Horizon Project
ANR call for proposals number ANR-~08-VERS-010
FINEP settlement number 1655/08

Horizon - A New Horizon for Internet

WP1 - TASK 1.2: Choice of the Context-Aware Technology

Report
(Annex C)
Institutions
Brazil France
GTA-COPPE/UFRJ LIP6 Université Pierre et Marie Curie
PUC-Rio Telecom SudParis
UNICAMP Devoteam

Netcenter Informatica ltda. Ginkgo Networks
VirtuOR



Contents

1 Introduction

2 General Architecture for Context-Aware Systems
3 Sensing Subsystem

4 Thinking Subsystem

5 Acting Subsystem

6 Conclusions and Ongoing Work

11

14

18



List of Figures

2.1 A general architecture for context-aware systems.

4.1 A simple knowledge base using the Ginkgo Platform [1].

5.1 Traffic engineering using the migrate primitive.



Chapter 1

Introduction

Current Internet architecture has a unique protocol stack, the TCP/IP
stack, running over the physical substrate. Thus, packets from all appli-
cations, each one with different performance requirements, are forwarded
according to a single model with no differentiation. To provide customized
services for the different applications in the future Internet, Horizon project
proposes a pluralist architecture, which allows different protocol stacks run-
ning simultaneously over the same shared physical substrate. The proposed
architecture is based on the concept of network virtualization [2]. The idea
is to run multiple virtual networks on the same substrate providing resources
for each network [3] and, thus, we are able to create different networks, ac-
cording to the requirements of applications running on each virtual network.

For the proposed architecture, the efficient sharing of the underlying net-
work resources is a fundamental challenge. Horizon project is developing
the infrastructure required for a piloting system to deal with the resource-
allocation problem among the different virtual networks. The goal is to
project the needed information from the infrastructure onto the piloting sys-
tem. Based on such information the piloting system acquires the knowledge
needed to optimize the creation and destruction of virtual networks and the
distribution of the physical resources. For each network element, such as
routers and switches, the piloting system defines a situated view that is used
to determine the context surrounding the element and to select and optimize
their control algorithms and parameters. The main idea is to define local
algorithms, such as routing and quality-of-service mechanisms, as a function
of the context in order to increase network scalability. Hence, the piloting
system must be aware of the context.

Context-aware systems are defined as systems that can be aware of the
situation of entities or their contexts and do things for them [4]. According
to this definition, context and situation are closely related concepts and both



are fundamentals to understand the context-aware systems. We assume that
context is “any information that can be used to characterize the situation of
an entity”, as defined by Loke [4]. Location, time, computational resources,
and network bandwidth are examples of context information. In addition,
we assume that situation means a description of the current states of a given
entity, as also defined by Loke [4]. For example, a link with slow responsive-
ness, high packet loss rate, and high delay (context information) is probably
congested (situation). In most of the cases, as occurs in the previous ex-
ample, we have to aggregate context information in order to determine the
situation of an entity.

Context-aware systems must be able to determine what situations an en-
tity are in and to detect changes of situation. Context awareness also enables
the system to act automatically, which allows network control without hu-
man interference. In order to provide these functionalities, first, the system
has to monitor the environment to acquire context information surrounding a
network element. After that, it has to reason about the context acquired and
then it has to act in order to achieve a goal. Entities have also to communi-
cate to another to determine their situations in time. To tackle this challenge,
the Horizon project proposes to use the paradigm of Multi-Agent Systems
(MAS) as a modeling foundation [5]. The multi-agent paradigm seems to be
attractive to develop an automatic piloting system because of the properties
of agents itself. These properties include autonomy, proactivity, adaptability,
cooperating, and mobility. In addition, multi-agents systems are decentral-
ized in nature, which is required by large-scale networking environments. In
this project, however, we prove the concept of such automatic piloting sys-
tem by evaluating a specific problem. It becomes reasonable to experiment
the proposed solution in a representative case before expanding it to the
large-scale problem because of the network complexity and the multitude of
parameters the system must deal with. We aim at showing that it is possible
to extrapolate our solution to the whole network evaluating its performance
in a simpler case.

There are several techniques that can be used to develop context-aware
systems. This technical report describes some of these techniques and presents
our choices to develop the piloting system. Chapter 2 describes a general lay-
ered architecture for context-aware systems. The following chapters present
our choices based on the layers of this architecture. First, Chapter 3 focus on
the context information that can be acquired from physical and virtual net-
works. After that, Chapter 4 describes several techniques used to represent
knowledge. Finally, Chapter 5 defines the actions that can be taken to pilot
the virtual networks. Concluding remarks and ongoing work are discussed in
Chapter 6.



Chapter 2

General Architecture for
Context-Aware Systems

Context-aware systems have three basic functionalities: sensing, thinking,
and acting. We follow the general abstract layered architecture proposed by
Baldauf et al.[6] shown in Figure 2.1. In this general architecture, the three
functionalities are represented by subsystems. Each subsystem is composed
of one or more layers associated to each other in order to exchange informa-
tion. Each subsystem, however, may be decoupled or tightly integrated into
one device, i.e., a subsystem can think and act but uses a shared set of sensors
to acquire context information. In addition, the levels of complexity of each
one of these functionalities are independent. We can develop, for example, a
system that has complex sensors but performs little reasoning before taking
actions. Furthermore, the three basic subsystems can be implemented in a
centralized or in a distributed fashion.

Sensing is a context-aware subsystem that can be divided into two layers
(Figure 2.1): sensors and raw data retrieval. The first layer consists of a set
of sensors. We assume that sensors are every data source which provides con-
text information no matter “what” is the data source. In this sense, a data
source for temperature can be a hardware device, such as a thermometer, or
a software module, such as a software application that requests the temper-
ature to a Web service. Both are considered sensors because they provide
temperature readings to the system. The second layer of the sensing subsys-
tem is responsible for the retrieval of raw context data. This layer provides
to the upper layers more abstract methods to request context information
acquired by sensors. Actually, this layer is an interface to make implementa-
tion details of sensors transparent to the thinking subsystem. Hence, we can
modify the sensors used by the system without modifications in the upper
layers.



Applications } Acting Subsystem

Storage/Management

>Thinking Subsystem

Preprocessing/Reasoning

Raw Data Retrieval

7 Sensing Subsystem

Sensors

Figure 2.1: A general architecture for context-aware systems.

After collecting data with sensors, the task of the system is to use such
data and to make sense of it [4]. This is the role of the thinking subsystem
that can be divided in two layers: preprocessing and storage/management.
The preprocessing layer converts all context information acquired into a com-
mon representation because the context information can be acquired in dif-
ferent forms, for example, such as discrete values or a continuous series of
values. Furthermore, this layer is responsible for reasoning and interpret-
ing context information to infer more knowledge. The reasoning technique
used by the system ranges from simple event-condition rules to complex ar-
tificial intelligence techniques [4]. The preprocessing layer also aggregates
context information from different sensors to provide more accurate informa-
tion. In addition, knowledge representation techniques are needed to define
and store context information in a machine processable form. This is the
role of the store/management layer. There are several knowledge representa-
tion techniques, such as graphical-based, logical-based, and ontology-based
techniques [6].

The third subsystem is acting. A context-aware system take actions based
on the context information gathered or on situations recognized by the sens-
ing and thinking subsystems. The actions to be taken by the system are
defined according to the application requirements, as indicated in Figure 2.1.
In a congestion control application, for example, sensors monitor the band-
width in a network link and indicate that the link is saturated. Thus, the
system “thinks” and decides to block new flows and to maintain all the cur-
rent flows. In general, a context-aware system must act in time to quickly
adapt its operation according to environment changes. In addition, these



systems allow users to control actions, i.e., users should be able to override,
cancel, and stop actions and also reverse the results of an action.

In this project, we follow the described architecture to develop the pilot-
ing system. Our choice is to implement the layers in a distributed fashion
based on multiagent systems. The sensing subsystem is implemented by sen-
sors spread along the virtual routers. Thus, we do not have a sensor per
agent but a set of sensors that can be used by all the agents. Sensors col-
lect context information by reading directly data available on the operational
systems of the routers and also by using measurement tools. We have also
defined that sensors translate the context information acquired to a common
representation. The context information considered in the project and the
sensors under development are detailed in Chapter 3. The agents implement
all the other layers related to thinking and acting subsystems. Thus, they
must communicate with the set of sensors in order to acquire context infor-
mation and, thus, process this information to take actions. The platforms for
developing agents were described in Technical Report WP1-1.1 and in this
technical report we present knowledge representation techniques in Chapter 4
and also the actions defined by the piloting system in Chapter 5.



Chapter 3

Sensing Subsystem

In this project, our choice is to develop a set of sensors decoupled of the
agents. Thus, we are able to develop lightweight agents in terms of com-
putational processing because they do not have to implement a sensor per
context information to be sensed. The agents only have to exchange mes-
sages with sensors to request and to receive the context information desired.
Therefore, although we slightly modify the classical architecture of agents by
decoupling the sensing subsystem, every agent is still capable of acquiring
sensing information.

The sensors that we are developing basically acquire context information
by using two methods. Sensors read available data provided by operational
systems running on physical and virtual routers and also use well-known
tools for monitoring networks, such as ping [7], nmap [8], and ifconfig [9].
After collecting data, sensors translate the raw data into XML (Extended
Markup Language) [10] data structures that are ready to be sent to agents
when requested. In this technical report, we focus on the description of the
context information that is useful to control the resource allocation among
virtual networks. The architecture and the implementation of the sensors
under development is detailed in Technical Reports WP2-2.2 and WP2-2.3.

In order to virtualize a network, we have to first define what resources
we are planning to share among the multiple virtual networks. Currently,
we have identified the following basic resources: processing power, memory,
bandwidth, traffic, and network topology [11]. The computational resources
of the network elements, such as routers and switches, must be sliced among
the virtual networks. These resources include processing power and memory.
It is worth mentioning that the resource sharing is a fundamental requirement
to make the system work properly. A router can stop to forward packets
and to exchange routing messages if it has not CPU cycle available. Memory
isolation is an important requirement to avoid overriding of one routing table



on another virtual router when a routing table of a given virtual router
increases and, thus, packets will be not correctly forwarded. Bandwidth,
traffic, and topology are the network resources that we have to slice. First,
we have to guarantee to each virtual network its own fraction of bandwidth
on a physical link. All networks elements on a given source-destination path
that are able to limit the forwarding rate should also be sliced [11]. Second,
we have to be able to associate a specific set of traffic to one or more virtual
networks, i.e., a set of traffic must be isolated from another. This is a key
point to employ multiple virtual networks. In this sense, traffic means all
packets to/from a given address or all HT'TP traffic, for example. Finally,
each network element should be aware of the nodes within a given virtual
network. Thus, a virtual router should be able to determine its own view of
other routers and the connectivity among them.

Currently, we are developing sensors to acquire context information re-
lated to the basic resources. Thus, the data that we can acquire from physical
and virtual networks are divided in two classes: computational resources and
network states. The first one is related to each physical and virtual router.
On the other hand, the second one indicates the states of each physical and
virtual link.

For each physical router, our sensors are currently able to acquire the
following data depending on the network virtualization technique employed:

e Processor usage (physical CPUs)

e Used memory

e Available memory,

e Used swap memory

e Available swap memory

e Total memory allocated to a given virtual router

e Number of virtual routers per physical router

e Number of virtual processors allocated to a given virtual router and
e Number of virtual interfaces defined to a given virtual router

In this case, sensors directly read most of the desired data from the oper-
ational system of physical routers. We estimate physical processor usage by
summing the usage of virtual processors.

For each virtual router, the following data are acquired by sensors:



Processor usage (virtual CPUs)

Used memory

Available memory
e Used swap memory
e Available swap memory

According to the employed virtualization technique, the virtual CPU us-
age is obtained by using tools provided by the operational system of physical
routers and the memory information are directly read from the operational
system of virtual routers. In this case, we need to access these virtual routers.

The second class of context information is related to network states. Our
sensors are currently able to acquire the following information per physical
or virtual network interface:

e Number of received packets

e Received bytes

e Number of erroneous packets

e Number of dropped packets during receptions,

e Receiving rate

e Number of transmitted packets

e Transmitted bytes

e Number of erroneous transmitted packets

e Number of dropped packets during transmissions
e Transmission rate.

Sensors also discover the topologies of physical and virtual networks.
Thus, for each neighbor, we can determine, for example, the available band-
width and the latency of a given link. In our project, we consider that the
context information previously presented is enough to serve as a basis to the
reasoning techniques employed by the piloting system under development.
With this information, the piloting system will be able to react to environ-
ment changes in order to guarantee the isolation and the resources of each
virtual network.

10



Chapter 4

Thinking Subsystem

The role of the thinking subsystem is to make sense of data acquired by
sensors and to use context information to react to environment changes. Basi-
cally, thinking subsystems combine knowledge representation and reasoning
techniques. Knowledge representation techniques define and store context
information in a machine processable form [12]. Thus, the goal of a knowl-
edge representation technique is to store the context information in a logical
form in order to allow that reasoning techniques use this information. The
reasoning techniques include, for example, mathematical models, inference
techniques, and cognitive-based models [4]. In this technical report, we are
focusing on the knowledge representation techniques. The techniques used
to reason with context information will be presented and discussed in the
Technical Report WP3-3.2.

Several techniques are proposed to represent knowledge and there are
studies that try to classify these techniques in classes [4, 13, 6]. Four of
the most relevant classes of knowledge representation techniques are briefly
described in the following paragraphs.

Markup-based techniques define hierarchical data structures to represent
context information. These data structures are composed of markup tags
with attributes and content. The content of each tag might be recursively de-
fined by other tags. One of the most popular markup languages is XML [10].
Currently, there are several XML-based knowledge representation languages
and standards, such as DARPA Agent Markup Language (DAML) [14] and
Web Ontology Language (OWL) [15]. We are currently using XML as the
common language to represent all data acquired by sensors and also to de-
scribe the content of the exchanged messages in the system.

In general, a logic derives a concluding expression from a set of expressions
or facts based on predefined conditions [13]. This process is called inference
and the conditions are formally described by a set of rules. Consequently,

11



context information is represented by facts, expressions, and rules if we are
considering logic-based techniques. Thus, context information is added to a
logic-based system in terms of facts as well as it is deleted or updated. Con-
text information may be also inferred from the rules defined in the system.
Ranganathan and Campbell [16], for example, propose to represent context
and situations by using first-order logic techniques. In this case, rules are
defined to map situations to actions by using Prolog language. The proposed
rules basically relate context information to situations. Context information
is the condition of a rule and situations are the conclusions of a rule.

Graphical modeling techniques are largely used because of its intuitive
nature. The Unified Modeling Language (UML) [17] is a well-known general-
purpose modeling tool and can also be used to represent context informa-
tion [18]. The UML class diagrams are the graphical components of this
language and, from these diagrams, we can derive entity-relationship mod-
els [19]. This kind of model is largely used as structuring tool for developing
relational databases, which can be viewed as a knowledge base [13]. Another
graphical technique is called contextual graphs [20, 21]. This technique does
not define diagrams, like UML defines, but it proposes the concept of context
spaces, which is a spatial view of context information. Each type of context
information is represented by one axis of a multidimensional space and, thus,
sensors readings are represented by points and situations are represented by
regions in this space.

An ontology is generally defined as a set of concepts and terms that are
used to describe a domain of knowledge or to develop a representation of this
domain, including the relationships between their elements. Particularly, the
set of terms can be ordered in a hierarchical fashion and used as a “sketch” to
build a knowledge base [22]. From this definition, we clearly identify the dif-
ferences between ontologies and knowledge bases. An ontology provides a set
of terms to describe a given domain while a knowledge base uses these terms
to describe a given situation. If this situation changes, the knowledge base
also changes. The ontology, however, does not change because the domain
remains the same. Thus, we can easily develop a knowledge base from an
ontology, which is the main advantage of this technique. Furthermore, the
ontology-based techniques have other advantages. First, these techniques
avoid uncertainty because they provide an exact description and a specific
vocabulary to represent knowledge. In addition, ontology-based techniques
allow knowledge sharing because applications within the same domain can
use the same ontology. Finally, the same ontology can be expressed in dif-
ferent languages. In general, an ontology is composed of: a taxonomy, i.e.,
a set of concepts and a hierarchy between them; a set of relationships be-
tween these concepts; and a set of axioms [22]. In Horizon project we have to

12



build a knowledge base for the piloting system, thus, our choice is to define
an ontology to describe the environment with multiple virtual networks. In
addition, most of the analyzed platforms for developing agents have tools to
define ontologies inside their agents. The Ginkgo Platform [23, 1] considers
an ontology-based representation composed of classes and individuals. Both
concepts are quite similar to the classes and instances of an object data-
model. An individual is an instance of a class. Hence, a class is a set of
individuals, which are members of this class, and the knowledge base is a
tree of classes, as illustrated by Figure 4.1. In this example, we have two
classes, person and employee, that derives from the root class, thing, and one
instance of each class, John and Jane. In practice, classes can be routers,
users, flows, applications, etc. Furthermore, we can observe that classes have
properties to store data. These properties have an identifier and are single
or multivalued. The individuals have the same properties of the class they
are members and also the properties of their father classes.

Thing
A
isa
Person
isa Employee
+ age - + sal Classes
+ weight salary
+ married
A
l . .
instance instance
of of

John Jane

+ age=32 +age=32

+ weight=100 N We'g_htdzjtno Individuals
+ married=true . 2;?;:';_1_5%";

Figure 4.1: A simple knowledge base using the Ginkgo Platform [1].

13



Chapter 5

Acting Subsystem

The acting subsystem is the part of the piloting system responsible for
reacting to environment changes based on the context information gathered
or on situations recognized by the sensing and thinking subsystems. In this
project, our choice is to define typical basic functionalities regardless the
virtualization technique employed by the network. The actions taken by the
piloting system are then based on these functionalities, which are following
described.

We identified four basic functionalities: creation of multiple customized
networks, flexible management, real-time control, and monitoring. We also
defined primitives in order to employ these functionalities. The primitives
allow to instantiate/delete and also to migrate network elements and flows
and set its resource-allocation parameters. Such primitives make the network
virtualization a suitable technology for creating multiple virtual networks
and, as a consequence, for supporting the pluralist approach, because several
requirements are satisfied, as explained below.

The first functionality is the creation of multiple customized networks.
In a pluralist architecture, we have multiple networks running in parallel. In
this sense, the instantiate primitive can be used to instantiate virtual network
elements, such as virtual routers and/or virtual links, and, therefore, multi-
ple virtual networks can be rapidly deployed and run simultaneously. Each
virtual network has its own protocol stack, network topology, administration
policy, etc. This enables network innovation and new business models [24].
With network virtualization, a service provider can allocate an end-to-end
virtual path and instantiate a virtual network tailored to the offered network
service, e.g. a network with quality-of-service (QoS) guarantees. Hence, new
services can be easily deployed and new players can break the barrier to enter
in the network service market.

Flexible Management is the second functionality that we have identified.

14



The network virtualization layer breaks the coupling between the logic used
to construct the forwarding table and the physical hardware that implements
the packet forwarding task [25]. Therefore, the migrate primitive allows mov-
ing a virtual network element from a physical hardware to another, without
changing the logical /virtual network topology. In addition, traffic engineering
and optimization techniques can use the migrate primitive to move virtual
network elements/links along the physical infrastructure in order to mini-
mize energy costs, distance from servers to specific network users, or other
objective functions.

Real-time control is the third functionality. The virtual networks archi-
tecture also supports real-time control of virtual network resources because
resource-allocation parameters can be set for each virtual network element
(router, switch, link, gateway, etc.). We can set the allocated memory, band-
width, maximum tolerated delay, etc. Even specific hardware parameters can
be set, for instance, the number of virtual processors, priority of processor
usage in a contention scenario, etc. Thus, we can dynamically adapt the
resources allocated to each virtual network according to the current network
condition, number of users, priority of each virtual network, service level
agreements (SLAs), etc.

The last functionality is monitoring. Network virtualization techniques
should come with a set of monitoring tools required to measure variables of
interest, such as available bandwidth, processor and memory usage, link and
end-to-end delay, etc. The monitor primitive is called to measure the desired
variables. In this project, the measurements are performed by sensors as
explained in Chapter 3. Thus, when the monitor primitive is called actually
the sensors are called.

The four functionalities can be used by the piloting system to guaran-
tee the requirements of each virtual network. For example, a given virtual
network employs an intrusion detection system (IDS) in order to detect mali-
cious nodes. In this case, the delete primitive can be used to delete a virtual
network element/link or even an entire network if an attack (e.g., Distributed
Denial of Service - DDoS) is detected. Figure 5.1 also shows an example of
traffic engineering that uses the migrate primitive to move virtual routers
along the physical infrastructure to minimize energy costs or other objec-
tive functions. In this example, we have five physical routers (Ry, Ry, R3, Ry,
and R;) and initially two virtual networks. The first virtual network pro-
vides quality of service (QoS) for voice-over-IP (VoIP) calls and is composed
of virtual routers Ay, As, and As placed, respectively, in physical routers
Ry, Ry, and R3. The second one is a secure network composed of virtual
routers S, Sp, and S3 located, respectively, in physical routers R4, Ry, and
R5. Assume that we have a rule to move the virtual router with the highest

15



CPU usage just after the physical CPU usage reaches 80%. In this scenario,
illustrated by Figure 5.1(a), the physical router Ry has two virtual routers
Ay and S, and each one uses 25% of the physical CPU. Thus, the rule defined
is satisfied. Suppose now that a third virtual network is created to provide
QoS for video streaming applications. As illustrated by Figure 5.1(b), this
networks is composed of virtual routers V;, Vs, and V3 located, respectively,
in physical routers R4, Ry, and Rs;. Thus, we add one virtual router to Ry
and V5 requires more 25% of the physical CPU. Currently, the CPU usage is
75% and the rule is still satisfied. After that, however, the virtual router V5
requires more 10% of CPU and the total CPU usage becomes greater than
80%. Thus, according to the rule defined, we have to move the virtual with
the highest CPU usage, which is V5 in this case. An alternative is to move V5
to Rs, as shown Figure 5.1(c). After migrating the virtual router, the CPU
usage in all physical routers is less than 80% and the rule satisfied.

16



Rs Ss

(a) Two virtual networks and 50% of CPU usage in Rj.

@ =
Sg 0.8

S

R4

&¢ . f .. &4
N N

Vo
§ 75% Sy

o
< ;§ Ry R2 Ra X < >

(c) Virtual router V5 migrates to physical router Rs.

Figure 5.1: Traffic engineering using the migrate primitive.

17



Chapter 6

Conclusions and Ongoing Work

Horizon project is developing the infrastructure required for a piloting sys-
tem to control the resources allocated to each virtual network. This system
creates and destroys virtual networks, sets their parameters, and migrates
network elements. These actions are taken based on the context information
acquired by sensors spread along network elements. The piloting system is
based on the multi-agent paradigm, developed in a distributed fashion to
increase network scalability.

The piloting system also follows the layered architecture presented in
Chapter 2. The sensors under development read available data provided by
operational systems running on physical and virtual routers and also use well-
known tools for monitoring networks. Sensors, however, are decoupled from
agents to make them lightweight in terms of computational processing. In
this case, agents only have to exchange messages with sensors to request and
to receive the context information desired. Currently, sensors do not send
messages to agents. After collecting data, sensors translate the raw data into
XML data structures that are sent to a server, called Virtual Machine Server
that will be described in Technical Report WP2-2.2. The next step is to
evaluate the communication between sensors and agents.

The reasoning and knowledge representation techniques are under speci-
fication as well as the platform for developing agents. We are now evaluating
Ginkgo and JADE platforms and both allow us to define an ontology and
to build a knowledge base from this ontology. This is the reason to consider
ontology-based techniques our preliminary choice to represent knowledge.
Currently, all the reasoning is made by users that have access to the func-
tions provided by the Virtual Machine Server. After the definition of the
agent platform and the reasoning techniques, we will start to migrate these
functions to the agents.

The actions defined for the piloting system are: creation of multiple cus-

18



tomized networks, flexible management, real-time control, and monitoring.
In addition, the primitives defined to employ these functionalities are: instan-
tiate, delete, and migrate network elements and flows and set the resource-
allocation parameters. These functionalities and primitives are feasible re-
gardless the virtualization technique employed by the network. The next
step is to analyze if these functionalities and the network resources defined
are enough to pilot the network.

19



Bibliography

[1] Ginkgo Networks, “Ginkgo agent platform programming manual v1.5,”
tech. rep., Ginkgo Networks, Oct. 2009.

[2] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
Internet impasse through virtualization,” IEEE Computer, vol. 38, no. 4,
pp- 34-41, Apr. 2005.

[3] J. He, R. Zhang-Shen, Y. Li, C.-Y. Lee, J. Rexford, and M. Chiang,
“DaVinci: dynamically adaptive virtual networks for a customized In-
ternet,” in ACM CoNEXT Conference, Dec. 2008.

[4] S. Loke, Context-Aware Pervasive Systems: Architectures for a New
Breed of Applications. Auerbach Publications, 1 ed., 2006.

[5] V. Silva and C. J. F. Lucena, “Modeling multi-agent system,” Commu-
nications of the ACM, vol. 50, no. 5, pp. 103-108, May 2007.

[6] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, no. 4, pp. 263-277, June 2007.

[7] Linux.org, Ping Man page, June 2010. Available at
http://linux.die.net /man/8/ping.

[8] Nmap.org, Nmap Reference Guide, June 2010. Available at
http://nmap.org/book /man.html.

[9] F. N. van Kempen, A. Cox, P. Blundell, and A. Kleen, Ifconfig Man
page, June 2010. Available at http://linux.die.net/man/8/ifconfig.

[10] L. Quin, Eztensible Markup Language (XML), June 2010. Available at
http://www.w3.org/XML/.

20



[11]

[20]

[21]

[22]

R. Sherwood, G. Gibby, K.-K. Yapy, G. Appenzellery, M. Casado,
N. McKeown, and G. Parulkar, “FlowVisor: A network virtualization
layer,” tech. rep., Deutsche Telekom Inc. R&D Lab, Stanford University,
and Nicira Networks, Oct. 2009.

R. Davis, H. Shrobe, and P. Szolovits, “What is a knowledge represen-
tation?,” AI Magazine, vol. 14, no. 1, no. 1, pp. 17-33, 1993.

T. Strang and C. Linnhoff-Popien, “A context modeling survey,” in In-
ternational Workshop on Advanced Context Modelling, Reasoning and
Management, 2004.

DARPA team, The DARPA Agent Markup Language Homepage, June
2010. Available at http://www.daml.org.

D. L. McGuinness and F. van Harmelen, OWL Web Ontology Lan-
guage Overview, June 2010. Available at http://www.w3.org/TR/owl-
features/.

A. Ranganathan and R. H. Campbell, “An infrastructure for context-
awareness based on first order logic,” Personal and Ubiquitous Comput-
ing Journal, vol. 7, no. 6, pp. 353-364, Dec. 2003.

Object Management Group, UML Resource Page, June 2010. Available
at http://www.uml.org/.

P. Kogut, S. Cranefield, L. Hart, M. Dutra, K. Baclawski, M. Kokar, and
J. Smith, “UML for ontology development,” The Knowledge Engineering
Review, vol. 17, no. 1, no. 1, pp. 61-64, 2002.

D. Berardi, D. Calvanese, and G. De Giacomo, “Reasoning on UML class
diagrams,” Artificial Intelligence, vol. 168, no. 1-2, no. 1-2, pp. 70-118,
2005.

P. Brézillon, “Representation of procedures and practices in contextual
graphs,” The Knowledge Engineering Review, vol. 18, no. 2, pp. 147-174,
June 2003.

A. Padovitz, S. W. Loke, and A. B. Zaslavsky, “Towards a theory of con-
text spaces,” in Workshop on Context Modelling and Reasoning (CO-
MOREA), pp. 38-42, 2004.

A. Gémez-Pérez, “Ontological engineering: a state of the art,” Fxpert
Update, vol. 2, no. 3, no. 3, pp. 33-43, 1999.

21



[23] Ginkgo Networks, “Ginkgo distributed network piloting system,” tech.
rep., Ginkgo Networks, Sept. 2008.

[24] N. Feamster, L. Gao, and J. Rexford, “How to lease the Internet in
your spare time,” ACM SIGCOMM Computer Communication Review,
vol. 37, no. 1, pp. 61-64, Jan. 2007.

25] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rex-
g
ford, “Virtual routers on the move: live router migration as a network-

management primitive,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 4, no. 4, pp. 231-242, 2008.

22



