Horizon Project
ANR call for proposals number ANR-08-VERS-010
FINEP settlement number 1655/08

Horizon - A New Horizon for Internet
WP2 - TASK 2.2: Definition of Virtual Interfaces

Prototype and Report

(Annex E)
[nstitutions
Brazil France
GTA-COPPE/UFRJ LIP6 Université Pierre et Marie Curie
PUC-Rio Telecom SudParis
UNICAMP Devoteam

Netcenter Informatica ltda. Ginkgo Networks
VirtuOR

Contents

1 Introduction 5
2 Virtual Networks: Isolation, Performance, and Trends 8
2.1 Network Virtualization 8
2.1.1 Network Virtualization Approaches 9

2.2 Network Virtualization Technologies 11
221 Xen ... 11

222 OpenFlow 14

2.3 Characteristics of Xen and OpenFlow Network Virtualization
Technologies.................... 16

2.3.1 Programmability and Network Processing 17
2.3.2 Performance on Forwarding 19
2.3.3 Scalability oo 22
2.3.4 Basic virtual network management primitives and tools 23

2.4 Performance Evaluation 26
2.4.1 Xen, OpenFlow, and Native Linux Scenarios 27
2.4.2 Experimental Results 28

3 Xen Prototype 36
3.1 Virtual Machine Server 37
3.1.1 Services 37

3.1.2 Access to the Virtual Machine Server 39

3.2 Graphical User Interface 43
3.2.1 Introduction 43
3.2.2 Designchoices oo 43
3.2.3 Technologies adopted 44
3.2.4 Interface Sensors and Actuators 44
3.2.5 Interface functionalities 44

3.3 Integration with Prototype Sensors and Actuators 52

3.3.1 Virtual Machine Server and PrototypeSensors and
Actuators................... 52

4 OpenFlow Prototype
4.1 OpenFlow Web Server
4.1.1 Default Web Server Application
4.1.2 mywebserver class
4.1.3 MyWebServerResourceclass
4.2 Graphical User Interface
4.2.1 DataLayer
4.2.2 Data Processing Layer
4.2.3 Data Presentation Layer

5 Prototype
5.1 Xen Prototype
5.1.1 Graphical User Interface
5.1.2 Virtual Machine Server
5.1.3 Xen Testbed oL
5.2 OpenFlow Prototype,
5.2.1 NOX Applications
5.2.2 Graphical User Interface
5.2.3 OpenFlow Testbed

6 Conclusions and Ongoing Work

Bibliography

55
57
57
57
57
99
59
60
60

70
70
70
73
73
7
7
78
83

86

90

List of Figures

1.1 Models for the monist and pluralist network architectures. . . 6
2.1 Obtaining “sliced” resources. 10
2.2 Approaches for network virtualization 11

2.3 The Xen architecture. 12
2.4 Virtual networks with Xen and OpenFlow. 13
2.5 A flow entry in an OpenFlow forwarding element. 15
2.6 The OpenFlow controller model. 16
2.7 Models of flow space to define the forwarding table18

2.8 The Xen network architectures for packet forwarding. 21
2.9 Example of network re-allocation using Xen and OpenFlow. . 25
2.10 Testbed used in the evaluation. 27

2.11 Packet rate for different forwarding elements, 64-byte frames. 29
2.12 Packet rate for different forwarding elements, 1512-byte frames. 30

2.13 Analysing network delays 32

2.14 Aggregated packet rate 33

2.15 Received packet rate 34

3.1 Horizon Xen Prototype Architecture. 36
3.2 First view of the Horizon Graphic User Interface. 44
3.3 The Horizon Graphic User Interface 46

3.4 The proprieties panel................. 47

3.5 The migration options panel.............. 49

3.6 Controller, physical router and virtual routers modules ...53

4.1 OpenFlow applications, NOX and agents interaction. 56
4.2 Application layers. L. 59
4.3 Statistics Page. oo 62
4.4 Switch Description.o 62
4.5 Switch Status. 63
4.6 Switch Port Statistics. 63
4.7 Switch Flow Tables Statistics. 64

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2
2.3
5.4
2.5
0.6
2.7
0.8
2.9
5.10
5.11
5.12
5.13
5.14
5.15

Aggregated Flows Statistics.
Flows of a Specific Switch.
Form to add flows into switch.
Button to access the Topology Page.
Network Topology.
Spanning Tree. oo
Button to access the network flows.
Network flows description.
Form to filter flows................. 69

A flow Logical Topology.

Graphical User Interface Overview.
Topology View and Properties module.
Migration module.o
Xen testbed topology.o
Xen testbed physical installation.
Xen testbed switch. oo
Graphical user interface Home screen.
Network Topology Visualization tool.
Flow Visualization tool.
Switch Statistics tool.
Virtual Topology tool.
Flow Migration tool.
OpenFlow testbed topology.
OpenFlow testbed physical installation.
The Controller running the administrative web interface.

Chapter 1

Introduction

The Internet is a great success with more than one billion users spread
over the world. Its model is based on two main pillars, the end-to-end data
transfer service and the TCP/IP stack [1]. Indeed, those two pillars guaran-
tee that the network core is simple and transparent, while all the intelligence
is placed on the end systems. This architectural choice makes it easy to
support new applications, because there is no need to change the network
core. On the other hand, this model ossifies the Internet, making it difficult
to solve structural problems like scalability, management, mobility, and secu-
rity [2]. Presently, there is a rough consensus that upgrade patches are not
enough to meet current and future requirements. Then, the Internet must
be reformulated to provide a flexible infrastructure that supports innovation
in the network, which is being called the Future Internet [2, 3, 4].

The Future Internet architecture proposals can be divided in two ap-
proaches: monist and pluralist. In the monist model, depicted in Fig. 1.1(a),
the network has a monolithic architecture that must be flexible enough to
provide support to the new applications. On the other hand, the pluralist
approach, depicted in Fig. 1.1(b) [5], is based on the idea that the Internet
must support multiple protocol stacks simultaneously. The pluralist model
establishes different networks, according to the needs of network applications.
Specialized networks provide specific services, such as security, mobility, or
quality of service. New networks can be easily deployed to provide services
required by new applications. We claim that multiple networks providing
different services are simpler to implement than a unique network providing
all different services at the same time. In addition to solving all of the known
problems, a monist approach must be able to solve new problems which arise
from novel applications. Furthermore, an important characteristic in favor
of the pluralist model is that it intrinsically provides compatibility with the
current Internet, which can be one of the supported protocol stacks.

[Icurrent Internet B Network 1
@ Network element [1 Network2
[] Network 3

|:| =) Network element I D

I
=

é I

(a) Current monist architecture model. (b) Pluralist architecture model. Differ-
Only one protocol stack running over the ent protocol stacks running, at the same
physical substrate. time, over the same physical substrate.

Figure 1.1: Models for the monist and pluralist network architectures.

All pluralist proposals share the same idea that the virtual networks run
over the same physical substrate [6, 7, 8], even though they differ in packet
formats, addressing schemes, and protocols.

Based on the pluralist approach, the Horizon Project proposes the use
of two different virtualization platforms, Xen and OpenFlow, to provide vir-
tual networks. These platforms differ on how to share the physical medium
between the virtual networks. These differences lead to a tradeoff between
performance and flexibility. This report first presents these virtualization
platforms and shows a performance analysis in order to exploit some of their
characteristics.

Afterwards, this report describes all the interfaces developed in the Hori-
zon project to provide system management. These interfaces must offer an
easy way to manage resource sharing among virtual networks and, in addi-
tion, they must also facilitate actions such as reconfiguring the topology of
each virtual network. In the Horizon Project, we designed and developed
interfaces for both Xen na OpenFlow platforms, building a prototype for
each platform as a proof of concept. Some of the developed interfaces can
also be used by non-human elements, like a computer agent that controls the
network. Consequently, these interfaces will be used by the Horizon Project
Piloting System to control the network, i.e., the multi-agent system responsi-
ble for managing the network will use the defined interfaces to measure and
act on the network.

The rest of this report is organized as follows. Chapter 2 presents Xen
and Openflow virtualization platforms adopted by the Horizon Project, and
provides a performance analysis of these platforms. Chapter 3 presents the

interfaces related to the Xen prototype developed by the Horizon Project
team. Chapter 4 provides a similar view of the interfaces for the OpenFlow
prototype. Chapter 5 presents the developed prototype of interfaces. Finally,
Chapter 6 concludes this report.

Chapter 2

Virtual Networks: Isolation,
Performance, and Trends

Part of this chapter was previously published on [9].

This chapter addresses the issue of sharing the network physical substrate
among different virtual networks. We analyze two representative approaches
for virtualizing the physical network, Xen [10] and OpenFlow [11], and dis-
cuss the use of these technologies for running virtual networks in parallel.
The main objective of this chapter is to investigate the advantages and lim-
itations of the network virtualization technologies for creating a virtual en-
vironment that could be used as the basis of a pluralist architecture for the
Future Internet. To achieve this goal, we analyze Xen and OpenFlow per-
formance as a software router and carried out experiments to evaluate these
two virtualization tools using different packet forwarding schemes.

We conduct experiments to evaluate Xen and OpenFlow [12] performance
acting as a virtualized software router. Based on our findings and on previous
work, we conclude that there is a tradeoff between flexibility and performance
that indicates that the use of shared data planes could be an important archi-
tectural choice when developing a virtual network architecture. Another key
finding is that, using shared data planes, Xen and OpenFlow can multiplex
several virtual networks without any measurable performance loss, compar-
ing with a scenario where the same packet rate is handled by a single virtual
network element.

2.1 Network Virtualization

We consider virtualization as a resource abstraction that allows slicing a
resource into several slices, as shown in Figure 2.1. This abstraction is often

implemented as a software layer that provides “virtual sliced interfaces” quite
similar to the real resource interface. The coexistence of several virtual slices
over the same resource is possible because the virtualization layer breaks the
coupling between the real resource and the above layer. Fig 2.1 shows two ex-
amples of virtualization: computer virtualization and network virtualization.
The computer virtualization abstraction is implemented by the so-called Vir-
tual Machine Monitor (VMM), which provides to virtual machines (VMs) an
interface (i.e., the hardware abstraction layer) quite similar to a computer
hardware interface, which includes processor, memory, input/output devices,
etc. Thus, each virtual machine (VM) has the impression of running directly
over the physical hardware, but actually the physical hardware is shared
among several VMs. We call slicing this kind of resource sharing, because
the virtual machines are isolated: one VM cannot interfere with other VMs.
Computer virtualization is widely used in datacenters to allow running sev-
eral servers in a single physical machine. This technique saves energy and
reduces maintenance costs, but flexibility is the most important virtualization
feature, because each virtual machine can have its own operating system, ap-
plication programs, configuration rules, and administration procedures. The
flexibility of running whatever is desired into virtual slices, such as different
and customized protocol stacks, is the main motivation of applying the vir-
tualization idea to networks [5]. As shown in Fig 2.1, network virtualization
is analogous to computer virtualization, but now the shared resource is the
network. The concept of network virtualization is not new and it has been
used in technologies such as virtual private networks (VPNs) and virtual lo-
cal area networks (VLANSs). Nowadays, there are new techniques that allow
even the router to be virtualized. Accordingly, the slices are virtual routers,
each one implementing a customized network protocol stack.

2.1.1 Network Virtualization Approaches

Approaches for realizing network virtualization differ on the level at which
the virtualization layer is placed. Figure 2.2 compares two basic approaches
for virtualizing a network element. Figure 2.2(a) shows the conventional
network element architecture, with a single control and data plane. In a
router, the control plane is responsible for running the network control soft-
ware, such as routing algorithms (e.g., RIP, OSPF, and BGP) and network
control protocols (e.g., ICMP), whereas the data plane is where forwarding
tables and hardware data paths are implemented. To virtualize the routing
procedure means that a virtualization layer is placed at some level of the
network element architecture in order to allow the coexistence of multiple
virtual network elements over a single physical network element. Assuming

-)
Virtual Virtual Virtual Virtual
« | Machine Network | Network |... | Network
n 1 2 n
/ e/

Network Virtualization

Virtual Machine Monitor

Virtualization

~—
—_——

I Resources | Computer Network
J S v

(a) The concept of slicing re-(b) Virtual slices on a com-(c) Virtual slices on a network.
sources by using virtualiza- puter harware.
tion.

Figure 2.1: Obtaining “sliced” resources.
[Obtaining “sliced” resources by means of virtualization for different shared
resources. |

a virtualization layer placed between the control and data planes, then only
the control plane is virtualized, as shown in Figure 2.2(b). In this case, the
data plane is shared by all virtual networks and each virtual network runs
its own control software. Compared to the conventional network architec-
ture, this approach greatly improves the network programmability because
now it is possible to run multiple and customized protocol stacks, instead
of a single and fixed protocol stack. For instance, it is possible to program
different protocol stacks for network 1, network 2 and network 3, as illus-
trated in the figure. In the second network virtualization approach, both
control and data planes are virtualized (Figure 2.2(c)). In this case, each
virtual network element implements its own data plane, besides the control
plane, improving even more the network programmability. This approach
allows customizing data planes at the cost of performance loss, because the
data plane is no longer dedicated to a common task. This tradeoff between
network programmability and performance is investigated in detail in Sec-
tions 2.3.1 and 2.3.2.

It is worth mentioning that the approach that virtualizes only the control
plane, can be further divided into more subcategories depending on the isola-
tion level in data plane sharing among virtual network elements. If a strong
isolation is required, then each virtual control plane must only have access
to its part of the data plane and cannot interfere with the other parts. On
the other hand, if the whole data plane is completely shared among virtual
control planes, then it is possible that a virtual control plane interferes with

10

[CP1][CP2][CP3] {cm][cpz][cm]
[Control Plane (CP)] [Virtualization] [DP;] [DP,][DP;,]
[Data Plane (DP)] [Data Plane (DP)] [Virtualization]

(a) Conventional architec- (b) Pluralist model virtu- (c¢) Pluralist model virtual-
ture. Monist model, only alizing the control plane izing the control plane (CP)
one network. (CP). and the data plane (DP).

Figure 2.2: Approaches for network virtualization differ on the level in which
the virtualization layer is placed: a) no virtualization in the monist model;
b) pluralist model with several virtual networks with the same data plane,
but differing in control plane, and ¢) pluralist model with several virtual
networks differing in control and data planes.

other virtual control planes. For instance, it is possible that a single virtual
control plane fills the entire forwarding table with its own entries, which can
lead to packet drops on the other virtual networks. The decision between
strong isolation (slicing) and weak isolation (sharing) is analogous to the
decision between circuit and packet switching.

2.2 Network Virtualization Technologies

In this section, we present in details two technologies that can be used to
network virtualization: Xen and OpenFlow.

2.2.1 Xen

Xen is an open-source virtual machine monitor (VMM), also called hyper-
visor, that runs on commodity hardware platforms [10]. Xen architecture is
composed of one virtual machine monitor (VMM) located above the physical
hardware and several domains running simultaneously above the hypervisor,
called virtual machines, as shown in Figure 2.3. Each virtual machine can
have its own operating system and applications. The VMM controls the ac-
cess of the multiple domains to the hardware and also manages the resources
shared by these domains. Hence, virtual machines are isolated from each
other, i.e., the execution of one virtual machine does not affect the perfor-
mance of the others. In addition, all the device drivers are kept in an isolated
driver domain, called domain 0 (dom0), in order to provide reliable and ef-
ficient hardware support [10]. Domain 0 has special privileges compared

11

with the other domains, referred to as user domains (domUs), because it has
total access to the hardware of the physical machine. On the other hand,
user domains have virtual drivers that communicate with dom0 to access the
physical hardware.

/ Driver Domain \ (User Domain 1 \ (User Do

(domO0) (domU1) (dom

[Application] [Application] [Applic

S | () (e

Virtual Devices) Ve B N

‘ph0" ™66 0T “66 02 ~Bé 07 pridga rtual Devices irtua

& D .))\ -
O

Physical
i interface

fe — front-end interface be — back-end interface ph — pi

Figure 2.3: The Xen architecture.

Xen virtualizes a single physical network interface by demultiplexing in-
coming packets from the physical interface to the user domains and, con-
versely, multiplexing outgoing packets generated by these user domains. This
procedure, called network 1/0 virtualization, works as follows. Domain 0 di-
rectly access 1/0O devices by using its native device drivers and also performs
I/O operations on behalf of domUs. On the other hand, user domains em-
ploy virtual I/O devices, controlled by virtual drivers, to request dom0 for
device access [13], as illustrated in Figure 2.3. Each user domain has virtual
network interfaces, called front-end interfaces, required by this domain for
all its network communications. Back-end interfaces are created in domain
0 corresponding to each front-end interface in a user domain. The back-end
interfaces act as the proxy for the virtual interfaces in dom0. The front-end
and back-end interfaces are connected to each other through an I/O chan-
nel. In order to exchange packets between the back-end and the front-end
interfaces, the I/O channel employs a zero-copy mechanism that remaps the
physical page containing the packet into the target domain [13]. It is worth
mentioning that as perceived by the operating systems running on the user
domains, the front-end interfaces are the real ones. All the back-end inter-

12

faces in dom0 are connected to the physical interface and also to each other
through a virtual network bridge. This is the default architecture used by
Xen and it is called bridge mode. Thus, both the I/O channel and the net-
work bridge establish a communication path between the virtual interfaces
created in user domains and the physical interface.

Different virtual network elements can be implemented using Xen as it
allows multiple virtual machines running simultaneously on the same hard-
ware [10], as shown in Figure 2.4(a). In this case, each virtual machine runs
a virtual router. Because the Xen virtualization layer is placed at a low level,
each virtual router can have its own control and data planes.

[cPy[CP:] [CPs | CP.(CP2][CPa
DP, | [DP; | [DPs H H H

T e

(a) Xen: one data plane (DP) and one con-
trol plane (CP) per virtual router.

Controller
-7 ’% N Ty

OpenFlow 7 |~ OpenFlow
AN

Shared DP A N Shared DP

/ ! N R
/ OpenFlow
. / Shared DP .
Switch Y < =& N Switch

OpenFlow

OpenFlow
Shared DP

Shared DP

witch

(b) OpenFlow: a shared data plane (DP) per
node and all the control planes (CPs) on the
Controller node.

Switch

Figure 2.4: Virtual networks with Xen and OpenFlow.

13

2.2.2 OpenFlow

OpenFlow [11] allows the use of the wiring closets on university campus
not only for the production network, but also for experimental networks.
The OpenFlow project, proposed by Standford University, aims at creating
virtual environments for innovations in parallel with the production network
using network elements such as switches, routers, access points, and personal
computers.

OpenFlow presents a new architecture for providing virtual network en-
vironments. The key idea is the physical separation of control and data
planes. Different network elements execute the packet forwarding function
(data plane) and network control function (control plane). The virtualization
of the forwarding elements is accomplished by a shared flow table, which rep-
resents the data plane and all control planes are centralized in a node called
controller, which runs applications that control each virtual network. An
example of network using OpenFlow is on Figure 2.4(b).

The OpenFlow protocol defines the communication between forwarding
nodes and the network controller. It is based on the establishment of a secure
channel between each forwarding node and the controller, which uses this
channel to monitor and configure the forwarding nodes. Every time a new
packet reaches a forwarding element and there is no previously configured
flow, the first bits of the packet are forwarded to the controller, which sets a
path for the packet in the chosen forwarding elements. The controller may
also set the action of normal processing for a flow to be forwarded according
to conventional layer-2 (L.2) and layer-3 (L3) routing, as if OpenFlow did
not exist. That is the reason why OpenFlow can be used in parallel to the
production network without affecting production traffic.

The data plane in OpenFlow is a flow table described by header fields,
counters, and actions. The header fields are a twelve-tuple structure that
describes the packet header, as shown in Figure 2.5. These fields specify a
flow by setting a value for each field or by using a wildcard to set only a subset
of fields. The flow table also supports the use of subnet masks, if the hardware
in use also supports this kind of match [14]. This twelve-tuple structure gives
high flexibility for packet forwarding, because a flow can be forwarded based
not only on the destination IP, as in the conventional TCP/IP network, but
also on the TCP port, the MAC address, etc. Because the flows can be set
based on layer-2 addresses, the forwarding elements of OpenFlow are also
called OpenFlow switches. This, however, does not imply that forwarding in
OpenFlow must be based on layer 2. Moreover, one of the future objectives
of OpenFlow is that the header fields become user-described, which means
that the packet header will not be described by fixed fields in a flow, but by

14

a combination of fields specified by the administrator of the virtual network.
This will give OpenFlow the ability to forward packets belonging to networks
with any kind of protocol stack.

After the header fields, the flow description is followed by the counters,
which are used for node monitoring. Counters compute data such as the flow
duration and the amount of bytes that were forwarded. The last fields in the
flow description are the actions, which are a set of instructions that can be
taken over each packet of a specific flow in the forwarding elements. These
actions include not only forwarding a packet to a port, but also changing
header fields such as VLAN data and source and destination addresses.

IPsrc | IP dst IP ToS

Ingress | Ether | Ether | Ether | VLAN | VLAN 1P TCP TCP
port src dst type ID prio proto src port| dst port

Header -

Figure 2.5: A flow entry in an OpenFlow forwarding element.

The controller node is a central element in the network, which communi-
cates with all the nodes to configure the flow tables. The controller runs a
network operating system, which provides the basic functions of network con-
figuration to the applications that manage the virtual networks. Hence, the
controller in OpenFlow works as an interface between the network applica-
tions and the forwarding elements, providing the basic functions for accessing
the first packet in flows and for monitoring nodes. OpenFlow works with any
controller that is compatible with the OpenFlow protocol, such as NOX [15].
In this case, each control plane is composed of a set of applications running
over NOX. Hence, a virtual network in OpenFlow is defined by its control
plane, which is a set of applications running over the controller, and by the
flows that are being controlled by this control plane, as shown in Figure 2.6.
Hence, the virtual network topology depends on the current flows in the
network.

Using the single controller model, it is possible to create many virtual net-
works. It is important noticing, however, that different applications running
over the same operating system are not isolated. As a consequence, if one
application has some bug, it can stop the controller, harming all the other
virtual networks. FlowVisor is a tool used with OpenFlow to allow different
controllers working over the same physical network [16]. FlowVisor works
as a proxy between the forwarding elements and the controllers, assuming,
for instance, one controller per network. Using this model, it is possible to
guarantee that failures in one virtual network will not influence the other
virtual networks.

15

Net. 2

Net 1 Net 3

‘— <r z

& & &

< <
Secure channel

Network Operatlng
OpenFlow protocol (System

pp2
pp3

Controller

Figure 2.6: The OpenFlow controller model.

OpenFlow provides a flexible infrastructure based on the idea of dis-
tributed forwarding elements, which provide basic functions for operating a
network, and centralized control planes. Using this infrastructure, it is possi-
ble to slice the physical network into multiple virtual networks. In OpenFlow,
the instantiation of a network is just the creation of some set of applications
in the controller. The new network flows will be created on demand, accord-
ing to the packets that enter the network. OpenFlow also provides an flexible
infrastructure for reallocating network resources. Re-allocating a network in
OpenFlow means only to reprogram the flow table in each node that partici-
pates into the network. This is a simple operation for the controller, because
it knows where the physical devices are and how they are connected.

2.3 Characteristics of Xen and OpenFlow Net-
work Virtualization Technologies

Neither Xen nor OpenFlow were developed for supporting a pluralist
architecture for Internet, but they are the best commodity alternatives for
a virtual network substrate. We evaluate the main characteristics of each
of these technologies, emphasizing the advantages and the disadvantages for
supporting multiple networks and providing flexibility for innovations.

Xen and OpenFlow have different concepts of virtualization. Xen creates
virtual networks by slicing physical network elements into different concur-
rent virtual routers. Consequently, a virtual network can be seen as a set
of interconnected virtual routers distributed over the physical infrastructure.
On the other hand, OpenFlow creates virtual networks by slicing the network
control into many control planes, which create the forwarding tables in each
switch. Hence, when using OpenFlow, a virtual network is a set of flows with
common characteristics, which are controlled by the same set of applications

16

of the OpenFlow controller. The differences between Xen and OpenFlow vir-
tualization models impact scalability, packet processing, packet forwarding,
and the use of basic management tools, as we show next.

2.3.1 Programmability and Network Processing

One of the main advantages of the pluralist approach is to support inno-
vation and, as consequence, the network must be flexible enough providing
end-to-end paths over the available physical infrastructure, guaranteeing to
the administrator the whole control of the network, which includes, the choice
of the protocol stack, the forwarding rules, the packet processing, etc.

Because Xen virtualization layer is directly over the hardware, each vir-
tual router has access to all computer components, such as memory, processor,
and I/0 devices. Therefore, the network administrator is free to choose every-
thing that runs over Xen, the virtualization layer. Thus, different operating
systems, forwarding tables, forwarding rules, and so on, can be defined for
each individual virtual network. Furthermore, both data and control plane
can be completely virtualized, as shown in Figure 2.2(c). Therefore, Xen ac-
tually provides a powerful and flexible platform for the network control and
management, allowing hop-by-hop packet processing and forwarding. This
way, virtual networks with new functionalities can be easily deployed. For
instance, a virtual network with support for packet signature can be instanti-
ated to guarantee authentication and access control. This functionality would
solve security problems of the current Internet that cannot be implemented
due to the network “ossification” [2]. Even disruptive network models can
be implemented due to Xen flexibility for packet processing.

The OpenFlow virtualization model is different from Xen, because the
virtual slice is a flow and, as a consequence, the actions concern flows, instead
of packets. OpenFlow provides a simple packet forwarding scheme in which
the network element looks for a packet entry on the flow table to forward the
packet. If there is no entry, the packet is forwarded to the controller, so that
the controller can set a forwarding rule in each node on the selected route
to forward the packet. Hence, OpenFlow protocol version 1 specifies that
the controller can set flow actions, which define that a header field can be
modified before forwarding the packet. For instance, the forwarding element
could change the destination address to forward the packet to a middle box
before forwarding it to the next network element. While flow operations are
easily handled by OpenFlow, packet-level features, on the other hand, such
as packet signature verification, are not easily implemented in OpenFlow
because such features must be executed by the controller or by a middle box,
which causes a great loss in the network performance.

17

In terms of flexibility, the main disadvantage of the OpenFlow is that
all virtual networks must base the packet forwarding on the same primi-
tives (flow table lookup, wildcard matching, and actions), because there is a
unique data plane shared by all the virtual networks in each network node.
On the other hand, Xen provides independent data planes to different vir-
tual networks. To increase the flexibility, OpenFlow provides a fine grained
forwarding table, much more flexible than the current TCP/IP forwarding
table, which is adopted by Xen. Currently, Xen provides a forwarding table
that is based on IP routing, which means that the forwarding plane is only
based on the source and destination IP addresses. In contrast, OpenFlow
flow space definition is composed of N dimensions, where N is the number
of fields in the header that could be used to specify a flow, as shown on
Figure 2.7. Hence, we define a flow based on all the dimensions or based
on a wildcard that defines which header fields are important for forwarding
packets of that flow [11]. The consequence of this kind of forwarding table is
that the packets can be forwarded based not only on the destination IP, but
also on other parameters, such as the kind of application that is in use. This
kind of forwarding table is also possible in Xen, but it is still not available.

All routes
matching fields 1,
2,and N

Field 1

o
= All routes from
-% node/network x
g Field 2
Z S
: 5/ X
& All routes matching fields N
Origin IP and 2, independent of field 1
(a) Flow space definition in (b) Flow space definition in the
the TCP/IP model. OpenFlow model.

Figure 2.7: Models of flow space to define the forwarding table in TCP /TP
based networks and in OpenFlow based networks.

Another key difference between Xen and OpenFlow concerning programma-
bility is the control plane model. In Xen, every virtual network node has both
data and control plane and, consequently, the network control is decentral-
ized. In OpenFlow, the network node has only the data plane. The control
plane is centralized on the controller, which is a special node in the network.
The use of a centralized control plane makes it easier to develop algorithms
for network control, when compared with the use of a decentralized approach.
A centralized control, however, creates the need for an extra server in the

18

network and also creates a single failure point in the network.

2.3.2 Performance on Forwarding

One important technology capability for providing a multiple virtual net-
work environment for the Future Internet is a high performance on packet
forwarding. The packet forwarding depends not only on the hardware being
used, but also on the logic provided by each technology. In this section, we
assume that both Xen and OpenFlow are running on the same hardware to
evaluate which losses each technology imposes to the packet forwarding.

As we consider each virtual machine as a virtual router, packet forward-
ing becomes a key point in order to analyze the performance of Xen acting as
a router. Basically, Xen performance depends on the location where packet
forwarding is performed. For each virtual router, packet forwarding can be
performed by the operating system running on the user domain correspond-
ing to the virtual router or by domain 0. In the first case, the costs associated
with moving packets between dom0 and domU to perform forwarding intro-
duces control overhead and impact Xen performance. In the second case,
packets for and from all virtual routers are forwarded by dom0, which deals
with multiple forwarding tables simultaneously.

The performance of Xen packet forwarding also depends on the mode
employed to move packets between network interfaces. Xen provides two
modes to move packets: the bridge and the router modes [10]. The bridge
mode is the default network architecture used by Xen, presented in Figure 2.3.
Nevertheless, this architecture does not apply for a router, because we need
more than one physical interface in each device. Figure 2.8(a) shows an
example of the bridge mode with two physical interfaces. We have two bridges
on dom0, one per physical interface, connecting the back-end interfaces and
the physical ones. Packet forwarding, in this case, can be performed at domO
by using layer-2 or layer-3 forwarding. Let p be a packet arriving at physical
interface ph0 that must be forwarded to physical interface phl. First, p is
handled by the device driver running on dom0. At this time, p is in phO,
which is connected to bridge br0. This bridge demultiplexes the packet p
and moves it to back-end interface be00 based on the MAC address of the
frame destination. After that, p is moved from be00 to the front-end interface
fe0 by using the I/O channel through the hypervisor. The packet p is then
forwarded to the front-end interface fel and after that another I/O channel
is used to move p to the back-end interface be0l. This interface is in the
same bridge brl of the physical interface phl. Thus, p reaches its outgoing
interface. It is worth mentioning that the hypervisor is called twice to forward
one packet.

19

In the router mode, illustrated by Figure2.8(b), the domain 0 interfaces
are the physical ones with an IP address associated to each one. As a con-
sequence, the router mode does not require bridges connecting each physical
interfaces and I/O channels, i.e., packet forwarding from a physical interface
to another one at dom0 is performed as well as in native Linux. In this
case, if Domain 0 is used as shared data plane (Figure 2.2(b)), there are
no calls to the hypervisor. With the router mode, the hypervisor is called
only when each virtual router implements its own data plane, as illustrated
in Figure 2.2(c). In this case, packets are routed to the back-end interface
associated to the destination domU and then are moved to the front-end in-
terface by using the I/O channel through the hypervisor. Then, packets are
moved to the back-end interface and finally routed to the outgoing physical
interface. In order to allow user domains to send and receive packets, IP
addresses are also assigned to back-end interfaces in contrast to the bridge
mode.

The use of virtual machines in the packet forwarding gives to Xen-based
virtual networks a high programmability, because each network can program
and decide the actions for packet processing. This, however, implies in a low
packet forwarding performance, when we compare Xen with a device without
virtualization. To improve packet forwarding performance, this function can
be entirely executed on Domain 0 and thus control plane runs on the virtual
machine and data plane runs on Domain 0. When the packet forwarding
function is accomplished on Domain 0, Xen has one control plane for each
virtual router, but only one data plane shared by all the virtual networks,
as illustrated in Figure 2.2(b), instead of the conventional model, shown on
Figure 2.2(c). The performance of Domain 0 packet forwarding is close to
the performance of the packet forwarding without the use of virtualization.
The packet processing, however, looses flexibility, because Domain 0 does not
process the packet hop-by-hop, as the virtual machines can do.

OpenFlow does not assume virtualized data planes on forwarding ele-
ments and, consequently, follows the model of one shared data plane for
all the networks. Therefore, it is expected that OpenFlow performance on
packet forwarding is just the same of the native packet forwarding. Open-
Flow, however, also shows a disadvantage when the flow is not configured.
As we explained before, when a packet reaches an OpenFlow switch, if the
flow is not configured on the table, it is forwarded through the network to
the controller. The controller, then, configures the OpenFlow switches to
route the packet through the network. This mechanism introduces a greater
delay when forwarding the first packet of each flow, due to the transmission
and the controller processing delays. If the traffic is mostly formed of small
flows, it can imply in a performance decrease in OpenFlow.

20

f Driver Domain \ (User Domain 1\

domO
bridge br0 (domo0) (domU1)

1 \ 1 \
tbe 00FH4-. L2L3 4BHbe 0!
1 be 108H<1,~2AING |3 B e 1711
1 phOBH} :::moaggﬁfeq::u Hph 1 1 Bdfe0 EY fe1

[N

.:'- z \?_?_/

Native

Device [Jo === - - ——--—_ 1 .
Driver I/O channels Xen VMM
NN
.

ﬁ H Physical H Physical
Interface 0 Interface 1 Hardware

\L

fe — front-end interface , be — back-end interface , ph — physical interface

(a) The bridge mode.

(Driver Domain \ (User Domain 1\
(domO0) (domU1)
IP routing
(- TS TT T T T T T TS T T s TS T T T TS TS \
:ﬁ fe0 ﬁgfm ﬁ be10 ﬁ bel1 : ﬁH fe0 ﬁ fet
N /A A A r v
1
ative i G]])
Device e e e e e !
Driver I/0 channels Xen VMM
NN\
N N
EH Physical H Physical
Interface 0 Interface 1 Hardware
\

fe — front-end interface, be — back-end interface , ph — physical interface

(b) The router mode.

Figure 2.8: The Xen network architectures for packet forwarding.

21

2.3.3 Scalability

Scalability is another important issue for a virtualization technology that
intends to provide multiple parallel networks for the Future Internet. Al-
though OpenFlow natively performs better than Xen using the user domains
for packet forwarding, Xen has a better support for the network scalability,
assuming the number of nodes in the network as the parameter. First, Open-
Flow assumes that all nodes run in the same level a layer-two protocol. This
means that, if a node starts an ARP request, all nodes will listen this through
a flood in the network. OpenFlow, up to now, does not provide support for
creating domains in the network. As a consequence, the current OpenFlow
solution is restricted to a local or metropolitan area network (layer 2) until
new approaches are proposed. The Xen model is based on the idea that net-
work nodes can run layer-three protocols. Hence, network nodes can operate
as virtual routers and can establish network domains, which can be organized
through a hierarchy. This structure is compatible with the current network
model and is scalable.

Secondly, OpenFlow is based on a centralized controller, which config-
ures the network elements. Since the control plane is centralized and the
first packet of each flow must be forwarded and processed by the controller,
the size of an OpenFlow network is restricted by the processing power and
the link capacity of the controller. Up to now, OpenFlow has no native
solution for providing support for different controllers for the same virtual
network. Again, Xen model presents a better approach, because it is based on
a decentralized control plane. Although decentralized algorithms may have
a greater convergence time and a more complex logic, especially when all
nodes share a network state, this kind of algorithm usually is more suitable
when scalability is an issue.

Scalability is related to the number of virtual networks running over the
same physical node. The new Internet requisites are still an open issue and
the new architecture should not restrict the number of networks running
over the available physical infrastructure. The Xen approach is less flexible
in this sense, because the virtual network element is a virtual machine, which
demands much more hardware resources, such as processing power and mem-
ory space, than a simple flow in an OpenFlow switch. Context switching and
datapath in Xen are much more complex than in OpenFlow. The number of
virtual networks in Xen is restricted by the hardware of the network element.
Indeed, even if some network element has no traffic on a specific moment, it
occupies a fixed amount of disc and memory in the physical network element,
which may prevent the instantiation of another virtual network element on
the same physical element. OpenFlow provides a more flexible infrastructure

22

for the instantiation of virtual network slices over a physical network ele-
ment. Since the forwarding network element has only one shared data plane,
its resources are not consumed by different virtual operating system or by
the save of fixed amounts memory and disc for specific virtual networks. The
concept of virtual networks in OpenFlow is given by a set of flows which cor-
responds to a specific set of characteristics that define that virtual network.
For this reason, OpenFlow supports thousands of virtual networks running
in parallel, while Xen is restricted to the number of virtual machines that
can be multiplexed over the same hardware. It is worth mentioning that Xen
scalability can be improved if Domain 0 is used as a shared data plane.

The main scalability disadvantage of Xen is that this technology is devel-
oped for personal computers and servers that do not support as many net-
work interfaces as a router or a switch. OpenFlow can be used on commercial
switches and routers, which solves the scalability issue with the number of
available network interfaces per node.

2.3.4 Basic virtual network management primitives and
tools

Virtual networks management primitives depends on specific tools for
creating and deleting virtual networks, for virtual network reallocation over
the physical infrastructure, for node resource reallocation, and for network
monitoring. Since the structures of the Xen and OpenFlow models are differ-
ent, as well as the definition of what is a virtual network in each model, they
present different approaches for carrying out the above-mentioned primitives.

First, we must observe that managing virtual networks implies on the ex-
istence of a high hierarchical level entity that is above all the virtual networks
managers. This is an important assumption, because if there was no arbiter,
each network could try to consume all the available resources, damaging the
other virtual networks. Indeed, a virtual network management framework
also implies on the existence of isolation tools, which can be used by the
arbiter to guarantee the minimum resources for each network. The idea of
an arbiter which decides how to divide resources among parallel networks
was previously presented by Feamster et al. [7]. They argue that Internet
Service Providers (ISP) should be separated from Infrastructure Providers.
According to this idea, the Infrastructure Provider would be responsible for
arbitration of the resources among the virtual networks.

The existence of an arbiter raises an issue about security. Since we have an
entity that has power over the whole network, the communication among this
entity and the virtual/physical nodes must be completely secure. Moreover,

23

the arbiter cannot be influenced by malicious network nodes that want to
divert resources from one network to other. In OpenFlow, the arbiter is
naturally defined as the network controller. If the architecture is assumed to
use a different controller for different networks, then this arbiter is given by
the FlowVisor [16]. The secure channel among each network node and the
controller/FlowVisor is defined in OpenFlow standard. The access control
and the trust issues are not treated in the standard and must be implemented.
Xen does not provide any kind of arbiter to manage virtual networks, because
it was not developed for creating virtual networks.

Assuming the existence of an arbiter entity, we can discuss how to im-
plement the virtual networks basic operations for management in Xen and
OpenFlow. In Xen model, we define a network as a set of virtual routers.
Hence, to create or delete a network means to create or delete virtual routers
over the same physical infrastructure. Xen provides mechanisms for locally
instantiating virtual machines, assuming that the virtual machine image is
already in the physical node memory. Hence, for instantiating a virtual net-
work, the arbiter must first select the virtual infrastructure that will be used,
transfer the virtual node image to each physical node, and then start the
virtual machines. In OpenFlow, the instantiation of a network does not im-
ply in changes on the forwarding node. Indeed, to create a new network is
just to instantiate some set of applications in the controller or, in case of
using FlowVisor, instantiate a new controller. The new network flows will be
created on demand, according to the packets that reach the network. The
selection of which physical resources to use for each network will be decided
on the fly by the controller, or in the moment of network instantiation, in
case of using FlowVisor. Nor Xen neither OpenFlow provides algorithms for
selecting the best configuration of the virtual networks over a given physical
infrastructure.

Another important operation is to re-allocate virtual networks on the
fly [17, 18], which means, to re-allocate the virtual networks if a new vir-
tual network is instantiated or if the traffic patterns of the virtual networks
changed. To re-allocate a network in Xen, we can migrate, instantiate, and
delete routers in the network. If we want to maintain the same virtual topol-
ogy, which may be an important characteristic to not influence on virtual
network functions, only migration can be used. This means that the virtual
routers will be transferred among physical routers that can form the same
virtual topology. Another restriction is that the new physical router needs to
have at least the same number of network interfaces of the original physical
router. This can imply in the construction of tunnels, to simulate a one-hop-
neighborhood which does not exist in the physical infrastructure. Moreover,
it can imply in the packet losses, unless some specific mechanisms are in

24

use [19]. Hence, instantiating and reallocating networks in Xen are chal-
lenging operations. OpenFlow, however, provides an easier infrastructure for
reallocating network resources. Re-allocating a network in OpenFlow means
only to reprogram the flow table in each node that participates into the net-
work. This is a simple operation for the controller, because it knows where
the physical devices are and how they are connected. Hence, to re-allocate
networks in OpenFlow is easier not only because the network elements are
not changed, but also because this kind of operation is much easily deployed
when the control plane is centralized, which means that one server knows
the whole topology and can act over all nodes. One example of network
re-allocation in Xen and OpenFlow is shown on Figure 2.9.

(a) Original virtual networks
configuration.

Network 1 Network 2

Network 2

Controller

©)

Z
o
2
o
=
=~
N
.

D c
1) Migrate virtual router from E to F 1) Add a flow in nodes D, G, F and A.
2) Create a tunnel from F to D 2) Delete the old flows of nodes A, E, D.

(b) Using Xen to migrate net- (c) Using OpenFlow to migrate network
work 1. 1.

Figure 2.9: Example of network re-allocation using Xen and OpenFlow.

Xen is based on the virtualization of the physical node. This means that
the physical parameters of the node, such as memory, disc, I/O access and

25

CPU use must be shared among the virtual node. Indeed, Xen provides
tools to manage this resource sharing, which can be used to distribute the
resources with justice, privileging some networks or not. OpenFlow provides
less control of the physical node, since the interface between the network
node and the controller is rigid. Hence, the control of the physical resources
of each network node in OpenFlow is restricted to control the frequency of
monitoring messages among the node and the controller and the size of the
flow table that each network is using. Also, since the controller/FlowVisor
can measure the throughput of each flow, it is also possible to drop flows of
specific network to control network bandwidth. These controls, however, do
not provide the same precision in the control of each virtual network resource
as in Xen.

2.4 Performance Evaluation

We evaluate the performance of Xen and OpenFlow in a testbed com-
posed of three machines, as shown in Fig 2.10. The Traffic Generator ma-
chine (TG) sends packets to the Traffic Receiver machine (TR), through
the Traffic Forwarder machine (TF), which simulates a virtual network el-
ement. The Traffic Forwarder machine (TF) is an HP Proliant DL380 G5
server equipped with two Intel Xeon E5440 2.83GHz processors and 10GB
of RAM. Each processor has 4 cores, therefore TF machine can run 8 logical
CPUs. When not mentioned, Traffic Forwarder machine, hereafter called
Forwarder, is set up with 1 logical CPU. TF machine uses the two network
interfaces of a PCI-Express x4 Intel Gigabit ET Dual Port Server Adapter.
The Traffic Generator and Traffic Receiver, hereafter called Generator and
Receiver respectively, are both general-purpose machines equipped with an
Intel DP55KG motherboard and an Intel Core 17 860 2.80GHz processor.
Traffic Generator (TG) and Traffic Receiver (TR) are directly connected to
the Traffic Forwarder (TF) via their on-board Intel PRO/1000 PCI-Express
network interface.

In the following experiments, we test packet forwarding using Native
Linux, Xen, and OpenFlow.

In Native Linux experiments, the Forwarder runs a Debian Linux kernel
version 2.6.26. This kernel is also used in OpenFlow experiments with an ad-
ditional kernel module to enable OpenFlow. In Xen experiments, Domain 0
and User Domains run a Debian Linux system with a paravirtualized kernel
version 2.6.26. For traffic generation, we use the Linux Kernel Packet Gener-
ator [20], which works as a kernel module and can generate packets at high
rates. In the following, we explain the packet forwarding solutions evaluated

26

Traffic Generator
machine (TG)

Traffic Forwarder
machine (TF)

Packet
Generator

Native Linux

Virtual Network
Element

Traffic Receiver

machine (TR)

Packet
Receiver

Native Linux

L ¥

Physical NIC | IG==D | "RIET™ || "Nies | (K= | Physical NIC

Figure 2.10: Testbed used in the evaluation. The Traffic Forwarder machine
(TF) is set as Xen, OpenFlow, or Native Linux, according to each experiment.

in our experiments.

2.4.1 Xen, OpenFlow, and Native Linux Scenarios

In the Xen scenario, we test three different network configurations. In
the two first ones, Xen works in the bridge mode, explained in Section 2.3.2.
In the first configuration, called Xen-VM, virtual machines work as complete
virtual routers, which means that both data and control plane are on the vir-
tual machine. In the second configuration, called Xen-Bridge, we assume that
virtual machines contain only the control plane. The data plane, running in
Domain 0, is shared by all virtual routers. The Xen-Bridge configuration is
expected to give a higher performance on packet forwarding, but it reduces
the flexibility on packet processing when compared with the Xen-VM config-
uration. Finally, in the third configuration, Xen works in the router mode.
In this case, we evaluate only the packet forwarding through Domain 0 and
we call this configuration Xen-Router. We use the Xen hypervisor version
3.4.2 for all configurations.

In the OpenFlow scenario the Traffic Forwarder (TF) acts as an OpenFlow
Switch. An OpenFlow Controller is connected to TF, using a third network
interface. TF runs OpenFlow Reference System version 0.8.9. The controller
is an IBM T42 Laptop that runs a Debian Linux system. We choose NOX
version 0.6.0 [15] as the network controller. We use the pyswitch application,
which is available in NOX to create flow rules in the OpenFlow switch.

In the Native Linux scenario, we test three different packet forwarding
configurations. In the first one, Native-Router, the Forwarder (TF) works
as a router. For this test we use the standard Linux kernel routing mech-
anism with static routes. The Native-Bridge configuration uses the Linux

27

kernel bridge, which implements a software-based switch on the PC. Since
we compare layer-2 and layer-3 solutions with OpenFlow and Xen, we need
to compare their performance with both bridge and router modes of native
Linux to evaluate the impact of virtualization on packet forwarding. Xen
in the bridge mode, however, has a different configuration from the native
Linux with bridge. This is because Linux bridge does L2 forwarding between
two physical interfaces and Xen goes up to L3 forwarding. To perform a fair
comparison between Xen in bridge mode and native Linux, we create an hy-
brid mode (bridge and router) for native Linux, which we call Native-Hybrid.
In this hybrid mode, the Forwarder (TF) physical network interfaces are con-
nected to different software bridges and kernel routing mechanism forwards
packet between the two bridges. This configuration simulates in native Linux
what is done on Xen bridge mode, illustrated in Figure 2.8(a).

2.4.2 Experimental Results

Our first experiments measure the forwarding rate achieved by the dif-
ferent packet forwarding solutions. The packet forwarding rate analysis is
accomplished with minimum (64 bytes) and large (1512 bytes) frames. We
use 64-byte frames to generate high packet rates and force high packet pro-
cessing in the Forwarder (TF) and 1512-byte frames to saturate the 1 Gb/s
physical link.

Figure 2.11(a) shows the forwarding rate obtained with Native Linux,
which gives an upper bound for Xen and OpenFlow performances. We also
plot the Point-To-Point packet rate, which is achieved when TG and TR are
directly connected. Any rate achieved below the Point-To-Point packet rate
is caused by loss between TG and TR. The results show that Native Linux in
router mode performs as well as the Point-to-Point scenario. This is explained
by the low complexity on kernel routing mechanism. In the bridge mode,
however, Native Linux performs worse than in router mode. According to
Mateo [12] this result may be due to the Linux bridge implementation, which
is not optimized to support high packet rates. Finally, we observe that Native
Linux in the hybrid mode has the worst forwarding performance. This is an
expected result due to the previously mentioned limitations of bridge mode
and the incremental cost required to forward packets from the bridge to IP
layer in the Forwarder (TF).

The forwarding rate results for Xen are shown in Figure 2.11(b). First,
we analyze a scenario where Domain 0 forwards the packets. In this sce-
nario no virtual machine is running, although the same results are expected
when virtual machines are up and they do not forward packets [10]. In
this experiment, we test the Xen bridge and router modes. Xen-Bridge uses

28

Point-to—Point

Native—Router\

Native—-Hybrid

0.4 0.8 1.2
Generated packet rate (Mp/s)

(a) Native Linux.

Nétive—Router\ ‘ Nétive—Router\
OpenFlow
0.4 0.8 1.2 0.4 0.8 1.2
Generated packet rate (Mp/s) Generated packet rate (Mp/s)
(b) Xen. (¢) OpenFlow.

Figure 2.11: Packet rate for different forwarding elements, using 64-byte
frames.

the Linux bridge to interconnect the virtual machines, as explained in Sec-
tion 2.3.2. Xen-Bridge suffers the same limitations of Native Linux in bridge
mode, since the bridge implementation is the same. In addition, Xen-Bridge
forwards packets from the bridge to IP layer, as in hybrid mode, combined
with hypervisor calls necessary in this mode. As expected, Xen-Bridge per-
forms worse than all Native Linux forwarding schemes. On the other hand,
Xen-Router performs better than Xen-Bridge, because the Linux bridge is
not used and Xen hypervisor is not called when Domain 0 forwards packets.
Nevertheless, Xen-Router is still worse than Native-Router. The forwarding
rate rapidly decreases after about 1.2 Mp/s load. This behavior is also ob-
served for Xen-Bridge and in the following experiments with virtual machine
forwarding. This performance penalty is related to Xen interrupt handling

29

Native—Router, Native—Bridge,
Native—Hybrid, Point-to—Point

30 60 90
Generated packet rate (kp/s)
(a) Native Linux.
XenVM-2
Xen—-Router,
Xen-Bridge, OpenFlow,

Native-Router Native—Router

30 60 90) 30 60 90
Generated packet rate (kp/s) Generated packet rate (kp/s)
(b) Xen. (c¢) OpenFlow.

Figure 2.12: Packet rate for different forwarding elements, using 1512-byte
frames.

implementation and needs further investigation. Next, we analyze a sce-
nario where a virtual machine forwards traffic using Xen bridge mode, the
default Xen network configuration. In XenVM-1 configuration, both virtual
machine and Domain 0 share the same CPU core. This result shows a drop
in performance compared with previous results, in which Domain 0 was the
forwarding element. At first glance, this poor performance could be caused
by high contention for CPU resources due to the fact that a single CPU
core is shared between the domains. To eliminate the contention for CPU re-
sources we experiment with XenVM-2 configuration in Figure 2.11(b), where
we give one exclusive core to each domain. The performance obtained with
XenVM-2 experiment is better than with XenVM-1, but it is still lower than
Domain 0 results. This can be explained due to the high complexity involving

30

virtual machine packet forwarding. When the traffic is forwarded through
the virtual machines, it must undergo a more complex path before reaching
TR. Upon packet receiving, it is transferred via DMA to Domain 0 memory.
Domain 0 demultiplexes the packet to its destination, gets a free memory
page associated with the receiving virtual machine, swaps the free page with
the page containing the packet, and then notifies the virtual machine. To a
virtual machine send a packet, it must put a transmission request along with
a reference to the memory area where the packet is into Xen 1/O ring. Do-
main 0 then polls the I/O ring and, when it receives the transmission request,
it maps the reference into the physical page address, and then sends it to the
network interface [21]. This increased complexity is partially responsible for
the lower packet rate obtained in the two curves where virtual are used to
forward packets.

Figure 2.11(c) shows that OpenFlow performs near Native Linux in router
mode. In addition, the comparison between OpenFlow and XenVM results
shows the tradeoff between flexibility and performance. On XenVM we have
more flexibility, because the data and control planes are under total control
of each virtual network administrator. In OpenFlow, however, the flexibility
is lower because the data plane is shared by all virtual networks. On the
other hand, due to lower processing overhead, OpenFlow performs better
than XenVM in our scenario. Xen performance can be raised if the data
plane is moved to Domain 0, as we can see in Xen-Router and Xen-Bridge
results. In this case, however, the flexibility of customizing data planes is
decreased.

We also carried out packet forwarding experiments with 1470-byte data
packets, shown in Figure 2.12. With large packets, all forwarding solutions
but XenVM-1 and XenVM-2 have the same behavior as in the Native-Router
scenario. It means that there is no packet loss in TF and the bottleneck in
this case is the 1 Gb/s link. Nevertheless, with XenVM-1, where a virtual
machine shares the same core with Domain 0, the packet rate achieved is
lower. In XenVM-2 experiments, where we give one exclusive CPU core for
each domain, the behavior is similar to Native-Router. Thus, we conclude
that, in this case, the performance decrease in XenVM-1 result is caused by
high contention for CPU resources between domains and giving an exclusive
CPU core to Domain 0 solves the problem.

Next, we analyze the impact of each type of virtual network element
on the traffic latency. We create background traffic with different rates to
be forwarded by the network element. For each of those rates, an ICMP
(Internet Control Message Protocol) echo request is sent from the generator
to the receiver, to evaluate the round trip time (RTT) and the jitter according
to the generated background traffic. By measuring the jitter in the ICMP

31

1.6 ‘ ‘ ‘ w 1.4

14| 1ol
1.2 ¢ 1L
% 1t 0
£ s e
[S 06l XenVM-1
o 06t) . 1 B
04 | Other Configurations | 0.4 f Other Configurations -
0.2 0.2t
0 ‘ ‘ ‘ ‘ 0 == :
0 100 200 300 400 500 0 100 200 300 400 500
Background traffic (Mb/s) Background traffic (Mb/s)
(a) Round trip time (RTT) . (b) Jitter.

Figure 2.13: Analysing network delays according to the network element
which forwards the traffic, assuming 128-byte packets.

messages, we investigate if the network element inserts a fixed or a variable
delay in the network, which could affect some real-time applications.
Figures 2.13(a) and 2.13(b) show the results for the RTT and the jitter,
respectively. As the generated traffic increases, the RTT and jitter of the
ICMP messages increase only for the configuration in which the traffic passes
through the virtual machine, which we call XenVM-1 in the graph. The
difference in the RTT between XenVM-1 and Native-Linux experiments is
up to 1.5 ms in the worst scenario, with background traffic of 500 Mb/s.
The RTT and the jitter of OpenFlow have the same order of magnitude as
the RTT and jitter of Native-Linux. Despite of the delay difference between
XenVM-1 and the other configurations, Xen virtual machines can handle
network traffic without a significant impact on the latency. Because the RTT
is always smaller than 1.7 ms, even in the worst case, virtual routers running
over Xen do not significantly impact real-time applications such as voice
over IP (VoIP), which tolerates up to 150-ms delay without disrupting the
interactivity of the communication, even if one considers multiple hops [22].
We also analyze Xen and OpenFlow virtualization platform behavior for
multiple networks and multiple flows per network. In this scenario, each
network is represented as a flow of packets between the TG and TR for
OpenFlow, and as a virtual machine for Xen. The packet size and the gen-
erated packet rate are fixed at 64 bytes and 200 kp/s, respectively. If there
is more than one parallel flow, the aggregated generated traffic is still the
same. For example, if the test is executed with four parallel flows, each flow

32

% 250 f " OpenFlow. Native—Bridge] @ 250 ¢ ‘ Native—Bridge
& g OpenFlow \
o 200 ; o 200 :
© [!
T 150 | T 150 | _Bri
3 3 \XenVM—Z Xen-Bridge
5 100 \\ Xen-Bridge 5 100 |
2L / :! %
[
o o XenVM-1
S 07 xehvm-t g S0
< <

0 ‘ ‘ 0 ‘ ‘

1 2 4 8 1 2 4 8
Number of parallel networks Number of flows
(a) Effect of the number of networks. (b) Effect of the number of flows.

Figure 2.14: Aggregated packet rate according to the number of virtual net-
works.

corresponds to a packet rate of 50 kp/s, generating an aggregated rate of
200 kp/s.

Figure 2.14(a) shows the aggregated packet rate as a function of the
number of virtual networks, with one flow per network. OpenFlow acts like
a software switch despite the fact that the first packet of the low must go
to the OpenFlow controller. The performance obtained is very similar to
a software bridge running over Native Linux, maintaining the received rate
close to the generated rate of 200 kp/s. Although Xen’s Domain 0 must have
its interrupts first handled by the hypervisor, Xen-Bridge performs almost as
well as native Linux in bridge mode. On the other hand, in the case where
multiple virtual machines are simultaneously forwarding traffic (XenVM-1
configuration), the performance degrades as the number of parallel virtual
machines increases. This degradation is mainly because of context switching
due to the CPU scheduling, which must multiplex the processor among an
increasing number of machines, each one requiring to forward its own flow.

Figure 2.14(b) shows the aggregated packet rate as a function of the num-
ber of flows, considering a single virtual network. As expected, OpenFlow
and Xen-Bridge present the same behavior as in Figure 2.14(a), because both
share the data plane and, consequently, there is no difference between a vir-
tual network with multiple flows and multiple networks with one flow each.
On the other hand, when the traffic is forwarded through the virtual ma-
chines (XenVM-1 configuration), the traffic must undergo a more complex
path before reaching TR, as seen in previous results. In order to verify if

33

the complex path is the only bottleneck, the test was repeated in a configu-
ration where the virtual machine does not share the same physical core with
Domain 0, referred to as XenVM-2. In this configuration, the performance
is increased by up to 50 kp/s, which indicates that the lack of processor
availability is an important issue in network virtualization.

1 2 3 4
Jmber of Domain 0 dedicated CPU cores (n)

Figure 2.15: Received packet rate when varying the number of CPUs allo-
cated to Domain 0.

To analyze the impact of CPU allocation on virtual machine forwarding,
we have conducted a CPU variation test in which we send packets from TG
to TR at a fixed rate of 200 kp/s through virtual machines and vary the
number of dedicated CPU cores given to Domain 0. The 200 kp/s rate is
used because near this rate we obtain the best performance in the 1-virtual
machine scenario. According to previous results, the forwarding performance
increases when both Domain 0 and virtual machine have a dedicated CPU
core. This test aims to complement those results by analyzing the forwarding
performance when the number of Domain 0 exclusive CPU cores increases
and more virtual machines forward packets. When more than one virtual
machine is used, the global sent rate of 200 kp/s is equally divided among
virtual machines. Figure 2.15 shows the aggregated received rate in a scenario
in which each virtual machine has one single core and the number n of CPU
cores dedicated to Domain 0 is varied. According to Figure 2.15, the worst
performance is obtained when all domains share the same CPU core (i.e.,
n = 0), due to a high contention for CPU resources. As expected, whenn = 1
the performance increases, because each virtual machine has a dedicated
CPU core and, consequently, has more time to execute its tasks. In addition,
when Domain 0 receives more than one dedicated CPU core (i.e., n > 2),
the performance is worse than when Domain 0 has a single dedicated CPU
core, even when more virtual machines forward packets. These results show

34

that the network tasks that Domain 0 executes when each virtual router has
2 interfaces are single-threaded and these tasks are under-performing in a
multi-core environment.

35

Chapter 3

Xen Prototype

A Xen prototype was developed on GTA laboratory in order to experi-
ment the proposed interfaces. This chapter aims to demonstrate the inter-
faces related to the Xen system developed on the Horizon Project and its
implementation on the GTA prototype.

The Xen prototype was developed according to the architecture described
on Figure 3.1. The piloting plane requests services to the Virtual Machine
Server (Section 3.1). These services can be related either to sense or to act on
the infrasctructure. The Virtual Machine Server performs the action required
and send the answer to the piloting plane. To ease the implementation of
the piloting plane, the interfaces offered by the Virtual Machine Server must
be well defined and independent of platform.

commands
H H “ ” e —
| Virtual Machine “in'sstrae:ttizte” Piloting
. [, Server Plane
move |
resSpoNSeS=——————==>p-
“migrate” Context
l Information
Equipment
Virtual Virtual . N . V|rtua‘| ’
Router 1 Router 2 Router ‘n

Physical Network | | Physical Network Physical Network L
| Interface 1 Interface 2 Interface ‘n’

Figure 3.1: Horizon Xen Prototype Architecture.

36

To allow the operation of the network by an human agent, a Graphi-
cal User Interface was developed on the Xen prototype (Section 3.2). This
interface takes the place of the piloting plane having access to all of the
administrative tasks of the network.

3.1 Virtual Machine Server

The Virtual Machine Server [23] is a system that provide a set of services
for managing virtual networks and virtual routers. This system has the
capability of provide virtual routers on demand in order to match specific
requirements of a protocol stack, i.e., from requests for new virtual networks
creation, the server create the correct number of virtual machines and deploy
them in specific nodes of the network. Moreover, this server can take part of
the network administrative activities.

The server was implemented using the Web services [24] concept, and
the protocol used for services requests was SOAP [25]. The web server used
was the Apache Tomcat [26], and the services were developed using Java
as programming language. This approach eases the creation of heteroge-
neous clients for the virtual machine server, besides decreases the complex-
ity of adding new features. Each service is a public method of the class
VirtualMachineServer.

The piloting plane proposed on the Horizon Project can decide to do some
changes on the network. For example, an overloaded physical machine can
have its load reduced by migrating one of its machines for another physical
host. In this case, the piloting plane will send a command to Virtual Machine
Server using the SOAP protocol requiring the migration of a virtual machine.
The Virtual Machine Server will then use Libvirt [27], a virtualized systems
management library, to perform the migration operation.

3.1.1 Services
3.1.1.1 createVirtualMachine
This service should be called whenever new virtual machines must be
created on a node of the network.
3.1.1.2 createVirtualNetwork

This service creates a set of virtual machines on some physical nodes of
the network. Moreover, the virtual machine server must make the mapping

37

between the created virtual network interface and the indicated physical
network interface.

3.1.1.3 destroyVirtualMachine

This service destroys a virtual machine. A destroyed virtual machine
cannot be reused in the future.

3.1.1.4 getPhysicalServerStatus

This service gets a list of basic information about the physical server. The
current list contains the number of CPUS, the number of cores, the RAM
memory size, the amount of free RAM memory, the name of the host, and
the number and the name of the active virtual domains.

3.1.1.5 getRegisteredNodes

This service returns a list with the registered nodes on the virtual machine
server (see service registerNodes to nodes registry).

3.1.1.6 getVirtualMachineStatus

This service returns a list of basic information about a virtual machine.
The current list contains the name of the virtual machine, the current RAM
memory size, the total RAM memory that can be used, the current number
of VCPUs, the maximum number of VCPUs that the virtual machine can
use, the CPU time used, and the current state of the virtual machine.

3.1.1.7 migrateVirtualMachine
This service migrates a virtual machine between two physical hosts of the
network.

3.1.1.8 registerNodes

Initially, the virtual machine server knows nothing about the physical
hosts on the network. This service can be used to register the existent nodes
on the network, i.e., the name, the public key and the IP addresses of the
virtual machines will be saved on the virtual machine server.

38

3.1.1.9 sanityTest

This service is a sanity test for the virtual machine server. It sends a
string to the server and the server returns the same string to the client.

3.1.1.10 shutdownVirtualMachine

This service shut down the virtual machine. In this case, the virtual
machine can be used again in the future.

3.1.1.11 topologyDiscover

This service creates a matrix with the adjacencies on the physical and
virtual networks. There is one restriction to this service. To belong to the
physical topology and have its virtual machines on the virtual topologies, a
server must be registered on the server (using the service registerNodes).

3.1.1.12 getVirtualMachineSchedulerParameters

This service queries the hypervisor for the CPU scheduler parameters of
a virtual machine. For the credit scheduler the parameters are weight and
cap.

3.1.1.13 setVirtualMachineSchedulerParameters

This service sets the hypervisor for the CPU scheduler parameters of a
virtual machine. For the credit scheduler the parameters are weight and cap.

3.1.2 Access to the Virtual Machine Server

In order to use the capabilities offered by the Virtual Machine Server one
has to develop clients for it. A client for the Virtual Machine Server must
create a SOAP message with the desired service and its parameters.

To ease the development of clients a class named HorizonXenClient was
developed. For each service defined on the class VirtualMachineServer a
method for the creation of message payloads is created on the HorizonXen-
Client class. This is the API (Application Programing Interface) for the
HorizonXenClient.

The possible message payloads are:

39

3.1.2.1 public OMElement createVirtualMachinePayload(String
phyServer, String vmName, String vmIP, String vmRAM);

This method creates a payload for the request of the service create-
VirtualMachine, based on the name of the physical machine (phyServer)
that will host the new virtual machine, on the name of this new virtual
machine (vmName), on the desired IP address (vmIP), and on the desired
RAM size (vmRAM).

The method returns an XML message, represented by an object of the
class OMElement, with the operation result, either success or failure.

3.1.2.2 public OMElement createVirtualNetworkPayload(Vector
<String> phyServers, Vector<String> VMNames, Vector
<String> IPs, Vector<String> RAMs, Vector<String> net-
Interface);

This method creates a payload for the request of the service create-
VirtualNetwork, based on a list with the names of the physical machines
(phyServers) that will host the new virtual machines, on a list with the
names of the new virtual machines (VMNames), on a list with the desired TP
addresses (IPs), on a list with the desired RAM memory sizes (RAMs), and on
a list of the physical network interfaces (netInterace) that will be mapped
to the new virtual network interfaces created on the virtual machines.

The method returns an XML message, represented by an object of the
class OMElement, with the operation result, either success or failure.

3.1.2.3 public OMElement destroyVirtualMachinePayload(String
phyServer, String vmName) ;

This method creates a payload for the request of the service destroy-
VirtualMachine, based on the name of the physical machine that hosts
the virtual machine (phyServer), and on the name of the virtual machine
(vmName).

The method returns an XML message, represented by an object of the
class OMElement, with the operation result, either success or failure.

3.1.2.4 public OMElement getPhysicalServerStatusPayload(String
phyServer) ;

This method creates a payload for the request of the service getPhysical-
ServerStatus, based on the name of the physical machine (phyServer).

40

The method returns an XML message, represented by an object of the
class OMElement, with the operation result, either success or failure, the
number of CPUS, the number of cores, the RAM memory size, the amount
of free RAM memory, the name of the host, and the number and the name
of the active virtual domains.

3.1.2.5 public OMElement getRegisteredNodesPayload();

This method creates a payload for the request of the service getRegiste-
redNodes, this method has no parameters.

The method returns an XML message, represented by an object of the
class OMElement, with the operation result, either success or failure, and a
list with the registered nodes.

3.1.2.6 public OMElement getVirtualMachineStatusPayload(String
phyServer, String vmName) ;

This method creates a payload for the request of the service getVirtual-
MachineStatus, based on the name of the physical machine that hosts the
virtual machine (phyServer), and on the name of the virtual machine (vm-
Name).

The method returns an XML message, represented by an object of the
class OMElement, with the operation result, either success or failure, the
name of the virtual machine, the current RAM memory size, the total RAM
memory that can be used, the current number of VCPUs, the maximum
number of VCPUs that the virtual machine can use, the CPU time used,
and the current state of the virtual machine.

3.1.2.7 public OMElement migrateVirtualMachinePayload(String
sourcePhyServer, String destPhyServer, String vmName,
String live);

This method creates a payload for the request of the service migrate-
VirtualMachine, based on the name of the source physical machine (source-
PhyServer), on the name of the destination physical machine (destPhy-
Server), on the name of the virtual machine (vmName), and a string indi-
cating if the operation will be a live migration (1ive), i.e., if the migration
will occur without the interruption of the programs running on the virtual
machine.

The method returns an XML message, represented by an object of the
class OMElement, with the operation result, either success or failure.

41

3.1.2.8 public OMElement registerNodesPayload(Vector<Physical-
Server> phyServers) ;

This method creates a payload for the request of the service register-
Nodes, based on a list with the physical servers to be registered (phyServers).

The method returns an XML message, represented by an object of the
class OMElement, with the operation result, either success or failure.

3.1.2.9 public OMElement sanityTestPayload(String testString);

This method creates a payload for the request of the service sanityTest,
based on a string that will send to the virtual machine server (testString).
The method returns an XML message, represented by an object of the
class OMElement, with the string received by the virtual machine server, i.e.,
the test is considered passed if the received and the sent strings are the same.

3.1.2.10 public OMElement shutdownVirtualMachinePayload(String
phyServer, String vmName) ;

This method creates a payload for the request of the service shutdown-
VirtualMachine, based on the name of the physical machine that hosts
the virtual machine (phyServer), and on the name of the virtual machine
(vmName).

The method returns an XML message, represented by an object of the
class OMElement, with the operation result, either success or failure.

3.1.2.11 public OMElement topologyDiscoverPayload() ;

This method creates a payload for the request of the service topology-
Discover. The service has no parameters.

The method returns an XML message, represented by an object of the
class OMElement, with the operation result, either success or failure, and the
physical and virtual topologies.

3.1.2.12 public OMElement getVirtualMachineSchedulerParameters-
Payload(String phyServer, String VMName);

This method creates a payload for the request of the service getVirtual-
MachineSchedulerParameters based on the name of the physical machine
that hosts the virtual machine (phyServer), and on the name of the virtual
machine (VMName).

42

The method returns an XML message, represented by an object of the
class OMElement with the operation result, either success or failure, and the
values of the credit scheduler parameters (weight and cap).

3.1.2.13 public OMElement setVirtualMachineSchedulerParameters-
Payload(String phyServer, String VMName, String Weight,
String Cap);

This method creates a payload for the request of the service setVirtual-
MachineSchedulerParameters based on the name of the physical machine
that hosts the virtual machine (phyServer), the name of the virtual machine
to be affected (VMName), the new value for the weight parameter (Weight),
and the new value for the cap parameter (Cap).

The method returns an XML message, represented by an object of the
class OMElement with the operation result, either success or failure.

3.2 Graphical User Interface

3.2.1 Introduction

The piloting system must act as a global intelligence system with the
capability of understanding the knowledge shared on the network and feed
the network with it in order to fix existing problems. The first step toward
the development of this system is related to a framework with the capability
of capturing the network information and offers it to network administrators
in a understandable fashion.

3.2.2 Design choices

We believe that a graph representation is the bast way to visualize a net-
work. In this manner, network elements, such as, physical routers must be
represented as nodes while their interconnections are represented as edges.
Those edges may carry information related to their availability, bandwidth,
delay, and other characteristics. When we talk about network virtualization,
we could extend this concept and draw graphs overlapping on the original
graph of physical network, adding information about the virtual nodes that
are running upon the physical network. To give the users the capability of
immersion through the system, we decided to develop a tridimensional rep-
resentation of networks, which allows users to navigate through the network
elements and parameters.

43

3.2.3 Technologies adopted

The program is developed in python and, in order to provide the needed
tridimensional functionalities with user immersion capabilities, we have uti-
lized the OpenGL technologies. The graphical user interface (GUI) is pro-
duced in Qt.

3.2.4 Interface Sensors and Actuators

The Graphical User Interface (GUI) of the Xen prototype access the Vir-
tual Machine Server, described in the section 3.1, using the command line
executable client produced as a part of the Virtual Machine Server. All the
services that the GUI prototype uses are accessed by this web services com-
munication interface. The command line client receives the services and the
parameters of the service that the GUI wants to request.

3.2.5 Interface functionalities

Fle Edit View Format Graph Server Network Help
FH @&«»

Physical Topology.graphd2

(268, 113)

Figure 3.2: First view of the Horizon Graphic User Interface.

The prototype interface are user interactivity focused, so it has a lot of
possibility to user interact with the program. As we can see in the Figure 3.2,

44

the focus are in the network representation. In the first GUI prototype, we
represent the network nodes with spheres, but in the future, we aim to change
this representation by different drawings depending of the network element
type. The network visualization area is totally interactive because the user
can move, rotate, and rescale the network in order to observe the way the
user needs or wants.

The OpenGL draws act as a movie scene. The user has to imagine that
his eyes are like cinematographic cameras, which allows it to freely move,
rotate with defined focus and change the factor of the view frustum. In our
prototype, all of these feelings can be executed using, respectively, the left,
right, and middle mouse button.

Besides the network visualization frame, the GUI prototype has many
sectors and menus that allows users to operate the network system in many
different ways, as we can observe in the Figure3.3 The right proprieties panel
is the network information centralizer. Information about the selected net-
work element are shown in this panel. Another important widget of the GUI
is the options panel, that helps the user interacting with the network. The
first option panel implemented is the migration option panel that allows the
user to migrate a virtual machine among the physical hosts. The main menu,
positioned on the top of the program, reflects all the operations that could
be executed in the GUI prototype and the toolbar, localized under the main
menu, brings the basic and most common operations of the GUI. Another
important element of the interface is the statusbar, which brings to the user
information that helps him using the GUI prototype. The statusbar show
the operation that has focus on that time.

3.2.5.1 Proprieties Panel

When the user selects one node or one edge in the network visualization
frame, the proprieties panel (Figure 3.4) presents some information about the
selected object. In this section, we present a brief description of the informa-
tion shown. Out prototype user a graph representation for the network, and
because of that, we represent the network elements as graph nodes and the
network links as graph edges. The proprieties panel acts different depend-
ing on the selected object. In case of a node, the information is grouped as
follows.

e General Information

45

HorizonGUI BEE
File Edit View Format Graph Server Network Help
FH @&»

Physical Topology.graphd2 Properties
General

Name 2

Migration Options

Source Physical Machine Destination Physical Machine Migrating Virtual Machine Plane Separation | Migrate |
O Yes
J (J (o

| Clean |

(691, 507)

Figure 3.3: The Horizon Graphic User Interface with the proprieties panel
and the migration options panel visible.

— Name: The name of the network element.
e Processor and Memory
— CPU Usage: The instantaneous CPU usage of the network node,

presented in percentual, pointing the processing load of the node.

— Used Memory: The instantaneous memory usage of the network
node.

— Used Memory (%): The instantaneous memory usage of the
network node given in percentual of the total among of memory.

— Free Memory: The instantaneous free memory available of the
network node.

— Free Memory (%): The instantaneous free memory available
of the network node given in percentual of the total among of
memory.

— Used Swap: The instantaneous swap usage of the network node.

— Used Swap (%): The instantaneous swap usage of the network
node given in percentual of the total among of memory.

46

Properties

| 4= Previous | | Nextwp |
ethO

I 192.168.6.12
Mac 00:1b:21:52:64:f5
Transmission

Rate 46lkBps
Total 375.95MB
Reception

Rate 307kBps
Total 1115.72MB

Figure 3.4: The proprieties panel. This panel is shows information about
the selected element. This view represents the network devices view, and
presents status of ethO interface.

— Free Swap: The instantaneous free swap available of the network
node.

— Free Swap (%): The instantaneous free swap available of the
network node given in percentual of the total among of memory.

— Virtual CPUs: The number of virtual CPUs allocated for the
network node. This parameter is used for both physical and vir-
tual elements.

47

— Domain Count: The number of the virtual domain in its ac-
tual physical node. This parameter is used for both physical and
virtual elements.

e Store Devices
e Network Devices

— NetworkInterfaceName: The name of network interface, e.g:
eth0, brl, etc. The following parameters are related to this net-
work interface. There are um panel for each network element
(Figure 3.4).

— IPv4Addr: The Internet Protocol, version 4, address of the net-
work interface.

— LinkMAC: The hardware address of the network interface.

— TransmissionRate: The instantaneous rate that are being trans-
mitted from the network element using this interface.

— TransmittedBytes: The among of data that have been trans-
ferred from the network element since the network element starts.

— ReceptionRate: The instantaneous rate that are being trans-
mitted to the network element using this interface.

— ReceivedBytes: The among of data that have been transferred
to the network element since the network element starts.

If one edge is selected, the follow information is shown.

e General Information
— Name: The name of the link is the concatenation of the nodes it
connects.

— Latency: The latency, given in milliseconds, is half of the link
round trip time.

— Network: The network address of the network which the link
represents.

— Network Mask: The network mask of the link network.

48

Migration Options

Source Physical Machine Destination Physical Machine Migrating Virtual Machine Plane Separation Migrate
QC Yes

l [@ No Clean

Figure 3.5: The migration options panel. This panel is responsible for virtual
machine migration execution.

3.2.5.2 Migration Options Panel

The migration options panel is responsible for virtual machine migra-
tion execution. The migration services are provided by the virtual machine
server and needs four parameters: source physical machine, destination phys-
ical machine, virtual machine, and type of migration 3.5. The migration
process consists in the act of transmitting one virtual machine from its phys-
ical machine to another physical machine. When we talk migrate virtual
machine, we are really talking about the live migrate of this virtual machine.
Live migration means the virtual machine services keeps available during the
migration process.

The source physical machine parameter is the physical machine the virtual
machine runs before the process, and the destination physical machine is
the machine it will run latter. The virtual machine is the name or id of
the virtual machine in the source physical machine. This virtual machine
will be live migrated sending its memory pages through the network, so the
source physical machine have to have network connection with the destination
physical machine.

The type of migration parameter decides whether the migration process
will use the standard Xen migration tool or will use the Horizon live migration
process!. The standard Xen migration tool has downtime in the forwarding
mechanism, so it loses packets during the migration process, while the Hori-
zon live migration process don’t lose packets. Nevertheless, the standard Xen
migration takes less time for complete the migration process. The Horizon
live migration process are also called by plane separation process.

3.2.5.3 MenuBar

In this section, we have a brief description of each menu of the GUI
prototype.

e File Menu

— New:

IThis process will be explained in the report 2.3.

49

Open: opens a topology file saved with the program format (keeps
the position and spatial distribution of the network).

Save: saves the actual topology with the program format (keeps
the position and the spatial distribution of the network).

New Tab: create a new tab where the user can load/analyze new
topologies.

Import:

x Adjacency Matrix: imports an Adjacency Matrix that rep-
resents a topology that were saved as a csv file.

Export

x Adjacency Matrix: exports an Adjacency Matrix that rep-
resents the actual topology in a csv(comma separated value)
file.

Close Tab: close the active tab.
Exit: Exits the program.

e Edit Menu

Undo Action: If the topology was changed, allows the user to
return to a previous topology state.

Redo Action: If the Undo Action was done, allows the user to
forward to the next state.

Select All: Select all nodes in the topology.

e View Menu

Fullscreen: View the topology in full screen.

Fullscreen 3D: View the topology in 3D. Must use specific glasses
and screen.

All Objects
Restore Original View: Restores the original view.
Reposition Nodes

x+ Random Algorithm: Organizes the position of the topology
nodes in a random fashion.

x Circle Algorithm: Organizes the position of the topology
nodes as a circle.

50

x Tree Algorithm: Organizes the position of the topology
nodes as a tree.

x+ Kamada Kawai Algorithm: Organizes the position of the
topology node with the advent of an entropy minimizing al-
gorithm.

— Reorganize Graph Automatically: At each topology change,
recalculates the position of the nodes with the Kamada Kawai
algorithm.

— Proprieties Panel
e Format Menu

— Rename Node: Rename a node in the topology.

Change Weight: Change the weight of a given link.

— Background Color: Change the background color.

— Object Color: Change the color of selected objects.

— Default Color: Sets the default color that will be used.
— Object Size: Set the size of the object.

— Default Size: Set the default size of the objects

e Graph Menu

— Select Original Node: Select the origin node.
— Select Destination Node: Select the destination node.

— Clear Node Selection: Deselect the selected origin and destina-
tion nodes.

— Best Path

x Least Weight: Calculates the best path with least weight.

*x Least Number of Hops: Calculates the best path with least
hops.

x Least Product: Calculates the best path with least product.
e Server Menu
— Connect: Connects to a specific server.
e Network Menu

— Discover Network Topology

o1

x Physical Topology: Retrieves the physical topology from
the server.

x Logical Topology: Retrieves the logical topology from the
server

e Help Menu

— Content: Explanations about the application.

— About: Shows information about the developers and the pro-
gram.

3.3 Integration with Prototype Sensors and
Actuators

A number of applications related to Xen platform were developed inside
the context of the Horizon project. These applications need to inter-operate
in order to achieve the desired objective of a integrated environment for the
Future Internet. This section aims to explain how these applications are
integrated in the current state of the Horizon Xen testbed.

3.3.1 Virtual Machine Server and Prototype
Sensors and Actuators

The Virtual Machine Server (Section 3.1) aims to offer an integrated inter-
face to control the Xen machines of the network. Part of the administrative
tasks were accomplished using the Libvirt library [27]. However, part of the
tasks, for example topology discovery, can not be done only using the Libvirt
library. For these tasks a set of applications were developed.

The Topology Discovery module was developed for obtaining the virtual
and physical networks topologies. For acquiring CPU, memory and network
related measures, we made the Measures Gatherer module. In order to ob-
tain a virtual router migration with no packet loss, the Migration module
was developed. For controlling the virtual router throughput, the Scheduler
module was developed, acting on the virtual routers VCPUs CAPs. These
modules have parts residing inside the virtual routers, the physical routers
and the controller in order to accomplish their objectives. For communicat-
ing all the parts, we developed the Communication module, which has parts
residing inside the physical router (Domain 0), the virtual routers (Domains
U) and the controller. The interaction between all these modules is shown
in Figure 3.6.

92

To Virtual Machine Server

Client

Communication
Module

Controller ,

o ———— ————————

! —
Scheduler Proxy Migration

Module Module Module

Measures k Server Topology

Gatherer SO Discovery
Module Communication Module

Module
Server

Topology pr— AN Communication SOSHEES

Gatherer
Module Module

Discovery Migration Module

- = = = = = =

Module

Figure 3.6: Controller, physical router and virtual routers modules interac-
tions.

Whenever the Virtual Machine Server desires to use one of these appli-
cations, it calls the Client Communication module through command line
passing the desired request. If the request is to a physical router, the physi-
cal router IP address is provided. If the request is to a virtual router, both
the physical router IP address and the virtual router IP address are passed
to the Client Communication module. Following, the Client Communica-
tion module builds an XML message with the request and sends it through
a socket to the Server Communication module residing inside the physical
router. If the request regards the physical router, the Server Communication
module creates an instance of the correct application to handle the request,
calls the application with the provided parameters and returns to the Client
Communication module an XML containing the application response. If the
request regards a virtual router, then the physical server acts as an interme-
diate between the controller and the virtual router. In this case, the Server
Communication module desencapsulates the message sent by the Client Com-
munication module and handles it to the Proxy module, which is responsible
for sending the message to the Server Communication module of the right
virtual router. When the message arrives to the Server Communication mod-

33

ule inside the virtual router, an instance of the appropriate application is
created, it handles the request and the application response is sent back to
the controller through the virtual router Server Communication module, the
Proxy module and the physical router Server Communication module.

o4

Chapter 4

OpenFlow Prototype

An OpenFlow prototype was developed on GTA laboratory to ease Open-
Flow network administration [28]. This chapter aims at demonstrate the
components related to the OpenFlow prototype developed on the Horizon
Project.

The OpenFlow Prototype is based on a Web Service architecture. The
communication between the core of the prototype and external applica-
tions uses the HTTP(Hyper Text Markup Language) protocol to exchange
XML (eXtensible Markup Language) messages. These applications are simi-
lar to agents that controls the network. To measure the OpenFlow network
performance we use network sensors. These sensors are basically counters
installed on the switches, accessible by the OpenFlow protocol, or the Open-
Flow table information, such as the number of flow entries in the tables and
characteristics of those flows. NOX applications collect sensor information
and make them available as a Web Service.

Figure 4.1 shows the OpenFlow Prototype architecture. The NOX Con-
troller is the base of OpenFlow applications. The NOX Controller provides
the OpenFlow Protocol and the secure channel implementation for the ap-
plications that run over it. The applications that run on NOX Controller in
this prototype are described below.

e Stats App: Collects the statistics about the switches and convert
them into a XML message.

e Discovery App: Discovers the network topology and describes it as
a XML message.

e SpanningTree App: Implements a spanning tree algorithm that
avoids the occurrence of loops in the network. The topology of the
defined spanning tree is available as a XML message.

95

Internet

Web Interface

Web Server App
Flow Manager App
Flow Migration

Openflow Switches

Figure 4.1: OpenFlow applications, NOX and agents interaction.

e FlowManager App: Implements flow changes by adding, modifying
and deleting flows.

e FlowMigration App: Implements flow changes by migrating a flow
from one path to another path.

e WebServer App: Provides the integration among the features of
NOX Controller applications. The WebServer App implements the
HTTP protocol to provide an interface between applications of NOX
Controller and external applications. Consequently, this application is
in charge of handling the HT'TP requests, convert them in an applica-
tion method call and execute the method. Our prototype implements
a client for the WebServer App. The client is another web server that
enables administrators to control the OpenFlow network. This client
takes part in a web application that provides a Graphical User Inter-
face, described latter in Section 4.2. More details about WebServer
App implementation is provide in the next section (Section 4.1).

56

4.1 OpenFlow Web Server

Web Server Application (WebServer App) [29] is a NOX application that
is responsible for providing a web interface for other NOX applications. The
WebServer App implements the concept of web Service, in which a function-
ality of other applications can be accessed by an HTTP request and returns
XML messages. The implementation of this application is based on the
NOX web server default application. The NOX default web server applica-
tion is set to run on 8080 port, listening HTTP requests. All HTTP requests
are handled by the OpenFlow resource. OpenFlow resource is defined on
mywebserver application. For each Web Service provided by OpenFlow re-
source, there is a method defined in the MyWebServerResource class. We
describe below the concepts concerning each WebServer App component.

4.1.1 Default Web Server Application

The NOX default web server application implements a framework for
deploying websites as a NOX application. This feature is used to implement
the Web Services as a special kind of websites.

4.1.2 mywebserver class

It is a NOX application implementation class. It starts all applications
that must run simultaneously with the web server application. It also starts
the NOX default web server application and defines its default resource as
an object of the class MyWebServerResource.

4.1.3 MyWebServerResource class

This class defines a resource. A resource is a kind of website that is im-
plemented by the NOX default web server application. This class also imple-
ments the mapping of URL requests to function calls, providing an interface
between the user and the OpenFlow network. There are some services al-
ready implemented on MyWebServerResource. Each service can be accessed
by an HTTP request using an specific URL. The services are described as
follows.

4.1.3.1 getStats

This service does not take any parameters. It calls the Stats App and re-
turns the statistics and the information about the OpenFlow switch network

o7

in a XML message.

4.1.3.2 getTopology

This service does not take any parameters. It calls the Discovery App
and returns the topology of the network in a XML message. This service
returns a list of all network links.

4.1.3.3 getNeighbor

This service does not take any parameters. It calls the Discovery App
and returns the topology of the network in a XML message. This service
returns the list of all node neighbors for each node in the network.

4.1.3.4 getSpanningTree

This service does not take any parameters. It calls the Discovery App and
returns the spanning tree of the network in a XML message. This service
returns the list of the node neighbors, which are linked to the node by a
spanning tree link, for each node in the network.

4.1.3.5 addFlow

This service takes as parameters flow characteristics, like the flow match,
idle timeout, hard timeout, priority, and action. This service adds a new flow
calling the FlowManager App, which performs the required action over the
network.

4.1.3.6 delFlow

This service takes as parameters flow characteristics, like the flow match,
idle timeout, hard timeout, and priority. This service delete a flow calling
the FlowManager App, which performs the required action over the network.

4.1.3.7 migrateFlow

This service takes as parameters flow characteristics, like the low match,
idle timeout, hard timeout, priority, action, and also the list of switches
on which the flow must be set. This service migrates a flow calling the
FlowMigration App, which performs the required action over the network.

28

4.2 Graphical User Interface

As seen before, OpenFlow Switches forwards network traffic according to
a flow table containing every active flow. This table contains flow character-
istics and rules to be applied to these flows, such as determining the queue
and the output port. This table can be configured locally or by a network
controller. We then developed a user-friendly interface that allows users to
modify the flow tables in order to facilitate configuration and network man-
agement.

This user interface was developed based on a web application in which,
using a web browser, the user can access the interface and perform commands
and queries to manage the network.

The application that provides the Graphical User Interface is divided
into three layers. The first one is the Data Layer, where are executed user
commands and where is performed the collection of data given as command
answers. The second one is the Data Processing Layer, that processes all
received information before sending it to the other layers. The third one is
the Presentation Layer that organizes and shows the data to the user. The
isolation provided by layer structure allows us to modify a specific layer with-
out modifying the others. Figure 4.2 presents the layers of the application
and the protocol used to exchange messages.

Data Layer Processing Layer Presentation Layer

NOX
Controller ﬁ R,
OpenFlow i
Network - Q ‘:_:..
@ Web Server ﬂ
S

Figure 4.2: Application layers.

i

4.2.1 Data Layer

The Data Layer is composed by NOX controller and its applications. The
application WebServerApp is responsible for providing the communication
interface between the Data Layer and the Data Processing Layer. This appli-
cation communicates with Data Processing Layer over the HI'TP protocol.

29

4.2.2 Data Processing Layer

The Data Processing Layer is composed by a web server, developed in
Python language, which processes the requests and commands executed by
user. We choose Python because it is a flexible language, it has a good
number of modules and classes that can be used and it is ease to debug.
Furthermore, the NOX applications are developed using Python language.
Future works involves modifying the web Server implemented in this layer
in order to be compatible with an Apache Server. We choose to develop our
own server, instead of using an existing server like Apache, because we want
to have total control of provided services in order to facilitate the system
development.

As we shall see, the Data Presentation Layer has web pages that imple-
ments an user-friendly interface for network controlling. In that layer there
is a CGI (Common Gateway Interface) file for each web page, with HTML
page marks and some classes to process the requests. When the user calls a
web page or executes a command in Data Presentation Layer, the Data Pro-
cessing Layer web server calls the appropriated class. This class processes the
data, sends the commands to Data Layer, receives the commands execution
results, processes these results, prepares the request answer and sends it to
the Presentation Layer. The answer is prepared using the HTML marks that
are in the CGI file of the called page. If the request is a command execution,
then the answer is a XML message.

4.2.3 Data Presentation Layer

The Presentation Layer is composed by marks and scripts files that are
interpreted by the web browser, which can be HTML(Hyper Text Markup
Language), JS(JavaScript), CSS(Cascading Style Sheets), XML (eXtensible
Markup Language), and SVG (Scalable Vector Graphics) files. The HTML
files have the web page description that a web browser interprets in order to
show this web page.

The CSS files have the style markup to improve the presentation provide
by HTML. The CSS file is interpreted by web browser and the style is applied
to HTML markup. The JS files have the script functions to make web pages
dynamic and interactive. The XML files have information that web browser
or JavaScript functions use in order to show or exchange some data. The
messages that are provide as user commands answers are XML messages.

The SVG files have a XML description of network topology to provide
graphic visualization. A combination between SVG and JavaScript allows
us to create animations and interactions with the image generated by SVG.

60

Whit this combination we implement some actions to be executed into the
topology view, such as flow creation and flow migration. With this feature
the network management becomes simpler.

In this layer there is some web pages that allow users to acquire network
information and execute commands. The provided pages are described below
with some images illustrating them.

4.2.3.1 Home

System home page with a system presentation text.

4.2.3.2 Statistics

Web age that provides all statistics and information of the network
switches such as: IP address, MAC address, identifier, ports statistics, flows
statistics and flow tables.

In this page is also provided a form to add a flow in the flow table of a
specific switch.

The statistics and information about switches are stored in the Data Layer
and are periodically updated. The Data Layer is responsible to update the
data. This works this way to make the queries fast to the user. If the data
were obtained by demand, the answer to user would take the time needed
for the Data Layer to collect all information of each network switch. Con-
sequently, the user’s waiting time will depend on the number of switches on
network. We will describe each function of this page with graphical examples.

Figure 4.3 presents the Statistics page. The area indicated by the number
1 on the figure is the button to access the statistics page and the one indicated
by the number 2 is the form to acquire the statistics from one or more
switches.

Figure 4.4 presents the Switch Description. It presents the switch 1P
address, MAC address, datapath ID and also information about software,
hardware, serial number and vendor of the switch.

Figure 4.5 presents the switch ports and Figure 4.6 presents the statistics
of a specific switch port. It presents received and transmitted data statistics,
such as received and transmitted bandwidth, bytes and packets count, port
name, port status, collisions and other measures.

Figure 4.7 presents the Switch Flow Tables Statistics. It presents table
information such as name, matched count, active count, max entries and
lookup count.

Figure 4.8 presents the aggregated flows statistics. It presents packet
count and byte count of all network flows together, and also presents the

61

Find a switch by IP address or DPID ... Search...

>> Statistics

Find a switch by IP address or DPID . Search...

>> Statistics

192.168.(0 10:23:20: ed:¢!

Switch Description

IP: 192.168.0.5

MAC: 00:23:20:ed:85:71

DPID: 150876317041

Software: 0.8.9~2

Hardware: Reference Linux Kernel Module
Serial Number: None

Vendor: Nicira Networks, Inc.

Switch Stats

Tables Stats

Flows Aggregated

Flows

Add Flow

192.168.0.7 - 00:23:20:ee:86:e9
192.168.0.3 - 0f
192.168.0.4 - 00:23::

Figure 4.4: Switch Description.

62

>> Statistics

192.168.0.5 - 00:23:20:ed:e5:71

Switch Description

Switch Stats

Port 1

Port 0

Port 65534
Tables Stats
Flows Aggregated
Flows
Add Flow

Figure 4.5: Switch Status.

Port 4

Port 3

Figure 4.6: Switch Port Statistics.

number of flows in the network.

63

Matched Count: 380028
Name: hash2

Active Count: 4

Max Entries: 32768
Lockup Count: 581914

Matched Count: O

Name: linear

Active Count: 0

Max Entries: 100

Lookup Count: 211882 b

Figure 4.7: Switch Flow Tables Statistics.

Packet Count: 7174
Byte Count: 671020
Flow Count: 4

3

Figure 4.8: Aggregated Flows Statistics.

Figure 4.9 presents the flows of a specific switch. It presents the flow
count, actions and match.

Figure 4.10 presents a form to add flows in a switch. The form fields
correspond to the flow match values and the hard timeout, idle timeout and
output values.

4.2.3.3 Topology

This page provides a picture with the network and spanning tree topology
view. In this view there are the IP and MAC addresses and the ports that
are connected to links. We use a tool called Graphiviz [30] to generate the
network topology picture. This tool generates a picture following a graph
description that are in a file.

In the same way that occur with statistics and switches information, the
network and spanning tree topology are stored in the Data Layer. This works
this way because the discovery and spanning tree algorithm that are in the
Data Layer are executed periodically, and when the algorithm stop to run
they keep this information within them.

Figure 4.11 presents the Button to access the topology page indicated by
the number 1 in the figure.

64

Figure 4.9: Flows of a Specific Switch.

Add Flow

Figure 4.10: Form to add flows into switch.

Figure 4.12 presents the network topology. Each ellipse in the picture rep-
resents a connected switch in the network. The lines connecting the switches

65

Virtual Network Management S;stem

Find a switch by IP address or DPID ...

Figure 4.11: Button to access the Topology Page.

Figure 4.12: Network Topology.

represent the links. The number in the lines indicate the switches ports
numbers. In this picture, the switch with IP address of value 192.168.0.5 is
connected to switch with IP address of value 192.168.0.7 using the port 2,
and the switch 192.168.0.7 is connected to switch 192.168.0.5 using the port
1. These two lines represent a physical link of the network.

Figure 4.13 presents the Spanning Tree. Each ellipse in the picture repre-
sents a connected switch in the network. The lines connecting the switches
represent the links. The number in the lines indicate the switches ports
numbers. In this picture, the switch with IP address of value 192.168.0.4 is
connected to switch with IP address of value 192.168.0.5 using the port 2,
and the switch 192.168.0.5 is connected to switch 192.168.0.4 using the port
1. These two lines represent a physical link of the network. Note that there
are not a link between switch 192.168.0.5 and switch 192.168.0.7because of
the use of Spanning Tree algorithm.

66

Figure 4.13: Spanning Tree.

4.2.3.4 Flows

This page shows all network flows and the switches that have theses flows,
as well as input and output ports of each switch. Figure 4.14 presents the
Button to access the topology page indicated by the number 1 in the figure.

In this page there are two forms to filter the flows, presented in Fig-
ure 4.16.The answer of the first form, which we call filter form, shows us only
the flows founded by filter. The answer of the second form shows us a flow
path view in the topology as well as the flows founded by the filter. This
view is made using SVG and allow the execution of some actions such as
create new flows, remove flows and migrate flows path. The two forms have
the same fields and can be filled with some flows characteristics, such as the
destination IP address and the source TCP port. The flow path view that are
shown as result of the second form can be seen as a virtual network topology
defined by filled fields in the filter. The area indicated by the number 1 in
the figure is the button to access the filter form and the button indicated by
the number 2 is the button to access the logical topology view form.

Virtual Networl;Munugement System

Find & switch by IP address or DPID ...

o]

b |

Figure 4.14: Button to access the network flows.

67

Flow Descaiption

Ethernet Source: 00:23:20:e2:86:69
Ethernet Destination: 00:¢0:7d:a8:f1:6¢
Ethernet Type: 2048

VLAN ID: Oxffff

IP Source: 192.168.0.7

IP Destination: 192.168.0.200

IP PROTO: 6

Port TCP/UDP Source: 42132

Port TCP/UDP Destination: 2525
(nw_dst n_wild): O
(nw_src n wild): 0

Logical Topology

Switch

MAC: 00:23:20:67:60:48; Bandwidth: 355.15 Bfs; In Port: 2
MAC: 00:23:20:ch:78:ca; Bandwidth: 355.00 B/s; In Port: 2
MAC: 00:23:20:ed:e5:71; Bandwidth: 353.73 Bs; In Port: 2
MAC: 00:23:20:ee:86:8; Bandwidth: 338.09 B/s; In Port: 65534

Figure 4.15: Network flows description.

Figure 4.15 presents Network flows description which is the answer of
the filter form query. It presents the switches that have the flow, the flow
bandwidth on each switch, the flow input port, a button to see the logic
topology made by the described flow and the button to remove this flow
from specifics switches.

Figure 4.17 presents a flow logical topology that we have mentioned before.
The black links show the physical topology and the red links show the logical
topology.

68

I

Ethernet Source:

Ethernet Destination:

Ethernet Type:
VLAN ID:

IP Source:

[P Proto:

Fort TCP/UDP Source:
Port TCP/UDP Destination
(nw_dst n wild):

| |

| |

| |

| |
| |
IP Destination: | |
| |

| |
: |
| |
| |

(nw_src_n wild):
I Logical Topology + I2

Figure 4.16: Form to filter flows. 1 Button to access filter form . 2 Button
to access the logical topology view form.

Topology

Select Path Create Path
—
Create Link Del Link

182.168.0.3
00:23:20:ch:78:ca

192.168.0.7
00:23:20:2e:86:e0

182.168.0.5
00:23:20:ed:e5: 71

Figure 4.17: A flow Logical Topology.

69

Chapter 5

Prototype

5.1 Xen Prototype

In the Xen prototype, a Virtual Machine Server offers services that per-
form actions on the network infrastructure, such as creating new virtual
routers. These services are accessed through a Graphical User Interface
(GUI). In this section we show the physical indicators of the Virtual Machine
Server and the GUIL. We also describe the testbed used in our prototype.

5.1.1 Graphical User Interface

The GUI provides an interface to visualize the network topology, retrieve
information from the network elements and execute management tasks such
as turning elements on/off, changing parameters on routers and even migrat-
ing them. Figure 5.1 provides an overview of the GUIL. Each number high
lighted in the figure corresponds to a specific functionality:

1. Network topology view;

2. Information of the selected virtual or physical router (Properties mod-
ule);

3. List of the registered physical nodes and each virtual nodes associated
with them (Registered Nodes module);

4. Migration of virtual machines and routers (Migration module);

5. Customization interface to change GUI colors, apply different kinds of
alpha effects etc. (Network Viewer Selection module).

70

1 A CPU Usage 111.9%

sed Memory 716522MB

sed Memory (%) 99.08%

Bl .'ossos'::prevMainl.gla.u!ri.hl

ipanema

ree Memory 69.86MB.

U
u

F

Free Memory (%) 0.97%
Used Swap 0.0MB
Used Swap (%) 00%
Free Swap 11601 59MB
F

00025 . ree Swap (%) 100.0%

Virtual CPUs 8
Network Viewer Selection

i - ‘ geriba)
5 Physical Topology — 7] \ ! !

= 5 -

Migration Options 1
— || *
Source Physical Machine Destination Physical Machine Migrating Virtual Machine F M SR | migrate |
O ves =
< £ 3
[¢ \ 2| \ B o [clean |

(-7.101)

Figure 5.1: Graphical User Interface Overview.

The Topology View, enlarged in Figure 5.2, is automatically loaded when
the GUI connects to the Controller, which aggregates information from the
nodes. In the topology, we can retrieve the name of each physical machine
and some information regarding the latency of the physical links. In a plane
above the physical machine, it is possible to visualize the virtual machines
that resides on each physical machine. In the given example, we have five
physical machines. The chosen physical machine has a virtual machine called
ossos::prevMaint.gta.ufrj.br. From the Topology View we can manually se-
lect a node and show its information in the Properties Module. This action is
indicated in Figure 5.2, were the Graphical User Interface shows the informa-
tion about the node marked with green hoops. The Properties Module thus
provides different machine information like CPU and memory usage, number
of virtual CPUs etc.

The Xen prototype allows the migration of virtual routers between phys-
ical machines. The GUI provides an easy way to do this action through
the Migration module. Figure 5.3 shows an example of this module uti-
lization. In this figure we show a migration example of the virtual router
prevMaint.gta.ufrj.br from the machine Ossos to the machine Ipanema. The
Migration Module also allows the migration using data/control plane sepa-
ration [17].

71

Properties

Processor and Memory

CPU Usage 117.8 %
Used Memory 716534MB
Used Memory (36) 99.04%
Free Memary 69.75MB
Free Memory (%) 0.96%
Used Swap 0.0MBE
Used Swap (%) 0.0%%
Free Swap 11601.59MB
Free Swap (%) 100.0%
Wirtual CPUs 8
Domain Count 1

Figure 5.2: Topology View and Properties module.

Migration Options

Source Physical Machine Destination Physical Machine Migrating Vitual Machine HEmE EEEEnT Migrate
O Yes
ossos & panema B ® No Clean

Figure 5.3: Migration module.

72

5.1.2 Virtual Machine Server

Most of the actions and informations provided by the GUI use services
from the Virtual Machine Server, installed on a machine called Controller.
This section shows some piece of the Virtual Machine Server source code,
exemplifying its implementation. Each Virtual Machine Server service is im-
plemented as a method of server’s main class called VirtualMachineServer.
As an example, Listing 5.1 shows the Java implementation of the method
createVirtualMachine, that creates a virtual machine. Every service must
be implemented as a public method that receives an object of the class
OMElement (Object Model Element) and returns another object of this class.
The OMElement class is offered by the Axis2 [31] library and aims at stor-
ing an XML (eXtensible Markup Language) element. In other words, each
service performs actions by receiving and returning XML elements. These
XML messages are carried by SOAP [25] messages. A client must send to
the Virtual Machine Server this kind of message with the desired service
and its parameters. To ease the development of a client, we implement the
HorizonXenClient class that creates the payload of SOAP messages spe-
cific to each service. The Listing 5.2 shows, as an example, the method
createVirtualMachinePayload which is used to generate the payload in or-
der to use the method createVirtualMachine of the Virtual Machine Server.
Finally, Listing 5.3 shows an example of a client implementation that creates
a new virtual machine, using the method createVirtualMachinePayload.

5.1.3 Xen Testbed

To experiment with the GUI and the Virtual Machine Server presented in
the last sections, we built the testbed of Figure 5.4. This testbed consists of
5 machines acting as network nodes, labelled with numbers from 1 to 5, one
machine acting as a controller and another one as a NFS Server. The NFS
Server stores the virtual hard disk of each virtual machine. All machines are
connected to the GTA Lab. production network, and so the Controller and
NFE'S Server use this network to access the nodes. The GUI can be installed
on any GTA machine that is connected to the GTA network. Using this
network the GUI can make requests to the Virtual Machine Server running
on the Controller. The direct connections between nodes are represented in
Figure 5.4 with dashed lines and the box with red axes represents the nodes
connection using a switch. The connections between all the machines and
the GTA network are omitted and use this same switch, but in a different
VPN (Virtual Private Network). Using the machines Quinta and Ipanema
of Figure 5.4, we can attach traffic receivers and generators to the network.

73

= =
HFOOWNOOULEREWN -

DO = = e
SOOI UU= W

CO DN D DO DN D DO DN DN DN
SO WN

LWWwWw wWwww
AU W=

W W
O

e L N ol
OO WO

ot
—_—o

Listing 5.1: createVirtualMachine method.

public OMElement createVirtualMachine (OMElement element) {
element . build () ;
element .detach () ;
Iterator it = element.getChildElements () ;
Vector<OMElement> ele = new Vector () ;
ele.clear ();
String returnText = "SUCCESS_ - ,Virtual_ Machine created\nAttributes:\n";
String result = "SUCCESS";
String att = "";
String phyServer = vmName = "", vimRAM = """, vmIP = "";
while (it.hasNext()) {
ele .add ((OMElement) it .next());
if (ele.lastElement ().getLocalName().equals("phyServer")) {

"
s

phyServer = ele.lastElement ().getText ();
att = att 4+ "phyServer:" 4+ phyServer + "\n";
¥
if (ele.lastElement ().getLocalName().equals("vmName")) {
vmName = ele.lastElement ().getText () ;
att = att + "vmName:" 4 vmName 4+ "\n";

}

if (ele.lastElement ().getLocalName().equals("vmIP")) {
vmIP = ele.lastElement ().getText ();
att = att + "vmIP:" + vmIP + "\n";

}

if (ele.lastElement ().getLocalName().equals("vmRAM")) {
vinRAM = ele.lastElement ().getText () ;
att = att 4+ "vmRAM:" + vmRAM + "\n";

}
}
try {
if (!createVirtualMachine (phyServer , vmName, vmRAM, vmIP)) {
returnText = "ERROR,-,The Domaincould notybe createdy-,\nAttribu
;
result = "ERROR";

}
} catch (LibvirtException ex) {

returnText = "ERROR,-yTheyDomain,couldynotybe createdy-yException: "
getMessage () + "\nAttributes:\n";

result = "ERROR";
}
returnText = returnText + att;
OMFactory fac = OMAbstractFactory.getOMFactory () ;
OMNamespace omNs = fac.createOMNamespace (URI, PREFIX) ;

OMElement retElement = fac.createOMElement("createVirtualMachineResponse",

3

OMElement value = fac.createOMElement("result", omNs);

value.addChild (fac.createOMText (value, result));
retElement .addChild (value);

//method. addChild (fac.createOMText(returnText)) ;

return retElement;

74

tes :\n"

+ ex.

omNs)

1

NoXo i Far TSN GLY \V)

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25

27
28
29
30
31
32
33

Listing 5.2: createVirtualMachinePayload method.

public OMElement createVirtualMachinePayload (String phyServer, String vmName, String
vmIP, String vmRAM, String vmDiskSize) {

OMFactory fac = OMAbstractFactory.getOMFactory () ;

// Set the namespace of the messages

OMNamespace omNs = fac.createOMNamespace (URI, PREFIX) ;
// Set the required operation

OMElement element = fac.createOMElement("createVirtualMachine", omNs);

// Attributes

// Physical Server IP

OMElement value = fac.createOMElement ("phyServer", omNs);
value.addChild (fac.createOMText (value, phyServer));
element .addChild (value) ;

// Virtual Machine Name

value = fac.createOMElement ("vmName", omNs) ;
value.addChild (fac.createOMText (value , vmName)) ;
element .addChild (value) ;

// Virtual Machine IP Address

value = fac.createOMElement ("vmIP", omNs);
value.addChild (fac.createOMText (value, vmIP));
element .addChild (value) ;

// Virtual Machine RAM Memory Size

value = fac.createOMElement (" vmRAM" , omNs) ;
value.addChild (fac.createOMText (value , vinRAM)) ;
element .addChild (value);

// Virtual Machine Hard Disk Size

value = fac.createOMElement ("vmDiskSize", omNs);
value.addChild (fac.createOMText (value, vmDiskSize));
element .addChild (value) ;

return element;

Controller NFS Server

N 10.0.3.0

Q- L —

F NS Paraty =

Traffic Quinta (5) Ipanema Traffic
Generator (3) (2 Receiver

10.0.45.0

Geriba
@
5
Figure 5.4: Xen testbed topology.

Listing 5.3: Example of a client implementation.

public static void main(String[] args) {
try {
HorizonXenClient hxc = new HorizonXenClient () ;

// set options to send message

Options options = new Options () ;

options.setTo (hxc.targetEPR) ;
options.setTransportInProtocol (Constants . TRANSPORT_HTTP) ;
// create a Web Service client

ServiceClient sender = nmew ServiceClient ();

sender .setOptions(options);

// creating message payload

OMElement messagePayload = hxc.createVirtualMachinePayload ("phyServer" , "vmName",
10.0.0.1","65536");

// send message and wait for the server response

OMElement result = sender.sendReceive (messagePayload);
} catch (Exception e) {

e.printStackTrace () ;

ol o Sl e W S S S
OJDHDUTHEW N OOOTIDHUUER W =

-

Figure 5.5 shows the 5 nodes and the Controller of the testbed physical
installation. The NFS server is located in another room and is not shown in
this figure. Figure 5.6 shows the switch used in the testbed.

Figure 5.5: Xen testbed physical installation.

76

Figure 5.6: Xen testbed switch.

5.2 OpenFlow Prototype

The OpenFlow prototype consists of several machines acting as Open-
Flow switches, one machine acting as a controller running NOX, and other
machines used to generate and receive traffic. This network is managed using
some applications developed to run in the NOX controller, and a Graphical
User Interface (GUI) that use them. This GUI offers an easy way to manage
the OpenFlow network. In this section we show the physical indicator of
the NOX applications and the GUI. We also show the testbed used in our
prototype.

5.2.1 NOX Applications

We develop in the OpenFlow prototype different network management
applications running in NOX. In this section we exemplify with the Flow
Migration Application. This application allows the network controller to re-
organize the data flow through the network. It is an important application in
order to execute load-balancing algorithms and to choose paths based on the
Quality of Service (QoS) of links. The main code of the Flow Migration NOX
Application is shown on Listings 5.4 and 5.5. This code is a Python module
and runs over the NOX platform. This application is also a good example to
understand the development of a NOX application. As seen in the source code
of Listings 5.4 and 5.5, a NOX application is an extension of the Component
class and it should implement, at least, the __init__(self, context) and

7

= =
HFOOWNOOULEREWN -

N e N e e e
SO OO U= W

DO DO DN DN N
W

Listing 5.4: Source code example of the Flow Migration NOX Application.

from nox.lib.core import =x*

from nox.lib.packet.ethernet import ethernet

from nox.lib.packet.packet_utils import =

from nox.lib.netinet.netinet import create_datapathid_-from_host

from nox.coreapps.examples.pyswitch import pyswitch

from nox.netapps.discovery.discovery import discovery

from nox.netapps.spanning_tree.spanning_tree import Spanning_Tree
from nox.netapps.discovery.flow_manager import flow_manager

from migrationHandler import MigrationHandler

from utils import Utils

import logging

from time import time

from xmlparser importXmlParser

class flow_migration (Component):

def __init__ (self , ctxt):
Component. —_init__(self , ctxt)
self .logger = logging.getLogger(’flow_migration|nox.netapps.flow_manager.

flow_manager’

self .lastMileTp = {}

def install (self):
self .discovery = self .resolve(discovery)
self .flow_manager = self .resolve(flow_manager)
self .pyswitch = self .resolve(pyswitch)
self .spanning_tree = self .resolve(Spanning_Tree)
self .logger.info("flow_migration: ON")

the install(self) methods. The first one is the class constructor, which is
responsible for calling the Component constructor. The second one is called
as soon as the controller calls the application. The other Flow Migration
Application methods implement the flow migration algorithm.

5.2.2 Graphical User Interface

This GUI is based on a web interface, offering a way to control all Open-
Flow network resources. The following images are screens of our web appli-
cation interface. We show the main screenshots of the applications and tools
we developed. Figure 5.7 shows the Home screen of the interface developed.

The GUI has different tools to manage the OpenFlow network. Figure 5.8
shows the Topology Visualization tool, where the ellipses represent the Open-
Flow switches connected to the network. Figure 5.9 shows the Flow Visualiza-
tion tool, that lists each instantiated flow in the network. Using this interface
we can view each flow’s characteristics, like associated network addresses, sim-
ply by clicking on the flow. Figure 5.10 shows the Switch Statistics tool that
presents the statistics of each OpenFlow switch, like the number of active
flows. Each line of this tool represents a switch. Clicking on one line, the

78

66

67
68
69
70
71
72
73
74
75
76
77
78
79

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

100
101

102

103
104

105
106
107
108
109
110
111
112

Listing 5.5: Source code example of the Flow Migration NOX Application
(cont.).
def MigrateFlow (self , dpidsStr, match, priority = 65535 ,hardTimeOut = openflow.
OFP_FLOW_PERMANENT,= openflow .OFP FLOW_PERMANENT) :

xml = self .discovery.get_neighbor_xml()

migrationHandler = MigrationHandler (dpidsStr, xml)

migrationHandler.getEntireDpidPath ()

migrationHandler . getPorts ()

dpids = migrationHandler.dpid_-intForm
output_ports = migrationHandler.output_-ports
input_-ports = migrationHandler.input_ports

dpids.reverse ()
output_ports.reverse ()

input_ports.reverse ()

try

in_port = int(match[’in_port’])
except

in_port = None

self .logger.info(str(dpids))
ret = ’<root>\n’
ret = ret + ’<inport >%s</inport>\n’ %str(input_ports)

for i in range(0 , len(dpids)):

continue_-bool = True

if (i '= (len(dpids)— 1)):
match[’in_port’] = input_ports[i]

elif in_port != None
match[’in_port’] = in_port

else

del match[’in_port’ |

if (output_ports[i] = — 1):
try
output_ports[i] = self .pyswitch.lastMileTp [dpids[i]][match[’dl_dst’]]

utils = Utils ()
except KeyError:
continue_-bool = False
if continue_bool:
actionObj = [openflow .OFPAT OUTPUT, [O , output-ports[i]]]
add_args = (idleTimeOut, [actionObj], UINT32.MAX)

self .flow_manager.manage_flow(dpids[i],’add’ ,match, priority ,add-args,
hardTimeOut , i)
ret = ret + ’<dpid>%s</dpid>\n<match>%s</match>\n<in_port >%s</in_port >\n<output

>%s</output >\n’ %(str (dpids[i]) ,str (match),str (match[’in_port’]) ,str(
output_ports[i]))

else

ret = ret 4 ’<Error ><match >)s</match >\n<type>NoyLast_ MileyInfo</type >\n</Error
>\n’ %(str (match)

return ret+"<result >Migrationy isyover </result >\n</root>"
def getInterface (self):
return str (flow_migration)
def getFactory ():
class Factory
def instance (self , ctxt):
return flow_migration (ctxt)

return Factory ()

79

v GTA JIUFR] ' OpenFlow - Iceweasel SEE

jle Edit View History Bookmarks Tools Help

&%- v (& © @i [@ htpylocalhostizosy ~] [@ M
| 8] GTA / UFR) =: OpenFlow | + v

OrR anagemen ste

|Find @ switch by IP address or DPID .. | ' Search...

Home Statistic = Topology Flows Documentation

>> Home s

Virtual Network Management System

The GTA/UFRIJ (Grupo de Teleinformadtica e Automagao) develops the Virtual Network Management System, a tool for
ging, the switches of a physical network. The managing tool acts according, to the characteristics of instantiated flows. Our
system shows the network topology, the switch statistics and some network information. This system is based on OpenFlow
switching technology and controlled by the Nox virtual networks controller.

Desericho da
T ises
e w0 BORE

Done

[Terminal] | [este_migracao... | |5 Web Interface 1.0 -.. | &s [GTA/UFR|:i Open... | ¢a Graj Uy = openr... | & [

Figure 5.7: Graphical user interface Home screen.

switch statistics are shown. Figure 5.11 shows the Virtual Topology tool.
This tool shows how a flow is configured through the physical network. The
black lines represent the network physical links and the red lines represent the
logical links of the flow. Finally, Figure 5.12 shows the Flow Migration Tool,
that is used to migrate a flow to another set of switches. This figure shows
the confirmation dialog, that appears when a flow migration is completed.

80

GIA/UFR]'-: Openklow - Iceweasel

Flle Edit View History Bookmarks Tools Help
@“ o™ @ Q @ [@‘http:Muca\hast:SOSlftapalogycg\ v] [i_lv‘u‘oog\e

| (8] G7A / UFR = OpenFlow | + v

192.168.0.60
00:23:20:6d:e3:10

192.168.0.40
00:23:20:23:1b:14

192.168.0.20
00:23:20:45:9a:77
192.168.0.10
00:23:20:el:d&:95
Done

@ [Terminal]][E]’ [*teste_migracao....] Web Interface 1.0 -...][v [GTA/ UFR] :: Open..,]ME--

Topology Graph

~

Figure 5.8: Network Topology Visualization tool.

GIA/UFR]'-: Openklow - Iceweasel

Fle Edit View History Bookmarks Tools Help

e v @ @ @ [@ ‘ http:fjlocalhost:8081/flow.cgi v] E’V‘Goog\e
| 8] G7A / UFR) 5 OpenFlow +
= Virtual Network Management Systerr
u Y/ _
= "’,A"\ | Find a switch by IP address or DPID! | | Search...
— /)

>> Flows

Flow

Flow
Flow

Done

@ [Terminal]][@’ [*teste_migracao....] Web Interface 1.0 -...][v [GTA/ UFR] :: Open..,]ME--

Figure 5.9: Flow Visualization tool.

81

GTA"/ UER]f:: OpenFlow -llceweasel

File Edit Wiew History Bookmarks Tools Help

v (4 © @i [@) httpylocalhost:sosstats.cai ~] (4000
GTA / UFR) :: OpenFlow | + v

Virtual Network Management System

|Find & switch by IP address or DPID .. Search...

Home Statistic = Topology Flows Documentation

>> Statistics

192.168.0.60 - 00:23:20:6d:e3:10
192.168.0.40 - 00:23:20:23:1b:14
192.168.0.10 - 00:23:20:e1:da:95

192.168.0.20 - 00:23:20:45:9a:77

@opanviow 1111 G

GTA - Grupo de Teleinformética e Automagio / UFRT
2010

Done

[Terminal] ”Qf [Heste_migracao....] Web Interface 1.0 -... H ¢4 [GTA[UFR| :: Open...]WE‘.‘

Figure 5.10: Switch Statistics tool.

GTAVIUER| | Openklow -liceweasel

Elle Edit View History Bookmarks Iools Help

G- G e @ (@
GTA / UFR] :: OpenFlow + ~
Topology

ISelect Path I ICreate Path I

http /flocalhost:8081/logical_topology.cgidl_sre=00%3A23%3A20%3Ae1%3 V] @V ‘ Google

192.168.0.20
00:23:20:45:9a:77

192.168.0.60
00:23:20:6d:e3:10

192.168.0.40
00:23:20:23:1b:14

Done

@ [Terminal]][Qf [*teste_migracao....] Web Interface 1.0 -...][¢4 [GTAJ UFR] :: Open..,]WE--

Figure 5.11: Virtual Topology tool.

82

L] GTA / UFRJ :: OpenFlow - Iceweasel E]E]E]
Ele Edit View History Bookmarks Iools Help

& v @ @ [[8)] httpulocalhost 808 1logical_topology.cgizdl_sre=00%3A11%3A25%3Ad5%3 v| (M [openflow slicing @4 v
| [€) GTA / UFR) :: OpenFlow | + ~
(<]

r’s‘elect Path | [Create Path l

192.168.0.10
00:23:20:el:da:95

192.168.0.20
00:23:20:45:08a:77

The Flow was migrated!

“Jok
&'s,"!:-i
192.168.0.40 192.168.0.60
00:23:20:23:1b:14 00:23:20:8d:e3:10
1~

Find & Previous ->Next Highlight all [] Match case
Done
[E) (@ Terminal |[[#teste_migracao.py (... | ¢ GTA]UFR| :: OpenFlow.. || = doc - File Browser [

Figure 5.12: Flow Migration tool.

5.2.3 OpenFlow Testbed

In order to use the applications we developed, we deploy a testbed network
as shown in Figure 5.13. Our testbed network is composed of four computers,
acting as OpenFlow switches, two laptops, which are the traffic generator
and the receiver, and a Controller, which is a computer that runs the NOX
controller and the web interface server. In this testbed we can configure
different topologies and set different points of generation and reception of
network traffic.

83

Laptop A
192.168.0.100

3
g’)OpenFIow
Switch B
192.168.0.20
S
°
&S OpenFlow OpenFlow
Switch C Switch A
192.168.0.30 192.168.0.10
£
N OpenFlow
Q Switch D G
Laptop B 192.168.0.40 NOX Controller
192.168.0.101 192.168.0.200

Figure 5.13: OpenFlow testbed topology.

Figure 5.14 shows the testbed physical installation. The four desktop
computers are running the OpenFlow Switch software. To perform an exper-
iment, one laptop generates packets, which are forwarded by the OpenFlow
network in order to reach the other laptop. Each OpenFlow switch has at
least three network interfaces, allowing us to test different network topologies.
The switch that is directly connected to the Controller is the one with more
network interfaces, in order to improve the testbed topology.

84

Figure 5.14: OpenFlow testbed physical installation.

Figure 5.15: The Controller running the administrative web interface.

85

Chapter 6

Conclusions and Ongoing Work

The Horizon Project assumes a pluralist architecture for the Future In-
ternet. Therefore, we assume that the infrastructure is virtualized. In this
report, we conduct performance measurements using two virtualization plat-
forms, OpenFlow and Xen. Our results show that Xen enables a highly
flexible environment, with different protocol stacks running in parallel using
customized network-data forwarding structures and lookup algorithms. This
flexibility has a high performance cost limiting the virtual machine packet for-
warding capacity to less than 200 kp/s. On the other hand, OpenFlow shows
a packet forwarding performance similar to a native Linux environment.

We developed a prototype for both virtualization platforms. On this
report, we describe the interfaces developed for each one of the prototypes.
For the Xen platform a Virtual Machine Server was developed using the Web
Service concept. Using the Virtual Machine Server, physical and virtual hosts
of the network can be controlled. To simplify the network administration by
a human agent, a graphical user interface was developed. This interface can
be used to show the topology of the network and act on its elements.

In the OpenFlow prototype we developed similar tools to those developed
for the Xen prototype. The WebServer App offers a Web interface to agents
interested in administrate the OpenFlow network. A graphical user interface
was developed. This interface can be accessed using a Web browser to view
information related to the OpenFlow network.

We plan to add more services to both virtualization platforms, Xen and
OpenFlow. These services must cover other administrative tasks that cannot
be done on the current testbeds. Besides, a unique interface will be developed
in order to unify the calls to the services on the testbeds. Hence, the under-
lying virtualization approach becomes transparent for the agent controlling
the network infrastructure.

86

Bibliography

1]

2]

P. Baran, “On distributed communications networks,” IEFE Transac-
tions on Communications Systems, vol. 12, no. 1, pp. 1-9, Mar. 1964.

D. Clark, R. Braden, K. Sollins, J. Wroclawski, D. Katabi, J. Kulik,
X. Yang, T. Faber, A. Falk, V. Pingali, M. Handley, and N. Chiappa,
“New Arch: Future generation Internet architecture,” tech. rep., USC In-
formation Sciences Institute Computer Networks Division, MIT Labora-

tory for Computer Science and International Computer Science Institute
(ICSI), Aug. 2004.

M. S. Blumenthal and D. D. Clark, “Rethinking the design of the Inter-
net: the end-to-end arguments vs. the brave new world,” ACM Trans-
actions on Internet Technology, vol. 1, no. 1, pp. 70-109, Aug. 2001.

A. Karouia, R. Langar, T.-M.-T. Nguyen, and G. Pujolle, “SOA-based
approach for the design of the future internet,” in Communication Net-
works and Services Research Conference (CNSR), pp. 361-368, May
2010.

T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
Internet impasse through virtualization,” IEEE Computer, vol. 38, no. 4,
pp. 34-41, Apr. 2005.

D. F. Macedo, Z. Movahedi, J. Rubio-Loyola, A. Astorga, G. Koumout-
sos, and G. Pujolle, “The autoi approach for the orchestration of auto-
nomic networks,” Annals of Telecommunications, June 2010.

N. Feamster, L. Gao, and J. Rexford, “How to lease the Internet in
your spare time,” ACM SIGCOMM Computer Communication Review,
vol. 37, no. 1, pp. 61-64, Jan. 2007.

F. L. Verdi, M. F. Magalhaes, E. Madeira, and A. Welin, “Using vir-
tualization to provide interdomain QoS-enabled routing,” Journal of
Networks, vol. 2, no. 2, pp. 23-32, Apr. 2007.

87

[9]

[12]

[13]

[15]

[16]

N. C. Fernandes, M. D. D. Moreira, I. M. Moraes, L. H. G. Ferraz,
R. S. Couto, H. E. T. Carvalho, M. E. M. Campista, L. H. M. K. Costa,
, and O. C. M. B. Duarte, “Virtual networks: Isolation, performance,
and trends,” tech. rep., Electrical Engineering Program, COPPE/UFRJ,
June 2010.

N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, L. Mathy, and T. Schoo-
ley, “Evaluating Xen for router virtualization,” in International Confer-
ence on Computer Communications and Networks - ICCCN, pp. 1256—
1261, Aug. 2007.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peter-
son, J. Rexford, S., and J. Turner, “OpenFlow: Enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, Apr. 2008.

M. P. Mateo, “OpenFlow switching performance,” Master’s thesis, Po-
litecnico Di Torino, Torino, Italy, July 2009.

A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing network virtu-
alization in Xen,” in USENIX Annual Technical Conference, pp. 15-28,
May 2006.

B. Pfaft, B. Heller, D. Talayco, D. Erickson, G. Gibb, G. Appenzeller,
J. Tourrilhes, J. Pettit, K.-K. Yap, M. Casado, M. Kobayashi, N. McKe-
own, P. Balland, R. Price, R. Sherwood, and Y. Yiakoumis, “OpenFlow
switch specification version 1.0.0 (wire protocol 0x01),” tech. rep., Stan-
ford University, Dec. 2009.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “NOX: Towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105—
110, July 2008.

R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Handigol,
T.-Y. Huang, P. Kazemian, M. Kobayashi, J. Naous, S. Seetharaman,
D. Underhill, T. Yabe, K.-K. Yap, Y. Yiakoumis, H. Zeng, G. Appen-
zeller, R. Johari, N. McKeown, and G. Parulkar, “Carving research slices
out of your production networks with OpenFlow,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 1, no. 1, pp. 129-130,
2010.

88

[17]

[19]

[20]

[21]

[22]

P. S. Pisa, N. C. Fernandes, H. E. T. Carvalho, M. D. D. Moreira,
M. E. M. Campista, L. H. M. K. Costa, and O. C. M. B. Duarte, “Open-
flow and Xen-based virtual network migration,” in The World Computer
Congress - Network of the Future Conference, Sept. 2010.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Symposium
on Networked Systems Design & Implementation - NSDI, pp. 273-286,
May 2005.

Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rex-
ford, “Virtual routers on the move: Live router migration as a network-
management primitive,” in ACM SIGCOMM, pp. 231-242, Aug. 2008.

R. Olsson, “Pktgen the Linux packet generator,” in Linuz symposium,
pp- 11-24, July 2005.

D. Chisnall, The Definitive Guide to the Xen Hypervisor. Prentice Hall,
2007.

H. Fathi, R. Prasad, and S. Chakraborty, “Mobility management for
VoIP in 3G systems: Evaluation of low-latency handoff schemes,” IFEE
Wireless Communications, vol. 12, no. 2, no. 2, pp. 96-104, 2005.

R. S. Alves, L. H. M. K. Costa, M. E. M. Campista, L. G. Valverde, P. S.
Pisa, C. Fragni, T. N. Ferreira, I. M. Moraes, and O. C. M. B. Duarte,
“A virtual machine server for the future internet,” in Workshop on Net-
work Virtualizaton and Intelligence For Future Internet (WNetVirt),
Apr. 2010.

W3C, “Web services activity.” http://www.w3.org/2002/ws/. (Accessed
march 2010).

D. Box, D. Ehnebuske, G. Kakivaya, A. L. N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer, “Simple object access proto-
col (soap) 1.1.” http://www.w3.org/TR/2000/NOTE-SOAP-20000508/,
2000. (Accessed march 2010).

“Apache tomcat.” http://tomcat.apache.org/. (accessed march 2010).

“Libvirt: The virtualization api.” http://libvirt.org/. (accessed march
2010).

89

[28] D. Menezes, N. Fernandes, C. Gomes, and O. Duarte, “Developing nox
applications for network control,” in Workshop on Network Virtualiza-
ton and Intelligence For Future Internet (WNetVirt), Apr. 2010.

[29] C. Gomes, D. Menezes, N. Fernandes, and O. Duarte, “A tool for open-
flow network management,” in Workshop on Network Virtualizaton and
Intelligence For Future Internet (WNetVirt), Apr. 2010.

[30] “Graphiviz.” http://www.graphviz.org. (accessed february 2010).

[31] “Apache axis2/java - next generation = web services.”
http://ws.apache.org/axis2/. (Acessed in January/2011).

90

