer component allows us to decide the number of iter-
ations of the Xentop tool and the sampling interval during these iterations.

The XML message generated by the Xentop Gatherer module the pattern
described in Listing 2.3:

Meaning of the new tags:

• <Iteration>:Indicates the beginning of the description of a measure-
ment round

• <IterationNum>:Identifies the number of the iteration

27

Listing 2.3: XML part generated by the Xentop Gatherer module.
<MeasureToolResponse>

<MeasureToolId>1</MeasureToolId>
<I t e r a t i o n>

<IterationNum>1</ IterationNum>
<Iterat ionDateTime>1263385100.37</ Iterat ionDateTime>
<Domain>

<DomainName>Domain−0</DomainName>
<DomainCPUTime>2522</DomainCPUTime>
<DomainCPUPercentUsage>0 .0</DomainCPUPercentUsage>
<DomainMemory>2824192</DomainMemory>
<DomainMemoryPercentUsage>90 .3</

DomainMemoryPercentUsage>
<DomainVCPUCount>4</DomainVCPUCount>
<DomainNetInterfacesCount>0</

DomainNetInterfacesCount>
<NetworkInter face>

<NetworkInterfaceNumber>0</
NetworkInterfaceNumber>

<ReceivedBytes>34062339</ReceivedBytes>
<ReceivedPackets>267213</ReceivedPackets>
<Recept ionErrors>0</Recept ionErrors>
<ReceptionDrops>19</ReceptionDrops>
<TransmittedBytes>28</TransmittedBytes>
<TransmittedPackets>1</TransmittedPackets>
<Transmiss ionErrors>0</Transmiss ionErrors>
<TransmissionDrops>0</TransmissionDrops>

</NetworkInter face>
<NetworkInter face>

NETWORK INTERFACE DATA
</NetworkInter face>

</Domain>
<Domain>

DOMAIN DATA
</Domain>

</ I t e r a t i o n>
<I t e r a t i o n>

ITERATION DATA
</ I t e r a t i o n>

</MeasureToolResponse>

• <IterationDateTime>:Contains date and time of the moment the
measures were acquired

• <Domain>:Indicates the beginning of the description of a domain mea-
surement

28

• <DomainName>:Contains the name of the domain being measured

• <DomainCPUTime>:Contains CPU time in seconds spent by the domain

• <DomainCPUPercentUsage>:Contains CPU usage in percentage

• <DomainMemory>:Contains the total amount of memory allocated to
the domain in kbytes

• <DomainMemoryPercentUsage>: Contains the total amount of memory
allocated to the domain in percentage

• <DomainVCPUCount>:Contains the number of virtual CPUs a domain
has

• <DomainNetInterfacesCount>:Contains the number of virtual net-
work interfaces a domain has

• <NetworkInterface>:Indicates the beginning of the description of a
network interface

• <NetworkInterfaceNumber>:Number of the virtual network interface

• <ReceivedBytes>:Total amount of bytes received by the network in-
terface

• <ReceivedPackets>:Total amount of packets received by the network
interface

• <ReceptionErrors>:Total amount of packet reception errors in the
network interface

• <ReceptionDrops>:Total amount of packets dropped by the network
interface during reception

• <TransmittedBytes>:Total amount of bytes transmitted by the net-
work interface

• <TransmittedPackets>:Total amount if packets transmitted by the
network interface

• <TransmissionErrors>:Total amount of packet transmission errors
detected in the network interface

• <TransmissionDrops>:Total amount of packets dropped by the net-
work interface during transmission

29

2.3.4 Memory Gatherer Component

The Memory Gatherer component is responsible for gathering memory
information acquired from within a domain. The Memory Gatherer compo-
nent executes both in Domains 0 and Domains U providing invasive memory
information. It is necessary to use the invasive procedure because Xentop
provides the amount of memory allocated to a domain but lacks information
about how much memory is effectively in use.

The Memory Gatherer component receives the parameters of how it should
collect the measures and provides a method called getMeasures() for re-
turning the acquired measurements in XML format for consolidation with
the other measurement tools by the Measures Gatherer Main module.

The parameters for acquiring measurements are the number of iterations
that should be taken and the interval between iterations. The information is
retrieved from the /proc/meminfo kernel interface.

The XML message generated by the Memory Gatherer module follows
the pattern of Listing 2.4:

Listing 2.4: XML part generated by the Memory Gatherer module.
<MeasureToolResponse>

<MeasureToolId>4</MeasureToolId>
<I t e r a t i o n>

<IterationNum>1</ IterationNum>
<Iterat ionDateTime>1272889043.56</ Iterat ionDateTime>
<FreeMem>1110692.0</FreeMem>
<UsedMem>1966096.0</UsedMem>
<TotalMem>3076788.0</TotalMem>
<FreeSwap>8773324.0</FreeSwap>
<UsedSwap>239100.0</UsedSwap>
<TotalSwap>9012424.0</TotalSwap>

</ I t e r a t i o n>
<I t e r a t i o n>

ITERATION DATA
</ I t e r a t i o n>

</MeasureToolResponse>

Meaning of the new tags:

• <FreeMem>:Contains the amount of free RAM in kilobytes

• <UsedMem>:Contains the amount of used RAM in kilobytes

• <TotalMem>:Contains the total amount of RAM in kilobytes

30

• <FreeSwap>:Contains the amount of free swap memory in kilobytes

• <UsedSwap>:Contains the amount of used swap memory in kilobytes

• <TotalSwap>:Contains the total amount of swap memory in kilobytes

2.3.5 Ifconfig Gatherer Component

The Ifconfig Gatherer component is responsible for gathering network
information acquired from within a domain. The Ifconfig Gatherer mod-
ule executes both in Domains 0 and Domains U providing invasive network
information.

The Ifconfig Gatherer component receives the parameters about how it
should collect the measurements in its constructor and provides a method
called getMeasures() for returning the acquired measures in XML format for
consolidation with the other tools measurements by the Measures Gatherer
Main module.

The parameters for acquiring measurements are the number of iterations
that should be taken with ifconfig and the interval between iterations.

The XML message generated by the Ifconfig Gatherer component is in
the pattern of the Listing 2.5:

Meaning of the new tags:

• <NetworkInterface>:Indicates the beginning of the description of a
network interface

• <NetworkInterfaceName>:Contains the name of the network interface

• <LinkEncap>:Contains the link encapsulation type

• <LinkMAC>:Contains the interface MAC address

• <IPv4Addr>:Contains the IPv4 address of the interface

• <IPv4BcastAddr>:Contains the IPv4 broadcast address of the interface

• <IPv4NetMask>:Contains the IPv4 netmask of the interface

• <IPv6Addr>:Contains the IPv6 address of the interface

• <IPv6Scope>:Contains the scope of the IPv6 address

• <LinkMetric>:Contains link metric value

• <LinkMTU>:Contains link Maximum Transmission Unit

31

Listing 2.5: XML part generated by the Ifconfig Gatherer module.
<MeasureToolResponse>

<MeasureToolId>2</MeasureToolId>
<I t e r a t i o n>

<IterationNum>1</ IterationNum>
<Iterat ionDateTime>1272886080.72</ Iterat ionDateTime>
<NetworkInter face>

<NetworkInterfaceName>l o</NetworkInterfaceName>
<LinkEncap>Local Loopback</LinkEncap>
<LinkMAC></LinkMAC>
<IPv4Addr>1 2 7 . 0 . 0 . 1</IPv4Addr>
<IPv4BcastAddr></IPv4BcastAddr>
<IPv4NetMask>2 5 5 . 0 . 0 . 0</IPv4NetMask>
<IPv6Addr> : : 1 /128</IPv6Addr>
<IPv6Scope>Host</ IPv6Scope>
<LinkMetric>1</LinkMetric>
<LinkMTU>16436</LinkMTU>
<TransmittedBytes>82280</TransmittedBytes>
<TransmittedPackets>309</TransmittedPackets>
<Transmiss ionErrors>0</Transmiss ionErrors>
<TransmissionDrops>0</TransmissionDrops>
<TransmissionOverruns>0</TransmissionOverruns>
<Transmis s i onCarr i e rError s>0</

Transmis s i onCarr i e rError s>
<Transm i s s i onCo l l i s i on s>0</ Tran sm i s s i onCo l l i s i on s>
<TransmissionQueueLength>0</TransmissionQueueLength>
<TransmissionRate></TransmissionRate>
<ReceivedBytes>82280</ReceivedBytes>
<ReceivedPackets>309</ReceivedPackets>
<Recept ionErrors>0</Recept ionErrors>
<ReceptionDrops>0</ReceptionDrops>
<ReceptionOverruns>0</ReceptionOverruns>
<ReceptionFrameErrors>0</ReceptionFrameErrors>
<ReceptionRate></ReceptionRate>

</NetworkInter face>
<NetworkInter face>

NETWORK INTERFACE DATA
</NetworkInter face>

</ I t e r a t i o n>
<I t e r a t i o n>

ITERATION DATA
</ I t e r a t i o n>

</MeasureToolResponse>

• <TransmittedBytes>:Contains the total amount of bytes transmitted
through the interface

32

• <TransmittedPackets>:Contains the total amount of packets trans-
mitted through the interface

• <TransmissionErrors>:Contains the total amount of transmission er-
rors from the interface

• <TransmissionDrops>:Contains the total amount of packets dropped
from the interface during transmission

• <TransmissionOverruns>:Contains the total amount of transmission
overruns from the interface

• <TransmissionCarrierErrors>:Contains the amount of transmission
carrier errors from the interface

• <TransmissionCollisions>:Contains the total amount of transmis-
sion collisions from the interface

• <TransmissionQueueLength>:Contains the length of the transmission
queue

• <TransmissionRate>:Contains the transmission rate in bytes per sec-
onds calculated using the iterations, value not present in the first iter-
ation

• <ReceivedBytes>:Contains the total amount of bytes received through
the interface

• <ReceivedPackets>:Contains the total amount of packets received
through the interface

• <ReceptionErrors>:Contains the total amount of reception errors from
the interface

• <ReceptionDrops>:Contains the total amount of packets dropped from
the interface during reception

• <ReceptionOverruns>:Contains the total amount of reception over-
runs from the interface

• <ReceptionFrameErrors>:Contains the amount of reception frame er-
rors from the interface

• <ReceptionRate>:Contains the reception rate in bytes per seconds
calculated using the iterations, value not present in the first iteration

33

2.3.6 Latency Gatherer Component

The Latency Gatherer component is responsible for gathering latency in-
formation for all the neighbors of a domain. The Latency Gatherer compo-
nent executes both in Domains 0 and Domains U providing invasive network
information. The Latency Gatherer uses information from the Topology Dis-
cover component to know which addresses should be probed using the ping
profiling tool.

The Latency Gatherer component receives the parameters of how it should
collect the measures in its constructor and provides a method called getMeasures()
for returning the acquired measurements in XML format for consolidation
with the other tools measures by the Measures Gatherer Main component.

The parameters for acquiring measurements are the number of iterations
that should be taken, the interval between iterations and also the number of
iterations and delay used in the ping probing.

The XML message generated by the Latency Gatherer component is in
the pattern of Listing 2.6:

Meaning of the new tags:

• <IterationNeighbor>: Indicates the beginning of the description of
the latency measures to a neighbor

• <NeighborIP>:Contains the IP address of the neighbor

• <NeighborData>:Indicates the beginning of the measures data

• <PacketsTransmitted>:Contains the number of transmitted probe
packets

• <PacketsReceived>:Contains the number of received probe packets

• <PercentageOfPacketLoss>:Contains the packet loss percentage value

• <TimeTaken>:Contains the time spent for measures of the iteration

• <RttData>:Indicates the beginning of the description of the Round
Trip Time data

• <Min>:Contains the minimal RTT value

• <Avg>:Contains the average RTT value

• <Max>:Contains the maximum RTT value

• <MDev>:Contains the mean deviation of the RTT value

34

Listing 2.6: XML part generated by the Latency Gatherer module.
<MeasureToolResponse>

<MeasureToolId>3</MeasureToolId>
<I t e r a t i o n>

<IterationNum>1</ IterationNum>
<Iterat ionDateTime>1272889043.56</ Iterat ionDateTime>
<I t e ra t i onNe ighbor>

<NeighborIP>192 . 168 . 1 . 1 10</NeighborIP>
<NeighborData>

<PacketsTransmitted>20</PacketsTransmitted>
<PacketsReceived>20</PacketsReceived>
<PercentageOfPacketLoss>0</

PercentageOfPacketLoss>
<TimeTaken>3801</TimeTaken>
<RttData>

<Min>0 .161</Min>
<Avg>0 .229</Avg>
<Max>0 .260</Max>
<MDev>0 .026</MDev>

</RttData>
</NeighborData>

</ I t e ra t i onNe ighbor>
<I t e ra t i onNe ighbor>

NEIGHBOR DATA
</ I t e ra t i onNe ighbour>

</ I t e r a t i o n>
<I t e r a t i o n>

ITERATION DATA
</ I t e r a t i o n>

</MeasureToolResponse>

2.4 Xen Topology

The objective of this module is to discover the network topology. The
topology cannot be inferred using only the list of registered nodes because
it does not present the interconnection among network elements. The new
architecture for the Internet, in the current project proposal, suggests that
different services have different requirements, and independent virtual net-
works implement these requirements. Therefore, it is necessary to know both
how the virtual networks organize themselves over the physical network and
the physical network topology. In our prototype, we created a module to
provide physical and virtual network topologies called Xen Topology. To

35

reach this goal, the module probes all neighbors 2 of each network element
using the Nmap Security Scanner [31].

2.4.1 Methodology

The Xen Topology module of our prototype has three components. The
first one, called Scanning component, is responsible for discovering all the
neighbors of one network element. This module runs on every physical or
virtual element. The second module aims at consolidating the information of
one physical network element, which includes the neighbors in the physical
network and the neighbors of all virtual elements running over this physical
element. The last one, which runs on the controller node 3, consolidates
the topology information of all network elements and creates the network
topology graph of the physical and of the virtual networks.

2.4.1.1 Topology Consolidate Component

The Virtual Machine Server calls the Topology Module in order to dis-
cover the network topology. The Virtual Machine Server has a list of the
registered nodes of the physical network, but there is no information about
the interconnections among these nodes. The Topology Module will provide
the interconnection information. In order to reach this goal, the Topology
Module asks every physical node in the registered node list about the inter-
connection information of the physical and virtual elements. After receiving
all the interconnection information, the Topology Consolidate component
creates the topology of the networks (Fig. 2.7. We model our network topol-
ogy as a graph. Therefore, the Topology Consolidate component returns a
graph representation to the Virtual Machine Server. The graph is represented
by the adjacency matrix of each network. Thus, the Topology Module allows
the Virtual Machine Server to provide the current topology of physical and
virtual networks.

2.4.1.2 Node Consolidate Component

The Node Consolidate component runs on each physical element of the
network and works as Fig. 2.8 illustrates. This component aims at obtaining
the information about the neighbors of this element in both physical and

2The term “neighbor” means those nodes which have direct interconnection through
one of the network interfaces of the network element.

3The controller node is the Virtual Machine Server, described in the report 2.2.

36

Figure 2.7: The Topology Consolidate component receives the registered
node list, asks all the network elements about its neighbors and provides the
network topology.

virtual networks. The Topology Consolidate component calls the Node Con-
solidate component, which has three tasks. The first one is to discover the
physical neighbors of the network element. The second one is to discover
all the neighbors of each virtual network element running over this physical
network element. Both discoveries use the Scanning component presented in
Section 2.4.1.3. The first two tasks run at the same time because there is no
dependency between them.

The last task of the Node Consolidate component is to consolidate in-
formation. The consolidation consists of the neighborhood information of
the physical network element and a list of virtual network elements with
its neighbors. The module returns the consolidated information to the con-
troller, which runs the Topology Consolidate component using the messages
in XML format.

2.4.1.3 Scanning Neighbors Component

The Scanning Neighbors component provides a list of all neighbors of
one network element. Both physical and virtual network elements run this
component. The neighbor discovery uses the Nmap Security Scanner tool,
which probes all the IP range of each network interface of the network el-
ement. We add to the neighborhood list all IP addresses that respond the
probes. After that, we have all the neighbors of the network element, which
are connected by all network interfaces. The neighborhood information has

37

Figure 2.8: The Node Consolidate component discovers the consolidated
neighborhood information of the physical network element and all virtual
elements running on this physical element.

the neighbor’s IP and MAC addresses and the latency of the link. After
discovering the neighbors of all network interfaces, the component creates
the neighborhood list and transfers it to the Node Consolidate component
through XML messages, as we see in Fig. 2.9.

2.5 New I/O Virtualization Techniques

2.5.1 Introduction

Virtualization has resurged as a way to increase resource utilization ef-
ficiency [32, 33] because of the increasing power of modern servers which
are leading to underutilized hardware. Using virtualization, it is possible
to migrate a service to a Virtual Machine (VM) and to consolidate several
VMs into a single server, achieving better resource utilization and saving
on maintenance costs, such as cooling and energy consumption. The use
of virtualized environments, however, brings performance drawbacks. The
virtualization layer introduces overhead because it requires an extra task for
virtual machine multiplexing. This overhead is particularly critical for I/O
intensive loads [34].

38

Figure 2.9: The Scanning Neighbors component uses the Nmap tool to dis-
cover all the neighbors connected though all network interfaces.

One of the critical cases of heavy I/O utilization is network intensive
environments. In this case, providing high throughput and low delay are
both required. Moreover, each VM network traffic must be isolated from
each other.

Nowadays, I/O virtualization is under responsibility of the Virtual Ma-
chine Monitor (VMM), which must multiplex outgoing data flows and de-
multiplex incoming data flows. Regarding network virtualization, the VMM
must share the link, controlling its access and multiplexing incoming packets
to the correct virtual network interface. These tasks must be fair considering
all VMs.

In order to improve overall network virtualization performance, several
techniques have been proposed: direct assignment of device [35], multiqueued
devices [36] and single root I/O virtualization (SR-IOV) [37]. These tech-
niques are briefly discussed in the following sections. We also discuss our
current efforts on incorporating these new technologies in our prototype.

39

2.5.2 Techniques

2.5.2.1 Direct I/O Access

The Direct I/O technology is a new functionality provided by modern
motherboards to safely allow direct device access from VMs. This tech-
nique allows device Direct Memory Access (DMA) to different memory areas.
Hence, it provides the ability for a device transfers data directly to a VM,
without VMM intervention. Memory accesses are assisted by the chipset of
the motherboard, which intercepts device memory accesses and makes use of
I/O page tables to verify whether the access is permitted and translate the
required address to the physical memory address. This mechanism, however,
has scalability problems, since a physical device cannot be shared between
several VMs. It can only be assigned to one VM.

2.5.2.2 Multiple Queues

The VMM has an important task of classifying packets. Packet classi-
fication incurs in great VMM processing overhead, since it demands that
the VMM defines the destination VM of all incoming packets and multiplex
all outgoing packets. Modern Network Interface Cards (NICs) address this
problem by having multiple queues and doing packet classification by them-
selves. To accomplish this feature, the NIC classifies a packet using a certain
pattern (VLAN tag or MAC destination address) and pushes it into the ap-
propriate queue. One or more queues can be assigned to VMs. Thus, they
have their traffic isolated from each other.

2.5.2.3 Single Root I/O Virtualization (SR-IOV)

The SR-IOV standard allows sharing PCI-Express devices, such as NICs,
among several VMs and accesses them as if they were native. The standard
provides a way of bypassing the VMM involvement in data movement. This
standard approach also defines a way of sharing a NIC to several VMs. NIC
access, using multiple queues and direct I/O, follows the SR-IOV standard.

2.5.3 Implementation

We are currently developing a prototype to analyze the performance of
the new I/O virtualization techniques. These techniques provide native de-
vice sharing support for virtual machines, minimizing overheads in network
virtualization. Our final goal is to provide a high performance network in-
frastructure, capable of fulfilling all requirements of virtual networks.

40

2.5.4 Installation

The newest version of the Xen hypervisor, at the time of this document,
is 4.0.0. Xen 4.0.0 has several new features and some of them are related to
the new I/O virtualization techniques. This version of Xen is used in this
prototype.

An important issue is the management domain Kernel, the Domain 0
Kernel. We need a compatible kernel supporting the new features to configure
the devices and hypervisor, making the environment fully functional. The
newest Kernel that works with Xen 4.0.0 hypervisor is 2.6.32 Linux Kernel
(stable version). Several new features are still under development and are
not currently supported.

Currently, it is possible to give a virtual machine full control of a device
with Direct Access. It is also possible to create virtual functions, used to
access PCI-Express devices, of SR-IOV specification, but it is not possible to
give control of these virtual functions to a virtual machine.

2.5.4.1 Direct Access

With Direct Access, a network interface is assigned to a VM, having full
control of the interface. The process, that enables the Direct Access in Xen
architecture, occurs as follows. The first step is unbinding the device from the
default driver. Next, the device is bound to a special driver in Domain 0, the
pcibackend Xen driver. These steps are necessary for providing Xen with
the capability of writing and reading into the configuration memory space
of the device. Once the VM has started, the device is assigned to it. The
assignment is made using a special parameter in the VM configuration file
or a special command for PCI hot-plug, a standard for adding or removing
peripherals without restarting the platform or OS.

In our current efforts, the device is successfully assigned to a domain, but
using a legacy interrupt mode for interfacing the device with the VM. For
this reason, the performance we are experiencing is not comparable to native
Linux or Domain 0 performance. Future patches are expected to enable
the MSI-X (and MSI) interrupt model, which improves I/O virtualization
performance.

2.5.4.2 Multiple Virtual Functions

An SR-IOV compliant interface creates multiple instances of virtual PCI
express functions, used for the VMs to share the virtualized device. These
virtual functions appear to Domain 0 as new Ethernet interfaces. Although

41

these virtual functions are configured like an Ethernet interface, some opera-
tions are restricted to the physical PCI express function, the physical device.
In order to configure and manage SR-IOV compliant interfaces, there are
two network drivers: the master driver, which controls the physical function;
and the virtual function driver (VF driver). Our NIC master driver is igb
(or ixgbe for the 10GB NIC) and its VF driver is igbvf.

When the physical driver is instantiated, the number of virtual function
is determined, and they appear as new devices. These new devices are con-
trolled using the VF driver. These virtual devices are created using either
native Linux or Domain 0.

Currently these devices cannot be assigned to the VMs, because the entire
SR-IOV capability is not yet implemented.

42

Chapter 3

OpenFlow

This chapter presents our OpenFlow-based [11] prototype to build virtual
networks [38]. The OpenFlow-based prototype is based on a set of applica-
tions running over the NOX Controller [39] (Network Operating System).
The NOX is an OpenFlow controller that configures and manages the flows
in OpenFlow switches.

Our OpenFlow-based prototype is composed of NOX applications [40].
These applications implement five required primitives: instantiate flow (in-
stantiate primitive), delete flow (delete primitive), migrate flow (migrate
primitive), manage and change flows (set primitive), statistics acquisition
about switches and discover the physical network topology (monitor prim-
itive), and also a function to avoid loop within the network. The WebSer-
vice1 [41] interface provides the five primitives to the piloting system. The
architecture of the OpenFlow prototype is represented in Fig. 3.1.

The OpenFlow-based prototype accomplishes both sensors and actuators
defined in the primitives for the piloting system. The actuators are the Flow
Manager and the Flow Migration applications. The Flow Manager applica-
tion offers the instantiate/delete/set primitives. Flow Manager application
implements an interface between other NOX applications and the OpenFlow
commands. This application is responsible for adding, modifying and delet-
ing flows. Flow Manager application receives a flow operation request and
translates it into an OpenFlow command. Other actuator is the Flow Mi-
gration application, which implements the migration primitive. The Flow
Migration migrates a flow from one path to other with no packet loss.

The Stats and the Discovery applications implement the sensors in this
prototype. Both applications satisfy the monitor primitive. The Stats ap-
plication measures the network and collects statistics about switches. The

1The report 2.2 defines and explains the OpenFlow WebService.

43

Discovery application discovers the network topology and builds a graph
to represent the network. There is also the Spanning Tree application that
avoids occurrence of loops in the network and unnecessary broadcast retrans-
missions.

Figure 3.1: OpenFlow prototype architecture.

In addition, we use a tool that enables several NOX controllers to run
in parallel in order to slice the network in several virtual networks. This
tool, which is called FlowVisor [42], controls the network resource sharing,
as bandwidth, topology seen by the controllers, the traffic of each share, the
switch CPU usage, and the flow table. It implements the set primitive to
configure the parameters of each virtual network.

This chapter is organized as follows. Section 3.1 presents the FlowVisor,
that allows network resource sharing among NOX controllers. Section 3.2
presents the Migration application, which migrates the flow path with no
packet lost. Section 3.3 presents the Stats application. We show the statistics
and information that we gather from network and the switch. In section 3.4
we present the Discovery application that discovers the network topology and
build a graph representation of the network. Finally, section 3.5 presents the
Spanning Tree application that is responsible for avoiding loop occurrence
and unnecessary broadcast messages.

44

3.1 FlowVisor

3.1.1 Introduction

The FlowVisor [42] is a special type of OpenFlow [11] controller. It works
as a transparent proxy between network devices and other controllers, such
as NOX controllers. The main feature of FlowVisor is the ability to slice the
network and share network resources in a controlled and isolated fashion.

Figure 3.2: FlowVisor Working (Extracted from [42]).

As shown in Fig. 3.2, FlowVisor intercepts the OpenFlow messages sent
by guest controllers (1) and, using the user slicing policy (2), transparently
rewrites (3) the message, in order to delimit the control to a slice of the
network. FlowVisor only forwards messages from switches (4) to guests, if
the messages match the slice policy. FlowVisor slices the network, keeping
each slice isolated from each other.

FlowVisor can virtualize the network by slicing the use of switches be-
tween several controllers. Additionally, FlowVisor allows the creation of hier-
archies of FlowVisors, varying the network architecture, as shown in Fig. 3.3.
To slice the network among the controllers FlowVisor focus the sharing on
five primitive network resources: bandwidth isolation, topology discovery,
traffic engineering, device CPU monitoring and forwarding tables control.

45

Figure 3.3: FlowVisor hierarchy (Extracted from [42]).

3.1.2 Isolation Mechanisms

3.1.2.1 Bandwidth Isolation

To ensure bandwidth isolation, FlowVisor can modify the traffic from a
slice to match priority queues on switches. This can be done by three ways:
Vlan Priority Code Point (PCP), IP Type of Service (ToS) and OpenFlow
QoS.

Vlan tag has a three bit field, the Vlan PCP. This is a standard mechanism
to map a packet into one of eight priority queues. The OpenFlow protocol
has the ability to manage Vlan tags and the priority bits. Thus, it is possible
to mark all packets in a flow with a certain priority. IP ToS can be used in
the same way. OpenFlow QoS system may be used to map all traffic from a
slice to a certain queue in the OpenFlow Switch.

It is also important to know that what is guaranteed is the minimum
bandwidth. The distribution of the extra bandwidth is specific of each im-
plementation of the protocol. In the case of OpenFlow QoS, extra bandwidth
is divided in equal parts for each slice.

The exact meaning of each traffic class, or queue, must be configured
out-of-band. The network administrator must configure it using switch Com-
mand Line Interface (CLI) within each switch.

46

3.1.2.2 Topology

Controllers discover the network nodes and links them via the OpenFlow
protocol. In a non-virtual scenario, a controller listen a TCP port in order to
discover a network device when this device actively connects to the controller.

It is possible because the network element communicates with the con-
troller through a TCP connection. Since the FlowVisor acts as a proxy
between switch and controller, it proxies connections to a guest controller for
the switches in the virtual topology.

The OpenFlow Protocol also defines a message to list the available physi-
cal ports on a switch. The FlowVisor modifies the topology discovery message
response to report only ports that appear as available in the virtual topology.

3.2 OpenFlow Migration

3.2.1 Introduction

Flow Migration Application is a NOX [39] application that is responsible
for defining a new path and redirect an existent flow into it, with no packet
loss during the transaction. This application defines a new path between
source and destination OpenFlow switches, and changes the path of the flow
to the new one. To migrate a flow, the Flow Migration Application takes as
parameter a list of switches. This list defines an ordered group of switches
through which the new path flow must pass. In order to calculate the best
path from the source to the destination passing through the selected switches,
it is used a generalization of the Dijkstra Algorithm [43].

Figure 3.4: Flow Migration Schema.

Fig. 3.4 shows a flow migration schema. Initially, the source sends packets
to the destiny through the red path, composed by the nodes A-F-E-D. A new
flow from switch A to D is defined, with the requirement that it must pass
through the switches A, B, and D, the blue nodes in Fig. 3.4. A, B, and D is

47

not a complete path between A and D. Thus, the Flow Migration Application
calculates a complete path between source and destination switches using the
Dijkstra Algorithm. The Dijkstra Algorithm minimizes the number of links
in the new path. According to the algorithm, the node C must be included
in the path. After defining all nodes that compose the entire path, the
application starts to configure the flow in the switches backwardly, that is,
it configures the flow from the nearest destiny switch to the farthest. Since
all path flow from destiny to source is already configured but the link of the
source computer to the switch A, which is the last link to be changed, it
avoids packet loss.

3.2.2 Implementation

The Flow Migration Application is a NOX application composed of two
information classes: the flow migration class and MigrationHandler class.
These information classes do the flow migration and communicate with the
service supplicant, the Webserver Application.

The Flow Migration Application has two interfaces: one with the Web-
server Application, by which the control parameters are changed; and the
switch interface, where the application sends the flow configuration com-
mands.

This Section describes the the flow migration and MigrationHandler

information classes, the methods and parameters.

3.2.2.1 flow migration Class

This Flow Migration information class is a NOX Application. It inher-
its from the Component class, and rewrites some parent methods, such as
install and getInterface. The main purpose of this class is the flow
migration functionality.

The Webserver requests the migration of a flow and the class calcu-
lates the new path and sets it. This functionality is implemented by the
MigrateFlow method which takes as parameters:

• dpidsStr: a string composed by the DPIDs of the switches that must
be in the path. Each switch DPID must be separated of others by a ‘|’;

• match: a Python dictionary that contains the flow characteristics, as it
is in the first switch in the path. The first switch is the one in which
the source computer is linked in;

48

• priority: Flow priority. Its default value is the maximum value of
priority (65535);

• hardTimeOut: Flow hard timeout. Its default value is infinity;

• idleTimeOut: Flow idle timeout. Its default value is infinity;

The MigrateFlow method return is a XML message that contains the
entire flow path, an ending message which shows the ending of migration
process. If the migration process has an error, the XML message shows the
error and the erroneous switch.

3.2.2.2 MigrationHandler Class

MigrationHandler class is a general purpose class. It has methods which
implement some that are important for the migration process. The routines
implemented by MigrationHandler class are described below.
getDpidsList

This method gets a string containing a sequence of DPIDs separated by
a ‘|’. It returns a Python list of the switch DPIDs, in the order of the new
flow path.

getDictFromXML

This method gets a XML message, processes the message and returns a
Python dictionary containing all information of the XML message. It main-
tains the XML hierarchy, as it converts a XML tag in a dictionary recursively.
It makes dictionaries items of a dictionary, maintaining XML hierarchy.

CreateTopology

This method converts the network topology, given by a XML message, in
a matrix of 0’s and 1’s, where the value 1 means that there is a link from
row to column switch (and the value 0 means that there is not). Switches
are mapped in integer values to index the matrix columns and rows.

Dijkstra

This method calculates the best path between a node and the others. It
takes as parameters the topology graph and the source node. It returns a tu-
ple composed by a distance vector, that has the distance values of the source
node and the node correspondent to the index of the array and a vector of
previous nodes, that has the previous node in the path between the source
and the node correspondent to the index in the array.

49

getPath

This method gets the two vectors from the Dijkstra method and returns
a vector that represents the entire path from one node to another node.

getEntireDpidPath

For each pair of switches in the list of switches that the flow must pass
through, this method calculates the best partial paths. After that, this
method composes the partial paths in an entire path and converts the index
notation to the DPID value of its index.

getPorts

This method gets the pair of ports used to link switches in the vector
returned by the getEntireDpidPath method. This method returns a list
of DPIDs that defines the order of implementation of the flow through the
network, a list of output ports that defines the output port of each switch
in the DPIDs list and the input port, that defines the input port for the
correspondent switch in the DPIDs list.

3.3 OpenFlow Statistics

3.3.1 Introduction

The Stats Application is a NOX application responsible for gathering
OpenFlow switches information and converting them into XML messages.
The Stats application sends commands to the OpenFlow switched network,
querying each switch about its statistics and other information. Each switch
receives a request to report its description, datapath, table, aggregated flows,
and flows information to Nox controller. Each kind of information is obtained
with an appropriate OpenFlow Protocol command. The Stats Application
interfaces with the Web Server Application and Switchstats Application. The
Web Server Application provides an interface between the Stats Application
and an http client. The client can be a user interface or another application.
The Switchstats Application is responsible for sending OpenFlow commands
to switches and handling the responses. From now on, we will refer to Switch-
stats Application and Stats Application both together as Stats Application,
for simplicity purpose.

Stats Application periodically gathers information from the OpenFlow
switched network. Whenever a stats request is received, the Stats Appli-
cation responds with a XML message with the currently available informa-
tion.

50

3.3.2 Stats XML Message

The XMLmessage returned by the Stats Application contains information
of every switch registered on the Nox controller. The XML message begins
with a root tag named openflowstats and has a datapath tag for every
registered switch. Inside every datapath tag there is the switch identifier
number (dpid), the switch MAC address (dp mac), and specific tags con-
taining information and statistics retrieved from the switch. These specific
tags and the internal structures that stores switch information and statistics,
referred as Information Classes, are described in the next section.

3.3.3 Information Classes

3.3.3.1 Description of the Switch Device (dp desc stats)

This information class stores switch IP Address (ip), software description
(sw desc) (e.g. software version), hardware description (hw desc), serial
number (serial num) and manufacturer name (mfr desc).

3.3.3.2 Statistics about the Switch Datapath (dp stats)

A switch datapath is a logical structure that contains the Flow Table
and actions associated with each flow entry. This information class stores
datapath information in information subclasses, detailed in the following
sections.
General Information

This information subclass stores the number of switch implemented ta-
bles (n tables); the number of simultaneous supported actions (actions)
and switch caps number (caps). This information subclass also stores the
timers for polling switch for flows and ports.

Port Information
This information subclass stores statistics about each port state and de-

scription. The most important information stored in this information sub-
class are:

• port number (port no): identifies which physical port is described by
the data structure;

• hardware address (hw addr): MAC address of interface port;

• port name (name): interface port name;

51

• port speed (speed): nominal port speed;

• enabled flag (enabled): indicates if port is enabled or not;

• flood flag (flood): indicates port should forward or not flood flows;

• port state (state): shows the port state;

• link flag (link): indicates whether there is or not an active link in this
port;

• received packets number (rx packets): total amount of packets re-
ceived at this port;

• amount of received bytes (rx bytes): total amount of received bytes
at this port;

• errors in CRC check (rx crc err): amount of packets received at this
port that had CRC errors detected;

• dropped received packets count (rx dropped): total amount of packets
dropped upon reception at this port;

• received packets errors (rx errors): amount of packets received at this
port containing errors;

• error frames (rx frame err): amount of received frames at this port
containing errors;

• transmitted packets (tx packets): total amount of transmitted packets
on this port;

• transmitted bytes (tx bytes): total amount of transmitted bytes on
this port;

• dropped transmitted packets (tx dropped): total amount of packets
that were dropped due to transmission buffer overflow;

• transmitted packets errors (tx errors): amount of transmitted packets
errors;

• collisions count (collisions): amount of collisions detected at this
port;

52

3.3.3.3 Table Information (dp table stats)

This information class stores information about the forwarding tables of
the switches. Each switch has two forwarding tables by default: hash table,
in which the flows are fully described and a flow match is done using a
hash function; and the linear table, in which partial flows are described and
searching for a flow in this table is uses a linear complexity function. The
main information in this class are:

• Table identifier (table id): number used to identify the kind of table,
hash tables have table id equal to 0, while linear tables have table id
equal to 1;

• Matched count (matched count): count of how many flows have matched
an entry in this table;

• Name (name): table name. Typical values are “hash” or “linear”;

• Active count (active count): amount of active flows in the table;

• Maximum number of entries (max entries): maximum number of flow
entries in a table;

• Look up count (lookup count): amount of flows already looked up in
this table.

3.3.3.4 Aggregated Information (dp aggr stats)

This information class stores aggregated data about:

• sent and received packets (packet count): sum of sent and received
packet for all flows for all ports;

• sent and received bytes (byte count): sum of sent and received bytes
for all flows for all ports;

• flows count (flow count): total amount of active flows taking into
consideration all switch tables.

3.3.3.5 Flow Information (dp flow stats)

This information class stores information about flows. A flow entity is
composed by the following attributes:

53

• Packet count (packet count): count of how many packets passed through
this flow;

• Hard timeout (hard timeout): flow expiration time, does not depend
on flow being used or not;

• Byte count (byte count): total amount of bytes passed through this
flow;

• Actions (actions): possible controller actions for a packet matching
this flow. There can be one or more actions and their main attributes
are:

– Type (type): type of the action. The most common is type 0,
which corresponds to the output action;

– Lengh (len): length in bytes of the action structure;

• Flow priority (priority): defines flow priority;

• Idle Timeout (idle timeout): idle flow expiration time;

• Table Identifier (table id): identifier of the flow table this flow belongs
to.

• Duration (duration): counts for how long this flow exists in table
table id;

• Match (match): defines flow characteristics. A flow match is composed
by the fowling entities:

– In port (in port): entrance port of the flow in the switch;

– Data layer type (dl type): layer 2 used;

– Data layer source address (dl src): layer 2 source station;

– Data layer destination address (dl dst): layer 2 destination sta-
tion address;

– Data layer Vlan tag (dl vlan): layer 2 protocol header Vlan value;

– Network layer protocol (nw proto): layer 3 used protocol;

– Network layer source address (nw src): layer 3 protocol source
station address;

– Network layer destination address (nw dst): layer 3 protocol des-
tination station address;

54

– Transport protocol source port (tp src): transport layer source
port, e.g. TCP source port.

– Transport protocol destination port (tp dst): transport layer des-
tination port, e.g. TCP destination port.

3.4 Openflow Discovery

The understanding of the network topology is important to develop con-
trol applications. As examples of these applications we can mention the
creation of a spanning tree in the network, the choice of routes, the traf-
fic management and the security mechanisms based on access control. The
topology of both physical and virtual networks must be available for the
network piloting system to allow the network piloting.

The network topology discovery is implemented in Python as an NOX
application called Discovery. We had modified the original Discovery appli-
cation to make it compatible with any OpenFlow device and also to provide
an interface for the developed graphical interface. Our Discovery implemen-
tation also gets the topology of physical networks and virtual networks.

Discovery implements the LLDP protocol (Link Layer Discovery Pro-
tocol) [44]. LLDP is a link layer protocol that allows nodes to transmit
information about the capabilities and the current status of network devices.
The LLDP implementation is optional in the protocol stack of an IEEE 802
LAN station. The LLDP frame follows the model described in Fig. 3.5.
Inside LLDPDU, which is the data unit of LLDP, we can find the device
information stored in type-length-value (TLV) structures.

Figure 3.5: LLDP frame format for IEEE 802.3 (Extracted from [44]).

The Discovery application creates an LLDP frame for all the ports of a
given switch. The switch propagates those frames through its ports.

Upon the receiving of the first LLDP frame, the switch does not know
any forwarding rules for that frame. The switch forwards the frame for the

55

controller to analyze its contents. After receiving the frame, the controller
requests the running instance of Discovery to process this frame. Thus, Dis-
covery analyzes which switch received the frame, from which port the frame
was received, which switch sent the frame, and in which port the frame was
sent. With this information, the application creates a data structure with
source switch, source port, destination switch, and destination port. This
data structure identifies a link, and the aggregation of all links of a network
characterizes the network topology. The Discovery algorithm was modified
to guarantee correct topology discover on Type-1 OpenFlow switches. On
Type-0 switches, which are the simplest model of OpenFlow switch, used
for running OpenFlow on personal computers, a frame is forwarded only if
the controller has already configured a flow for that frame. If there is no
configured flow, the frame is dropped. On switch type 1, used on commer-
cials switches, there is the possibility of processing the traffic as if there was
no OpenFlow in the case where the controller has not configured a specific
flow rule. When the automatic drop is not available, the original Discovery
generates an incorrect representation of network topology. In the original
algorithm, after processing an LLDP frame that was sent from switch A to
switch B, the controller will not send the frame drop command. For this rea-
son, when the network is made of commercials switches, switch B forwards
the LLDP frame to other switches connected to it, instead of dropping the
frame. Consequently, when the frame is forwarded to other switch C not
connected to the source switch A, the controller will identify a link between
A and C. This link, however, does not exist physically, inducing the creation
of false topologies. To fix this problem, we have modified the algorithm in
order to allow it to always send the drop command to the switches. Both
algorithms are represented in Fig. 3.6.

The top of the Fig. 3.6 represents the original discovery algorithm. The
number 1 indicates that switch A had sent a LLDP packet to swith B. The
number 2 indicates that switch B had received the packet from A and then
sent it to the controller. In this step, the controller identifies the existence
of a link between switches A and B. The number 3 indicates that the switch
B had not received a drop command from the controller and due to that,
switch C receives the frame from B. The number 4 indicates that switch C
has received the LLDP packet and consequently has sent it to the controller.
The controller identifies the existence of a link between switches A and C.
The bottom of Fig. 3.6 represents the modified discovery algorithm. The
number 1 indicates the switch A sending a LLDP packet. The number 2
indicates that switch B has received the packet from A and sent it to the
controller, that identifies a link between switches A and B. The number 3
indicates that controller has sent the drop command to switch B. The number

56

 Original Discovery

 Modified Discovery

Pkg

Controller

Pkg
Switch BSwitch A Switch C

1

2

3

4

Pkg

Controller

Switch BSwitch A Switch C

1

2 3

4

Drop

Pkg

Figure 3.6: Behavior of the original and the modified Discovery algorithm.
The modified algorithm uses the drop command to avoid the creation of false
topologies. The drop command is represented in steps 3 and 4 in the modified
Discovery algorithm. In step 3, the controller sends the drop command to
switch B. On step 4, switch B, upon the receiving of the drop command,
drops the packet.

4 indicates that switch B drops the packet before it arrives onto switch C.
Another functionality in our implementation is the virtual network topol-

ogy discovery. The original application only provides the physical network
topology. Our application provides the topology of any virtual network run-
ning over the physical substrate. To achieve this goal, our application receives
the definition of the virtual network, for instance, a VLAN identifier or an
IP range, and then it provides a structure with the virtual network topology,
which comprises all the switches that are forwarding traffic for that virtual
network.

The original Discovery application executes periodically to maintain the
topology updated. Whenever a switch is connected to the controller, its ports
are added into a special structure. When the Discovery is called, LLDPs
frames are sent through these new ports and the new links are recognized in

57

the topology discovery algorithm. Likewise, whenever a switch disconnects
from the network, its ports are removed from the structure and the links as-
sociated to these ports are removed from the topology in the next discovery
period. We have also changed this part of the algorithm. In the modified
version, instead of only storing the new data and waiting for a new Discovery
execution, whenever a switch joins or leaves the network, the topology up-
date algorithm is immediately called. Thus, the topology structure is always
updated.

Discovery is based on three timers, each one controlling an interval or
limiting code execution. The first timer determines the interval between
rounds of transmission of LLDP frames, and the default value of this timer
is 0.1 seconds. The second timer determines the interval between checks of
maximum idle time of links. This timer has a default value of 5 seconds. In
Discovery, links do have a maximum idle time. Hence, if a link already iden-
tified is not identified again after this maximum idle time, it is removed from
the topology. The third timer sets the maximum idle time of the link, and
its default value is 10 seconds. In the original Discover, these values cannot
be modified by the user. We created an interface to allow the configuration
of these timers.

To enhance the compatibility of our prototype, we have also created an
interface between Discovery and other applications developed for Horizon
project. We have modified the original algorithm output to display topol-
ogy data in two XML formats. The implementation is based on XML to
standardize the transmission of structures between NOX applications and
Web servers. The first XML format contains a list of the network links with
switches and ports that comprises each link. In the second XML format,
we can find a list of switches with its neighbors and the ports that connects
them. With these two XML formats, it is possible for any other application
to access the physical and virtual topologies and execute commands accord-
ing to it. These two descriptions can be represented as a graph, easing the
visual representation of the topologies.

3.5 Openflow Spanning Tree

In most networks, there are redundant paths. This is important to prevent
that a link failure damages network operations. If there is a redundant path,
this path routes the frames after the link failure. Although redundant paths
increase network reliability, it causes a problem during broadcasts procedures
in Ethernet networks. In fact, if a node connected to a switch broadcasts
a frame, the switch forwards this frame to all ports but the incoming port.

58

If the network has redundant paths, as shown in Fig. 3.7, the frame will be
re-broadcasted by all switches until it returns to the first switch. Because the
first switch is not able to identify that the frame was already forwarded, it
forwards the frame again. Hence, the frame will be continuously forwarded
due to a loop in the network topology. In order to avoid these loops, we
use the Spanning Tree algorithm [45] to control the physical topology of our
OpenFlow prototype. This algorithm creates a topology for broadcasting
frames without creating loops. In Fig. 3.7, when we disable broadcast for
the link between A and C, we do not produce any loops in the network.

Figure 3.7: An example of topology with a loop. If node B sends a broadcast
message, A and C will receive and forward the message. When node A
receives the message forwarded by node C, it will forward the message again,
and both B and C will receive and forward the message, creating a loop.

The Spanning Tree algorithm runs as a NOX application [39]. The algo-
rithm builds a graph that maps the network topology. Each node and each
edge of the graph represents a switch and a link, respectively. The algorithm
analyzes the graph and builds a tree containig all the nodes of the graph and
the selected edges, as shown in Fig. 3.8. Disabling all links (edges) outside of
the spanning tree means these disabled links will not forward broadcast mes-
sages. This mechanism prevents frames from passing through the disabled
links, loop occurrence and unnecessary broadcast traffic retransmission.

The Spanning Tree algorithm uses the topology provided by the Discover
application (section 3.4) Our algorithm works as follows. First, it sorts the
switches (nodes) ordered by its identifiers (Ids). After that, it selects the
switch that has the lowest identifier as the root of the spanning tree. Then,
it checks the switches connected to the root switch and marks them as visited,
which means that the node and the link between these nodes and the root
also compose the spanning tree. Finally, it checks the switches connected to
the already visited switches. If any of these switches is marked as visited

59

the link between them does not compose the spanning tree. Otherwise, the
algorithm inserts both the node and the corresponding link in the spanning
tree. It uses a breadth first search algorithm [46]. If we start at a particular
node (say, n1), the breadth first search algorithm searches all nodesM−hops
away from n1 before all nodes M + 1− hops away from n1. For instance, in
Fig. 3.8, if n1 == B, then the algorithm searches D and E before G and H.

Figure 3.8: Example of a network topology and its corresponding spanning
tree, assuming A as the root of the spanning tree.

The Spanning Tree algorithm runs periodically to keep the spanning tree
updated. Connecting a new switch to the controller demands the Spanning
Tree to disable all ports of this switch until it analyzes the graph and includes
the new switch in the spanning tree. For security, after a minimum amount
of time, the Spanning Tree application enables these ports to ensure they
will be identified by Discovery application, and, consequently, included in
the network topology.

The topology that the Discover application provides shows each link
twice, one for each direction. When a problem occurs in the topology dis-
covery or when wireless links are being used, unidirectional links may appear
in the link list. The application does not use these links when creating the
spanning tree, therefore it disables them for broadcasting messages..

When a switch receives a new broadcast data flow, it forwards the frame
to the controller. After receiving the frame, the controller calls the running
instance of Spanning Tree to analyze the link through which the broadcast
frame was received. If this link is in the spanning tree, the switch processes
and forwards the frame. Otherwise, the application drops the frame. When
the frame received is a LLDP (Link Layer Detection Protocol) frame , the
processing and forwarding happens independently of the source link because
the Discover application uses that frame to discover the network topology.
Also, if the controller has already defined a rule in the switch for the received
broadcasted frame, the switch does not forward that frame to the controller,

60

but processes the frame according to the defined rule instead, even if the link
is not in the spanning tree.

The Spanning Tree application has three timers. The first one timer de-
termines the interval between consecutively execution rounds of the building
spanning tree algorithm, and its default value is 5 seconds. The second timer
determines how long a port on a new registered switch must be disabled until
it can be included in the tree, and its default value is 10 seconds. The third
timer manipulates one of the Discovery timers, which determines the interval
between the algorithm execution to topology discovery, and its default value
is 0.05 second. We created an interface to configure these timers that receives
messages from other applications running on NOX.

We also created an interface between Spanning Tree and other applica-
tions developed for Horizon Project. Therefore, we modified the original
algorithm output to display Spanning Tree data in a XML format. The mes-
sages are based on XML format to standardize the transmission of structures
between NOX applications and the Web Server application. In this XML for-
mat, we enumerate the list of switches with its associated neighbors and the
ports between them. With this XML format, any application can access and
control the Spanning Tree application.

61

Chapter 4

Performance Tests

This chapter presents some performance tests to evaluate the virtualiza-
tions tools. In section 4.1 we present some tests made with migration tools
from both prototypes, Xen and OpenFlow.

4.1 Migration Tests

4.1.1 Introduction

This section describes the performance tests of migration functionality of
both prototypes, Xen and OpenFlow. In Xen prototype, we test the two vir-
tual approaches for router virtualization, with and without plane separation,
as described in section 2.2. In OpenFlow prototype, we use the NOX migra-
tion application described in section 3.2 to migrate a flow from “Client” to
“Server”. Accordingly, there is nopacket loss during OpenFlow migration.

In Fig. 4.1, we show the migration scenarios. In the Xen scenario, we
have two physical machines, Physical Node A and Physical Node B, which
house the virtual routers. The experiment consist of generating an UDP
data traffic and migrating a virtual router from Physical Node A to Physical
Node B while the virtual router forwards the data traffic from the client to the
server. To not disturb the data traffic, we use a separated link to transmit
the migration traffic during the migration process. Fig. 4.1(a) shows this
process. In the Xen standard migration, the data traffic is forwarded by the
virtual router. In the Xen with plane separation, the data traffic is forwarded
by the shared data plane in Domain 0 and the control traffic is forwarded by
the virtual machine. In the Openflow scenario, the two physical machines
with Xen are replaced by OpenFlow switches. The controller defines the flow
path from “Client” to “Server” which passes through switches D, C and B.

62

(a) Xen scenario. (b) OpenFlow scenario.

Figure 4.1: Experimental scenarios for virtual network migration.

After that, the controller migrates the flow path to now traverse switch A,
as shown in Fig. 4.1(b).

4.1.2 Results

In our experiments, we measured the delays and losses due to the migra-
tion with different data packet rates. We present experiments with 64-byte
and 1500-byte packets, which respectively represent the minimum Ethernet
payload and the most common Ethernet MTU, but there were no significant
differences in the results when the packet size varies.

Fig. 4.2 presents the time elapsed during the downtime stage. The re-
sults show that the downtime is roughly constant with the growth of the data
packet rate for all migration schemes. Compared with the Xen standard mi-
gration, the Xen with plane separation has a downtime that is 200 millisec-
onds lower on the average. This difference exists because in Xen standard
migration, the virtual machine must forward all data and control packets,
which increases the number of ‘hot pages’ in virtual machine memory and,
consequently, raises the downtime. In the Xen with plane separation, the
data traffic is forwarded by Domain 0 and the memory pages dirtied in the
virtual machine come only from the routing software running in the virtual
machine, which reduces the downtime.

Fig. 4.3 shows the number of data packets that were lost during downtime
in the experiments. As expected, in the Xen standard migration, the number
of lost packets increases linearly with the packet rate, because the downtime
is constant and the data packet rate grows linearly. OpenFlow and Xen
with plane separation tackle this issue. Xen with plane separation has a
downtime only during the control plane migration and the data plane is not
frozen during migration.. In OpenFlow, the migration mechanism moves

63

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 5 10 15 20 25 30

D
o

w
n

ti
m

e
(m

s)

Data Packet Rate (packets/s)

Xen Standard Migration

Xen with Plane Separation

(a) Packet size: 64 bytes.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 5 10 15 20 25 30

D
o

w
n

ti
m

e
(m

s)

Data Packet Rate (packets/s)

Xen Standard Migration

Xen with Plane Separation

(b) Packet size: 1500 bytes.

Figure 4.2: Migration downtime as a function of the data packet rate.

the data traffic to a new path without migrating the control plane. Indeed,
OpenFlow has no downtime, since neither the data plane nor the control
plane are stopped due to the migration.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 5 10 15 20 25 30

N
u

m
b

er
 o

f
L

o
st

 P
ac

k
et

s

Data Packet Rate (packets/s)

Xen Standard Migration

Xen with Plane Separation

(a) Packet size: 64 bytes.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 5 10 15 20 25 30

N
u

m
b

er
 o

f
L

o
st

 P
ac

k
et

s

Data Packet Rate (packets/s)

Xen Standard Migration

Xen with Plane Separation

(b) Packet size: 1500 bytes.

Figure 4.3: Number of lost packets during downtime as a function of the
data packet rate.

Fig. 4.4 shows the total migration time, which consists of the time be-
tween the migration triggering and the moment when the data packets start
to pass through the destination machine. The difference between Xen stan-
dard mechanism and Xen with plane separation is about 15 seconds. This
variation occurs in our prototype due to data plane synchronization after
control plane migration and the remapping of the virtual interfaces to the
appropriate physical interfaces, which does not exist in the Xen standard
migration. OpenFlow total migration time is about 5 milliseconds, because

64

OpenFlow only migrates the data plane. This time comprises the interval
between the beginning and the ending of sending flow change messages from
the controller to all switches. In our scenario, the controller reaches all the
switches with two hops at the most, as we can see in Fig. 4.1(b). Never-
theless, if the distance between the controller and the OpenFlow switches
rises, the total migration time increases. Besides, if the number of migrated
flows grows, the total migration time also increases. This happens due to the
increased number of messages sent to the switches.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30

T
o

ta
l

M
ig

ra
ti

o
n

 T
im

e
(s

)

Data Packet Rate (packets/s)

Xen Standard Migration

Xen with Plane Separation

(a) Packet size: 64 bytes.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30

T
o

ta
l

M
ig

ra
ti

o
n

 T
im

e
(s

)

Data Packet Rate (packets/s)

Xen Standard Migration

Xen with Plane Separation

(b) Packet size: 1500 bytes.

Figure 4.4: Total migration time as a function of the data packet rate.

4.1.3 Conclusions

We evaluated the impact of different virtual network migration models
with Xen and OpenFlow virtualization platforms. We observed that data
and control plane separation is a key feature for reducing packet losses dur-
ing the migration. Moreover, in the proposed migration mechanism for Xen,
the packet forwarding through Domain 0 also reduced the number of dirt-
ied pages in the virtual machine. Therefore, the downtime of the control
plane during migration is reduced by 200 milliseconds. We obtained a sig-
nificant difference in the packet loss rate and control plane downtime during
migration when comparing the Xen standard migration and the proposed
migration mechanism with plane separation for Xen. Besides, the analysis of
the proposed migration algorithm for OpenFlow showed that it is an efficient
approach for migrating virtual networks, because it provides a downtime of
less than 5 milliseconds and no packet losses during the migration process.

The control plane downtime and the mapping of a virtual link over mul-
tiple physical links are the main observed drawbacks in the Xen migration.

65

OpenFlow has none of these disadvantages, but it is based on a centralized
controller, which can restrict the size of the network. Hence, we sketched
a hybrid approach to use OpenFlow for migrating data plane in Xen. As
future work, we intend to better design this approach and investigate its
performance on the data plane migration.

4.2 Bandwidth Control Tests

4.2.1 Introduction

This section describes the bandwidth control tests using the FlowVisor,
described in section 3.1.

The test environment can be seen in Fig. 4.5, it consists of 5 machines:
2 data senders, 1 data receiver, 1 OpenFlow switch and 1 NOX Controller.
We use iperf to create two UDP data flows from sender A and sender B to
the receiver, and we perform the bandwidth control using queue mechanisms
on the OpenFlow switch.

Figure 4.5: The Test Environment

66

The bandwidth control is organized as following:

• 0s to 30s:

– Flows with no control (default)

• 30s to 60s:

– Sender A flow limited to 6 Mb/s

– Sender B flow limited to B Mb/s

• 60s to 90s:

– Both flows limited to 4 Mb/s

• 90s to 120s:

– Flows with no control (default)

4.2.2 Results

In our experiments, we measure the bandwidth of the data flows from
Sender A and Sender B. We have performed tests according to the proposed
schedule mixing TCP and UDP data for Sender A and Sender B.

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

M
b/

s)

Time (s)

Bandwidth Limit TCP−UDP

1:TCP
2:UDP

Figure 4.6: TCP-UDP Test

67

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

M
b/

s)

Time (s)

Bandwidth Limit UDP−UDP

1:UDP
2:UDP2

Figure 4.7: UDP-UDP Test

4.2.3 Conclusions

By these experiments, we were able to observe FlowVisor’s control mech-
anisms behavior. In each experiment can be seen some instability around
the flow change instant, wich is due to the OpenFlow switch’s queue mecha-
nisms. The overall conclusion is that the FlowVisor was able to control flow
bandwidth as expected.

68

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

M
b/

s)

Time (s)

Bandwidth Limit TCP−TCP

1:TCP
2:TCP2

Figure 4.8: TCP-TCP Test

69

Chapter 5

Conclusions and Ongoing Work

In this document we explain how we develop two prototypes to provide
an environment suited for the Future Internet requirements. We detail the
internal mechanism of our prototypes and expose how they provide to the
piloting plane an interface for controlling the virtual networks environment
according to the desired policies and primitives. Piloting develops an im-
portant role in the Horizon project because the embedded intelligence in the
network must be aware of what happens in the environment to react under
attacks, to fix wrong configurations and to act pro-actively in the global op-
timization of the network performance. The piloting capability is provided
by means of sensors and actuators that can inspect and modify network el-
ements. We perceive the environment, reason about what is happening and
actuate to improve it.

Two different perspectives implement the sensing capability, the non-
intrusive and the intrusive. In the non-intrusive perspective, it is possible
to sensor information such as the amount of memory allocated to a vir-
tual network element and how many processors can a specific element use.
This kind of information is useful in many different situations. Nevertheless,
there are cases in which these information are not enough for understanding
the environment. This scenario leads to an intrusive perspective, where a
daemon must execute inside network elements to retrieve more accurate mea-
surements, e.g., the amount of memory is being used or which processes are
executing on an element.

In the Xen-based prototype, the sensing capability occurs in components
that use different tools to gather information about the environment, such as
the Xentop Gatherer, the Ifconfig Gatherer, the Latency Gatherer and the
Memory Gatherer. There is also the Xen Topology module that allows us
to discover the physical and virtual network topologies. In the OpenFlow-
based prototype, the sensor and actuating capabilities rely on the developed

70

NOX applications. The Stats application allows us to retrieve information
about the status of each OpenFlow switch, such as the flows that are pass-
ing through the switch and its characteristics. The Discovery application
discovers the network topology and the SpanningTree application avoids the
unnecessary broadcast traffic retransmission and occurrence of loops in the
network.

The actuating capability allows us to actuate on the network and per-
form tasks such as modifying element configurations on the fly and changing
a virtual topology with the aid of the migrate primitive. In the Xen-based
prototype, we propose a new migration tool, which allows dynamic reconfig-
uration of a virtual topology with no packet loss, differently from the original
Xen migration tool in which the high loss rate raises many issues in the run-
ning services. In the OpenFlow-based prototype, we develop a flow migration
application. This application can modify a flow path with no packet loss as
well. Through these actuators, the piloting plane can dynamically reorganize
the topology, avoiding dangerous paths or guaranteeing Quality of Service
on selected services.

Given the sensors and actuators, our work walks towards the creation
of the piloting plane itself. Currently, we are focusing on the development
of algorithms and control systems to use the sensors, retrieve information
and use knowledge to pilot the Future Internet through the actuators. For
instance, we are developing a control prototype based on the Xen scheduler,
which lets us to guarantee SLAs and QoS on the virtual networks by sens-
ing the network behaviors and actuating through the reconfiguration of the
scheduler parameters. This will reflect in the slice of resources that a given
element can use in a specific moment. We are also developing a control sys-
tem to manage the power usage of the network elements. This algorithm
decides when is the best moment to migrate an element or a flow, or the
best moment to suspend elements or rearrange them. Our preliminary tests
show that the proposed algorithm can reduce significantly the power usage
without lowering the network performance.

As we can see, the sensors and actuators are an important part of the
Horizon project. The sensors feed the piloting plane with the necessary
information to make management decisions that the actuators apply. The
developed modules provide us a substrate network that supports this kind of
operations.

71

Bibliography

[1] N. Feamster, L. Gao, and J. Rexford, “How to lease the Internet in
your spare time,” ACM SIGCOMM Computer Communication Review,
vol. 37, no. 1, pp. 61–64, Jan. 2007.

[2] I. Fajjari, M. Ayari, and G. Pujolle, “VN-SLA: A virtual network spec-
ification schema for virtual network provisioning,” in Networks (ICN),
2010 Ninth International Conference on, pp. 337 –342, 11-16 2010.

[3] C. R. Senna, D. M. Batista, E. R. M. Madeira, and N. L. S. da Fonseca,
“Experiments with virtual network management based on ontology,” in
WNetVirt’10 : Proceedings of the First Workshop on Network Virtual-
ization and Intelligence for Future Internet, Apr. 2010.

[4] M. A. S. Jr. and E. R. M. Madeira, “Autonomic management of re-
sources in virtualized networks,” in WNetVirt’10 : Proceedings of the
First Workshop on Network Virtualization and Intelligence for Future
Internet, Apr. 2010.

[5] R. B. Freitas, L. B. de Paula, E. Madeira, and F. L. Verdi, “Using virtual
topologies to manage inter-domain qos in next generation networks,”
International Journal of Network Management, vol. 20, no. 3, no. 3,
pp. 111 – 128, 2010.

[6] F. N. C. van ’t Hooft and E. R. M. Madeira, “Resource allocation policies
in future multi-agent based virtual network,” in WNetVirt’10 : Proceed-
ings of the First Workshop on Network Virtualization and Intelligence
for Future Internet, Apr. 2010.

[7] G. P. Alkmim and N. L. S. da Fonseca, “Virtual network mapping on a
physical substrate,” inWNetVirt’10 : Proceedings of the First Workshop
on Network Virtualization and Intelligence for Future Internet, Apr.
2010.

72

[8] N. C. Fernandes, M. D. D. Moreira, I. M. Moraes, L. H. G. Ferraz,
R. S. Couto, H. E. T. Carvalho, M. E. M. Campista, L. H. M. K. Costa,
and O. C. M. B. Duarte, “Virtual networks: Isolation, performance,
and trends,” tech. rep., Electrical Engineering Program, COPPE/UFRJ,
2010.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proceedings of the nineteenth ACM Symposium on Operating Systems
Principles - SOSP03, Oct. 2003.

[10] D. M. F. Mattos, C. Fragni, M. D. D. Moreira, L. H. G. Ferraz, L. H.
M. K. Costa, and O. C. M. B. Duarte, “Evaluating virtual router per-
formance for the future internet,” tech. rep., Electrical Engineering Pro-
gram, COPPE/UFRJ, June 2010.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peter-
son, J. Rexford, S., and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication Re-
view, vol. 38, no. 2, pp. 69–74, Apr. 2008.

[12] H. Carvalho, M. Moreira, N. Fernandes, L. Ferraz, R. Souza, I. Moraes,
M. Campista, L. H. Costa, and O. Duarte, “Packet forwarding using
Xen,” in WNetVirt’10 : Proceedings of the First Workshop on Network
Virtualization and Intelligence for Future Internet, Apr. 2010.

[13] M. Moreira, N. Fernandes, H. Carvalho, L. Ferraz, R. Souza, I. Moraes,
M. Campista, L. H. Costa, and O. Duarte, “Packet forwarding using
OpenFlow,” in WNetVirt’10 : Proceedings of the First Workshop on
Network Virtualization and Intelligence for Future Internet, Apr. 2010.

[14] C. Fragni, M. Moreira, D. Menezes, L. H. Costa, and O. Duarte, “Evalu-
ating Xen, VMware, and OpenVZ Virtualization Platforms for Network
Virtualization,” in WNetVirt’10 : Proceedings of the First Workshop on
Network Virtualization and Intelligence for Future Internet, Apr. 2010.

[15] P. S. Pisa, N. C. Fernandes, H. E. T. Carvalho, M. D. D. Moreira,
M. E. M. Campista, L. H. M. K. Costa, and O. C. M. B. Duarte,
“OpenFlow and Xen-based virtual network migration,” in The World
Computer Congress 2010 - Network of the Future Conference to appear,
Sept. 2010.

[16] M. D. D. Moreira, N. C. Fernandes, L. H. M. K. Costa, and O. C.
M. B. Duarte, “Internet do futuro: Um novo horizonte,” Minicursos do

73

Simpósio Brasileiro de Redes de Computadores - SBRC2009, pp. 1–59,
2009.

[17] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, L. Mathy, and T. Schoo-
ley, “Evaluating Xen for router virtualization,” in ICCCN’07: In-
ternational Conference on Computer Communications and Networks,
pp. 1256–1261, Aug. 2007.

[18] R. dos S. Alves, L. H. M. K. Costa, M. E. M. Campista, L. G.
Valverde, P. S. Pisa, C. Fragni, T. N. Ferreira, I. M. Moraes, and O. C.
M. B. Duarte, “A virtual machine server for the future internet,” in
WNetVirt’10 : Proceedings of the First Workshop on Network Virtual-
ization and Intelligence for Future Internet, Apr. 2010.

[19] A. Karouia, R. Langar, T.-M.-T. Nguyen, and G. Pujolle, “SOA-based
approach for the design of the future internet,” in Communication Net-
works and Services Research Conference (CNSR), 2010 Eighth Annual,
pp. 361 –368, 11-14 2010.

[20] D. Chisnall, The Definitive Guide To The Xen Hypervisor. Prentice
Hall, 2008.

[21] D. M. Batista, C. G. Chaves, , and N. L. S. da Fonseca, “Scheduling
virtual machines and grid tasks on clouds,” in WNetVirt’10 : Proceed-
ings of the First Workshop on Network Virtualization and Intelligence
for Future Internet, Apr. 2010.

[22] M. Bourguiba, K. Haddadou, and G. Pujolle, “Evaluating and enhanc-
ing xen-based virtual routers to support real-time applications,” in Con-
sumer Communications and Networking Conference (CCNC), 2010 7th
IEEE, pp. 1 – 5, 9-12 2010.

[23] R. Souza, L. Ferraz, M. Campista, L. H. Costa, and O. Duarte, “CPU re-
source allocation on Xen virtual network environments,” inWNetVirt’10
: Proceedings of the First Workshop on Network Virtualization and In-
telligence for Future Internet, Apr. 2010.

[24] “Libvirt: The virtualization api.” http://libvirt.org/. (Accessed June
2010).

[25] “Geni: Global environment for network innovations.”
http://www.geni.net/.

74

[26] Y. Wang, E. Keller, B. Biskeborn, J. V. der Merwe, and J. Rexford,
“Virtual routers on the move: Live router migration as a network-
management primitive,” in ACM SIGCOMM, pp. 231–242, Aug. 2008.

[27] R. Bolla, R. Bruschi, F. Davoli, and A. Ranieri, “Energy-aware perfor-
mance optimization for next-generation green network equipment,” in
PRESTO’09: Proceedings of the 2nd ACM SIGCOMM Workshop on
Programmable Routers for Extensible Services of Tomorrow, pp. 49–54,
2009.

[28] S.-M. Han, M. M. Hassan, C.-W. Yoon, and E.-N. Huh, “Efficient ser-
vice recommendation system for cloud computing market,” in ICIS’09:
Proceedings of the 2nd International Conference on Interaction Sciences,
pp. 839–845, 2009.

[29] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in NSDI’05: Pro-
ceedings of the 2nd Conference on Symposium on Networked Systems
Design & Implementation, (Berkeley, CA, USA), pp. 273–286, USENIX
Association, 2005.

[30] P. Pisa, M. Moreira, H. Carvalho, L. Ferraz, and O. Duarte, “Migrating
Xen virtual routers with no packet loss,” in WNetVirt’10 : Proceedings
of the First Workshop on Network Virtualization and Intelligence for
Future Internet, Apr. 2010.

[31] M. Wolfgang, “Host Discovery with nmap,” Insecure. org, URL
http://insecure.org/nmap/docs/discovery.pdf, Accessed, vol. 1, 2007.

[32] R. Figueiredo, P. Dinda, and J.Fortes, “Guest editors’ introduction:
Resource virtualization renaissance,” Computer, vol. 38, no. 5, pp. 28 –
31, may 2005.

[33] S. Rixner, “Network virtualization: Breaking the performance barrier,”
in ACM Queue, vol. 6, pp. 36–52, Jan. 2008.

[34] L. Ferraz, H. Carvalho, P. Pisa, and O. Duarte, “New I/O virtualization
techniques,” in WNetVirt’10 : Proceedings of the First Workshop on
Network Virtualization and Intelligence for Future Internet, Apr. 2010.

[35] Intel Corporation, Intel Virtualization Technology for Directed I/O,
Sept. 2008.

75

[36] Intel Corporation, Intel 82576 Gigabit Ethernet Controller Datasheet,
Oct. 2009.

[37] Intel LAN Access Division, PCI-SIG SR-IOV Primer, Dec. 2008.

[38] N. Fernandes, D. Menezes, C. Gomes, L. Panzariello, V. Torres, M. Mor-
eira, I. Moraes, M. Campista, L. H. Costa, and O. Duarte, “Multinet-
work control using OpenFlow,” in WNetVirt’10 : Proceedings of the
First Workshop on Network Virtualization and Intelligence for Future
Internet, Apr. 2010.

[39] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “NOX: Towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, July 2008.

[40] D. Menezes, N. Fernandes, C. Gomes, and O. Duarte, “Developing NOX
applications for network control,” in WNetVirt’10 : Proceedings of the
First Workshop on Network Virtualization and Intelligence for Future
Internet, Apr. 2010.

[41] C. Gomes, D. Menezes, N. Fernandes, and O. Duarte, “A tool for Open-
Flow network management,” in WNetVirt’10 : Proceedings of the First
Workshop on Network Virtualization and Intelligence for Future Inter-
net, Apr. 2010.

[42] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Hand-
igol, T. Huang, P. Kazemian, M. Kobayashi, J. Naous, et al., “Carving
research slices out of your production networks with OpenFlow,” ACM
SIGCOMM Computer Communication Review, vol. 40, no. 1, no. 1,
pp. 129–130, 2010.

[43] J. Moy, OSPF Version 2. IETF, RFC 2328, 1998.

[44] “802.1ab IEEE standard for local and metropolitan area networks. sta-
tion and media access control connectivity discovery,” tech. rep., IEEE
Institute of Electrical and Electronics Engineers, 2005.

[45] G. Gibb, “Basic spanning tree.” http://www.openflowswitch.org/wk/in
dex.php/Basic Spanning Tree. (accessed January 2010).

[46] R. Zhou and E. Hansen, “Breadth-first heuristic search,” Artificial In-
telligence, vol. 170, no. 4-5, no. 4-5, pp. 385–408, 2006.

76

	1 General Prototype Modifications Description
	1.1 Introduction
	1.2 General Prototype Description
	1.2.1 Sensors
	1.2.2 Actuators

	1.3 Document Outline

	2 Xen
	2.1 Xen CPU Scheduler
	2.1.1 Xen Credit Scheduler
	2.1.2 Use of Scheduling Parameters in Piloting Plane
	2.1.3 CPU and Scheduling Parameters Adjustment
	2.1.4 CPU and Scheduling Parameters Adjustment in Xen using Libvirt

	2.2 Xen Migration
	2.2.1 Standard Xen Migration: Qualities and Flaws
	2.2.2 Proposal for Xen Migration: Data Plane and Control Plane Separation
	2.2.3 Implementation Overview
	2.2.4 Implementation Details

	2.3 Xen Statistics
	2.3.1 Measures Gatherer Handler Component
	2.3.2 Measures Gatherer Main Component
	2.3.3 Xentop Gatherer Component
	2.3.4 Memory Gatherer Component
	2.3.5 Ifconfig Gatherer Component
	2.3.6 Latency Gatherer Component

	2.4 Xen Topology
	2.4.1 Methodology

	2.5 New I/O Virtualization Techniques
	2.5.1 Introduction
	2.5.2 Techniques
	2.5.3 Implementation
	2.5.4 Installation

	3 OpenFlow
	3.1 FlowVisor
	3.1.1 Introduction
	3.1.2 Isolation Mechanisms

	3.2 OpenFlow Migration
	3.2.1 Introduction
	3.2.2 Implementation

	3.3 OpenFlow Statistics
	3.3.1 Introduction
	3.3.2 Stats XML Message
	3.3.3 Information Classes

	3.4 Openflow Discovery
	3.5 Openflow Spanning Tree

	4 Performance Tests
	4.1 Migration Tests
	4.1.1 Introduction
	4.1.2 Results
	4.1.3 Conclusions

	4.2 Bandwidth Control Tests
	4.2.1 Introduction
	4.2.2 Results
	4.2.3 Conclusions

	5 Conclusions and Ongoing Work
	Bibliography

