
Horizon Project
ANR call for proposals number ANR-08-VERS-010
FINEP settlement number 1655/08

Horizon - A New Horizon for Internet
WP1 - TASK 1.1: State-of-the-art in Context Aware Technologies

 Report

 (ANNEX B)

Institutions
GTA-COPPE/UFRJ

PUC-Rio
UNICAMP
Netcenter Informática ltda
LIP6 Université Pierre et Marie Curie
Telecom SudParis
Devoteam
Ginkgo Networks
VirtuOR

Contents

1 Introduction 3

2 Autonomic Systems 4
2.1 Characteristics of Autonomic Systems 4
2.2 Architecture and Operation of Autonomic Systems 5

2.2.1 Architecture of Autonomic Elements 5
2.2.2 Autonomic Control Loop 7

3 Multi-Agent Systems (MAS) Seen as Piloting Systems 8
3.1 Definition of Agents . 8
3.2 Characteristics of Agents . 9
3.3 Cognitive Agents . 10
3.4 Reactive Agents . 10
3.5 Multi-Agent Systems (MAS) 10

4 Options to Build the Autonomic Platform 13
4.1 Ginkgo . 13

4.1.1 Situated View of the Ginkgo Agents and Knowledge
Plane . 14

4.1.2 The Ginkgo Agent Architecture 14
4.2 DimaX . 16

4.2.1 DimaX Services . 17
4.2.2 DIMA Agent Behaviours 18
4.2.3 DarX Tasks . 18
4.2.4 Fault-Tolerant Agents 19

4.3 JADE . 19
4.3.1 JADE Architecture . 21
4.3.2 Behaviours to Build Complex Agents 21
4.3.3 JADE Tools for Platform Management and Monitoring 22

5 Conclusions 23

1

List of Figures

2.1 Architecture of an Autonomic Element. 6
2.2 Autonomic control loop. 7

3.1 Multi-agent system. 11

4.1 Ginkgo agents and the Knowledge Plane. 14
4.2 Ginkgo agents architecture. 15
4.3 Overview of DimaX. 17
4.4 JADE architectural model. 21

2

Chapter 1

Introduction

The goal of the Horizon Project is to conceive and test a new architec-
ture for a post-IP environment. This post-IP architecture employs network
virtualization, which includes a piloting system. The design of such pilot sys-
tem is based on multi-agent systems to guide the system towards intelligent
decisions.

The central idea of this project is to develop an environment where each
element of the system contributes with information used to automatically
update the control algorithms to reflect the changes in the environment that
influence the value of the network parameters. For that, the piloting system
must be “autonomous”. To make decisions for enabling the system with such
autonomy, we surveyed the state of the art on autonomous systems, multi-
agent systems with support to piloting system, as well as some development
platforms that offer such features.

This document presents the state of the art on multi-agent systems and
piloting system. Chapter 2 shows the characteristics of autonomous systems.
Chapter 3 introduces multi-agent systems with emphasis on its specific fea-
tures to support piloting systems. Chapter 4 presents agent platforms that
meet the requirements of the project, and Chapter 5 presents the conclusions.

3

Chapter 2

Autonomic Systems

An autonomic computing system can be described as a system that senses
its operating environment, and models its behaviour in that environment.
Moreover, it takes actions to change either the environment or its own be-
haviour. A goal-oriented system is an autonomic system that operates in-
dependently and that achieves its goals by itself without intervention, even
if external environmental changes. An autonomic system has the properties
of self-configuration, self-healing, self-optimization and self-protection [1]. In
summary, the main characteristics of autonomic systems are autonomy and
spontaneity.

2.1 Characteristics of Autonomic Systems

The concept of “The Autonomic Computing” was proposed by IBM
[1], that defined four primary functionalities of autonomic computing: self-
configuration, self-healing, self-optimization, and self-protection, which are
described next:

• Self-configuration is the capacity of adapting itself to dynamically
changing environments. When a standalone component is introduced,
it integrates seamlessly into its surroundings environment and the rest
of the system automatically adapts itself to the presence of the new
components. The system has the capacity to self-adjust, and the auto-
matic configuration of components follows high-level policies;

• Self-healing is the ability to discover, diagnose, and act to prevent
disruptions. The system must be able to maintain all its features,
possibly in a degraded mode, until all the needed resources be found.
It should maintain a base of knowledge about the configuration system,

4

to allow diagnostic reasoning and to analyze system logs (or logs from
other systems) to identify failure;

• Self-optimization is the capacity to tune resources and to balance
workload so that the use of resources can be measured. In this way,
components should be structured to improve performance and efficiency
which demands the ability to monitor the environment, experiment new
options, and learn to improve choices for performance optimization;

• Self-protection is the ability to anticipate, detect, identify, and pro-
tect against threats. An autonomous system must detect these situa-
tions and avoid disruption of usage. Such ability calls for the setting
up of mechanisms and architecture for detection and protection of all
network elements.

2.2 Architecture and Operation of Autonomic

Systems

An autonomic computing system is made of a connected set of autonomic
elements. Each element must include sensors and effectors [2]. A control
loop composed of monitoring behaviour through sensors, comparison with
expectations, decide making and their execution is proposed to achieve the
system goal.

2.2.1 Architecture of Autonomic Elements

The Figure 2.1 shows an architecture of an autonomic element [2].
An autonomic element is composed of managed components, as well as

an autonomic manager which contains several components:

• The internal monitor observes the state of the “managed compo-
nent” and communicates the information to the component self moni-
tor;

• The external monitor observes the state of the environment and
communicates this state information from environment to the self mon-
itor component;

• The self-monitor assesses the state of the managed component, com-
pares it with the expected state stored in a knowledge base, so that to
assess the deviation of the state of managed component can be assessed;

5

Figure 2.1: Architecture of an Autonomic Element.

• The self-adjuster allows the adjustment of the status of managed
component;

• The heartbeat monitor summarizes the state of the autonomic en-
tity and communicates with other entities responsible for the autonomic
state control.

The Figure 2.1 shows that an autonomic element is composed of a man-
aged component and a correspondent autonomic manager. The autonomic
manager implements the required self-monitoring and self-adjusting capabil-
ities. An internal monitor observes the state of the managed component and
passes this information to the self-monitor for evaluation and action. The
measured state is compared with the expected state held in a knowledge base.
Undesirable deviations are reported to the self adjuster for action, which may
result in changes to the managed component. Similarly, an external monitor
observes the state of the environment via an autonomic signal channel and
it may trigger internal changes. The signal channel links it to other auto-
nomic managers. The heartbeat or pulse monitor provides a summary of the
state of an autonomic element to other autonomic elements responsible for
monitoring that state [2].

In summary, an autonomic system composed of a set of autonomic entities
operates in a control loop which ensures the “self” properties.

6

2.2.2 Autonomic Control Loop

Autonomic systems work as control loops (Figure 2.2) [3]. These systems
collect information from a variety of sources including traditional network
sensors and reporting streams as well as higher-level device and user context.
The information is analyzed to construct a model of the evolving state of the
network and its services, so that adaptation decisions can be made. These
decisions are actuated through the network and will potentially be reported to
users or administrators. The impact of these decisions can be then collected
to inform the next control cycle.

Figure 2.2: Autonomic control loop.

Several solutions have been proposed for the implementation of these sys-
tems, including intelligent agents. We present in the next chapter information
about multi-agent systems.

7

Chapter 3

Multi-Agent Systems (MAS)
Seen as Piloting Systems

The correspondence between a population of cooperating autonomous
agents and the characteristics of telecommunication networks is the main mo-
tivation for using multi agent system (MAS) in telecommunication networks.
Researchers on MAS have searched for challenging study cases, while the
network community searches new solutions to some of traditional problems,
such as provisioning of QoS and avoidance of manual network configuration
[4].

Agents are usually classified in two categories: “cognitive” and “reac-
tive”; the difference between them involves the design methods and their
usage. Ferber [5] summarizes such difference by the question: Should we
understand agents as entities already intelligent that are capable of solving
certain problems by themselves, or should we assimilate them as very simple
reactive beings that act directly to environmental changes?

3.1 Definition of Agents

There is no a universally accepted definition of the concept of “agent”.
One of the proposed definitions [5] [6] is that an agent is a physical or virtual
entity which:

• Is capable of acting in an environment;

• Can communicate directly with other agents;

• Is driven by a set of trends (in terms of its objectives, or a function of
satisfaction and even survival, that it seeks to optimize);

8

• Possesses its own resources;

• Is capable of perceiving (in a limited way) its environment;

• Has only a partial representation of this environment (and possibly
even none);

• Possesses skills and offers services;

• Can possibly reproduce itself;

• Tending to achieve its objectives, by taking into account the available
resources and skills. It perceives, represents and communicates with
other agents.

Thus, an agent can be seen as an entity capable of thinking and acting
independently of its environment in order to satisfy objectives which were
preset (by itself or by an external entity). Some characteristics of agents are:

• Ubiquity, which is the capacity of sophistication and deployment of
an agent-based process;

• Interconnection, which plays an essential role in the design of multi-
agent systems;

• Intelligence, which can be measured by the complexity of tasks that
are automated or delegated without human intervention.

3.2 Characteristics of Agents

An agent can be situated, autonomous, proactive, reactive, or social, as
described bellow:

• Situated: the agent is able to act on its environment based on sensory
inputs it receives from the environment;

• Autonomous: an agent should able to act without the intervention
of others (human or agent) and control its own actions and its internal
state;

• Proactive: an agent must exhibit a proactive behaviour, while being
able to take initiatives at the right moments;

9

• Reactive: an agent must be able to perceive its environment and to
formulate responses in the required time; and

• Social: an agent must be able to interact with other agents (Software
or human) to perform its tasks or to assist other agents to perform
their tasks.

3.3 Cognitive Agents

There is no unique definition of “cognitive agents”. In [5], there are
references to a ‘cognitive school’. Researchers that follow this “school” are
interested in agents which can make plans for their behaviors. A cognitive
agent has a knowledge base including all information and know-how necessary
to carry out its task and the interactions with other agents and with its
environment. In other words, cognitive agents can be defined as ‘intentional’.
They possess goals and explicit plans to accomplish these goals. Briot [7]
discusses about deliberative agents, which are equivalent to the cognitive
agents defined in [5].

3.4 Reactive Agents

While cognitive agents can build plans for their behaviours, the reactive
agents just have reflexes. Reactive agents are defined as a special type of
agent, being cognitive agents the general case. In [6], reactive agents are de-
fined as those which react without reference to their history. In other words,
“they simply respond directly to their environment”. In [7], the authors
describe the architecture of reactive agents as opposed to cognitive agents.
Similarly to the architecture proposed in [6], the architecture discussed in
[7] defines reactive agents as those which make decisions based only on the
information captured in the current execution time.

3.5 Multi-Agent Systems (MAS)

A multi-agent system (MAS) consists of a set of computer processes act-
ing at a certain time, sharing common resources and communicating with
each other. The key point of multi-agent systems is the formalization of
coordination among agents. The main issues involving agents are:

• Decisions: what are the mechanisms of the officer’s decision? What
is the relationship between perceptions, representations and actions of

10

agents? How do they break down their goals and tasks? How do they
construct representations?

• Control: what are the relationships between agents? How are they
coordinated? This coordination can be described as cooperation to
accomplish a common task or as a negotiation between agents with
different interests.

• Communication: what kind of message they send to each other?
Which syntax these messages follow? Different protocols are offered
depending on the type of coordination between agents.

The multi-agent systems have applications in the field of artificial intel-
ligence, which may reduce the complexity of the problem dividing it into
subgroups. An intelligent agent is associated with each subgroup and the
exchange of information between agents is used to perform coordination [5].
This is known as distributed artificial intelligence. Multi-agents are especially
useful in telecommunications, such as in electronic commerce, but can also
be used in other applications such as optimization of transportation systems
and robotics.

Figure 3.1: Multi-agent system.

[5] defines a multi-agent system (Figure 3.1) composed of the following:

• An environment E;

11

• A set of objects O. These objects are passive and can be associ-
ated with a position in environment E. They can be created, collected,
modified and destroyed by agents;

• A set A of agents, which represent entities active in the system;

• A set R of relations that bind objects (and therefore agents) between
them;

• A set O of operations that allows which agents of the set A, collect,
produce, consume, transform and manipulate objects from O; and

• Operators responsible for representing the application of these oper-
ations and world reaction to this attempt to change.

A multi-agent system is therefore composed of several agents that operate
in an environment and interact with each other. These agents are able to
perceive and act on objects detectable in this environment. Their collabora-
tion allows them to act according to their respective goals and motivations.
A multi-agent system is composed of a set of agents which interact among
themselves Each agent is composed of:

• Collection Component, which allows agents to collect information
on their environment;

• Interaction Component, which allows agents to interact with other
agents;

• Decision Component, which allows agents to take decisions based
on their perceptions;

• Execution Component, which allows agents to perform its decisions.

12

Chapter 4

Options to Build the
Autonomic Platform

Future post-IP architecture should be context-aware. So, the first work
package involves the task of defining the deployment of a context-aware in-
frastructure. The platform to finish such functionality will be included in
the network elements. Physical and logical sensors (software entity, net-
work components, and software agents) collect context information related
to the presence, location, identity and profile of users and services. A typical
context-aware software involves the localization of services and users, the call
of services according to user behaviour, the provisioning of information for
service composition, facilitation of ad hoc communication among users, and
adaptation of QoS to the changing environment. The objective is to explore
two types of context aware infrastructures and to chose the best way to in-
troduce intelligence in the Horizon platform composed of a Knowledge and
a Piloting planes. More precisely, the Horizon platform will adopt a multi-
agent system to offer some intelligence. The multi-agent system is formed by
agents situated in all network equipment (common to all virtual instances)
[8]. In this Chapter, we describe what could be an autonomic platform. For
this, we analyzed three platforms that could be useful in the Horizon Project:
the Ginkgo platform, the Dimax platform and the JADE platform.

4.1 Ginkgo

The Ginkgo’s technology provides support to Autonomic Networking ap-
plications by employing Intelligent Agents, distributed in Network Equip-
ments (NE) across the network. Ginkgo Intelligent Agents play a dual role
in autonomic networking applications: by feeding, in real-time, the Knowl-

13

edge Plane with the information required by the application and by exploiting
the distributed knowledge in the Knowledge Plane to manage in real-time
network control mechanisms [9].

4.1.1 Situated View of the Ginkgo Agents and Knowl-
edge Plane

In the Ginkgo model, the Knowledge Plane is distributed among Ginkgo
agents as a set of “Situated Views”. Each Situated View represents the
knowledge of an individual agent regarding the situation of the network in
its neighbourhood which is supposedly more important to the agent than the
situation in remote locations. Furthermore, updating knowledge in individual
Situated Views can be more easily done in real-time with limited amount of
control traffic. Ginkgo agents working together maintain an always-up-to-
date collective distributed knowledge of the overall network situation, as
illustrated in the Figure 4.1 [9].

Figure 4.1: Ginkgo agents and the Knowledge Plane.

4.1.2 The Ginkgo Agent Architecture

Ginkgo Agents are made of three main types of building blocks (Fig-
ure 4.2):

• The Situated View Knowledge Base, which is dedicated to store
the structured knowledge of the Situated View of the agents;

14

• The Behaviours, which are autonomic software components perma-
nently adapting themselves to the environment changes. Each of these
Behaviours can be considered as a specialized function with some ex-
pert capabilities. Each behaviour is essentially a sense→decide→act
loop in charge of a control function;

• The Dynamic Planner, which is in charge of orchestrating the Be-
haviours. The Dynamic Planner follows a Policy provided by the user
indicating how the behaviours should take into account the dynamic
changes occurring in the environment.

Figure 4.2: Ginkgo agents architecture.

Each of these Behaviours (“B” in Figure 4.2) can be executing some
expert function. Typical functions of Behaviours are:

• Production of knowledge for the Situated View in cooperation with
other Agents;

• Reasoning individually or collectively to evaluate the situation and to
decide on the application of an appropriate action, e.g. a Behaviour can
simply be in charge of computing the available bandwidth on the NE.

15

It can also regularly perform complex diagnoses or it can be dedicated
to automatic recognition of specific network conditions;

• Action onto the NE parameters, e.g. a Behaviour can tune QoS pa-
rameters in a DiffServ context;

• Uploading of useful information to a network management system, e.g.,
a Behaviour can upload a synthetic alarm obtained from the observa-
tions of elementary ones.

Behaviours have access to the Situated View which operates within each
Agent as a whiteboard shared among the Behaviours of the Agent.

The activation, dynamic parametrization and scheduling of Behaviours
within an Agent is performed by the Dynamic Planner. The Dynamic
Planner decides which Behaviours have to be active, when they have to be
active and with which parameters. The Dynamic Planner detects changes in
the Situated View and occurrence of external/internal events. It orchestrates
the reaction of the Agent to changes the network environment. To do so,
the Dynamic Planner follows a rule-based policy expressed in a simple and
compact form.

The Situated View of each agent is a structured knowledge base rep-
resenting the environment of the agent. It contains knowledge elements col-
lected locally by the agent as well as knowledge obtained from its peers.
The Situated View is updated on a periodical basis and it is used to adapt
the Behaviours to changes occurring in the network and to take real-time
decisions. An automatic mechanism mirrors the Situated View to the ap-
propriate peers; the knowledge is reflected in the Situated View of the peer
agents. The rate and range of this mechanism can be tuned according to
the nature of the knowledge. The Situated View is organized following an
ontology-based model, which helps to build well structured applications as
well as to inter-operate with other systems.

4.2 DimaX

DimaX is a fault-tolerant multi-agent platform which offers several ser-
vices like naming, fault detection and recovery. To make multi-agent system
(MAS) robust, DimaX uses replication techniques. Moreover, DimaX pro-
vides developers with libraries of reusable components for building MAS.
DimaX presents some interesting features like robustness and reusability.

16

4.2.1 DimaX Services

DimaX [10] is the result of the integration of a multi-agent platform
(named DIMA) and a fault tolerance framework (named DARX). Figure 4.3
gives an overview of DimaX and its main components and services. DimaX
is designed in three levels: system (i.e., DARX middleware), application (i.e.,
agents) and monitoring. At the application level, DIMA provides a set of
libraries to build multi-agent applications. Moreover, DARX provides the
mechanisms necessary for distributing, and replicating agents as services.
DimaX server provides the following services: naming, fault detection, ob-
servation and replication.

Figure 4.3: Overview of DimaX.

The Naming Service maintains a list (i.e., white pages) of all the agents
within its administration domain. When an agent is created, it is registered
at both the DimaX server and the naming server. The Failure Detection
Service (from DARX) is based on the heartbeat technique; a process sends
an I am alive message to other processes for informing that it is safe. When
a server detects a failure of another DimaX server, its naming module removes
all the replicated agents hosted at the faulty server from the list and replaces
them by their replicas located on other hosts. The replacement is initiated
by the failure notification.

17

The functionalities of the Observation Service are fundamental for
controlling replication. An observation module collects data at two levels.
The system level collects data about the execution environment of the MAS
like CPU time and mean time between failures, while the application level
collects information about its dynamic characteristics, such as the interaction
events among agents (e.g., the sent and received messages). The observation
service relies on a reactive-agents organization (named host monitors). These
agents collect and process the observation data to compute local information,
such as the number of exchanged messages between two agents during a given
period.

DimaX uses replication mechanisms (Replication Service) to avoid fail-
ures of multi-agent systems. The Replication service enables to run multi-
agent systems without interruption regardless of the failures. A replicated
agent is an entity that possesses two or more copies of its behaviour (or
replicas) in different hosts. There are two main types of replication proto-
cols: active and passive. In active replication, all replicas process all input
messages concurrently, while in passive replication, only one of the replicas
processes all input messages and periodically transmits its current state to
the other replicas so that consistencies are maintained. DimaX offers sev-
eral libraries and mechanisms to facilitate the design and implementation of
fault-tolerant multi-agent systems. Following, some characteristics of DimaX
agents are briefly described.

4.2.2 DIMA Agent Behaviours

DIMA is a Java multi-agent platform. Its kernel is a framework of proac-
tive components which represent autonomous and proactive entities. A sim-
ple DIMA agent architecture consists of: a proactive component, an agent
engine, and a communication component. The proactive component (the
AgentBehaviour class) represents the agent behaviour. This proactive com-
ponent includes a decision component to select appropriate actions. For in-
stance, a finite machine state or a rule-based system could be used to describe
the decision process. The selected actions can include sending messages and
a communication component is used to send and deliver messages. An Agent
Engine is provided to launch and support the agent activity.

4.2.3 DarX Tasks

DARX is a framework to design reliable distributed applications which
include a set of distributed communicating entities (named DarX tasks). It
includes transparent replication management. While the application deals

18

with tasks, DARX handles replication groups. Each of these groups con-
sists of software entities (the replicas) which represents the same DarX task.
In DARX, a DarX task can be replicated several times and with different
replication strategies.

4.2.4 Fault-Tolerant Agents

A fault-tolerant agent (called DimaX agent) is an agent built on our Di-
maX fault-tolerant multi-agent platform. Each DimaX agent has the struc-
ture of a DarX Task. However, the DarX Task is not autonomous. To make
it autonomous, we encapsulate the DIMA agent behaviour into the DarX
Task. This agent architecture enables the replicate of the agent. As the
DARX middleware and the DIMA platform provide mechanisms for execu-
tion control, communication and naming at different levels, their integration
requires a set of additional components. This set calls, transparently, DARX
services (e.g., replication, naming) when executing multi-agent applications
developed with DIMA. At the application level, any code modification is re-
quired. It controls the execution of agents built under DimaX and it offers a
communication interface between remote agents, through DimaX servers.

4.3 JADE

JADE (Java Agent Development Framework) is a software environment
to build agent systems for the management of networked information re-
sources in compliance with the FIPA specifications for interoperable multi-
agent systems [11]. JADE provides a middleware for the development and
execution of agent-based applications which can seamless work and interop-
erate both in wired and wireless environment. Moreover, JADE supports the
development of multi-agent systems based on predefined programmable and
extensible agent model as well as on a set of management and testing tools
[12]. A JADE environment can evolve dynamically, since agents can appear
and disappear in the system according to the needs and the requirements
of the application environment. Communication between peers, regardless
of whether they are running in the wireless or wired network, is completely
symmetric since each peer is able to play both the initiator and the responder
role. JADE is fully developed in Java and it is based of the following driving
principles [13]:

• Interoperability: JADE is compliant with the FIPA specifications
[11]. As a consequence, JADE agents can interoperate with other
agents, provided that they comply with the same standard;

19

• Uniformity and portability: JADE provides a homogeneous set
of APIs that are independent from the underlying network and Java
version. Actually, the JADE run-time provides the same APIs both
for the J2EE, J2SE and J2ME environment. In principle, it is possible
to application developers to decide the Java run-time environment at
deployment time;

• Easy to use: The complexity of the middleware is hidden behind a
simple and intuitive set of APIs;

• Pay-as-you-go philosophy: Programmers do not need to use all the
features provided by the middleware. Features that are not used do
not require programmers to know anything about them, neither add
any computational overhead.

JADE offers the following list of features to the agent programmer:

• FIPA-compliant Agent Platform, which includes the AMS (Agent Man-
agement System), the default DF (Directory Facilitator), and the ACC
(Agent Communication Channel);

• Distributed agent platform. The agent platform can be split on several
hosts. Only one Java application, and therefore only one Java Virtual
Machine, is executed on each host. Agents are implemented as one
Java thread and Java events are used for effective and lightweight com-
munication between agents on the same host. Moreover, parallel tasks
can be executed by one agent, and JADE schedules these tasks in a
cooperative way;

• A number of FIPA-compliant additional DFs can be started at run
time in order to build multi-domain environments, where a domain is a
logical set of agents, whose services are advertised through a common
facilitator;

• Java API to send/receive messages to/from other agents; ACL messages
are represented as ordinary Java objects;

• Lightweight transport of ACL messages inside the same agent plat-
form, as messages are transferred encoded as Java objects, rather than
strings, in order to avoid marshalling and unmarshalling procedures;

• Library to manage user-defined ontology and content languages;

20

• Graphical user interface to manage several agents and agent platforms
from the same agent. The activity of each platform can be moni-
tored and logged. All life cycle operations on agents can be performed
through this administrative GUI.

4.3.1 JADE Architecture

JADE includes both the libraries required to develop application agents
and the run-time environment that provides the basic services that must be
active on the device before agents can be executed. Each instance of the
JADE run-time is called container (since it “contains” agents). The set of all
containers is called platform (Figure 4.4) and provides a homogeneous layer,
that hides from agents and also from application developers the complexity
and the diversity of the underlying layers (hardware, operating systems, types
of network, JVM) [13].

Figure 4.4: JADE architectural model.

4.3.2 Behaviours to Build Complex Agents

The developer implementing an agent must extend JADE Agent class and
implement agent specific tasks by writing one or more Behaviour subclasses.
User defined agents inherit from their superclass the capability of registering
and deregistering with their platform and a basic set of methods (e.g. send

21

and receive Agent Communication Language messages, use standard interac-
tion protocols, register with several domains). Moreover, user agents inherit
from their Agent superclass two methods: addBehaviour(Behaviour) and
removeBehaviour(Behaviour), to manage the behaviour list of the agent
[14].

JADE contains established behaviours for the most common tasks in
agent programming, such as sending and receiving messages and structuring
complex tasks as aggregations of simpler ones. For example, JADE offers
a so-called JessBehaviour that allows full integration with JESS [15], a
scripting environment for rule programming offering an engine using the Rete
algorithm to process rules.

4.3.3 JADE Tools for Platform Management and Mon-
itoring

Beyond a runtime library, JADE offers some tools to manage the running
agent platform and to monitor and debug agent societies; all these tools are
implemented as FIPA agents themselves, and they require no special support
to perform their tasks [14]. Examples of JADE tools are:

• Remote Monitoring Agent (RMA): The general management con-
sole for a JADE agent platform. The RMA acquires the information
about the platform and executes the GUI commands to modify the
status of the platform;

• Directory Facilitator (DF) GUI: The DF agent also has a GUI,
with which it can be administered, configuring its advertised agents
and services.

• The Dummy Agent is a simple tool for inspecting message exchanges
among agents, facilitating validation of agent message exchange pat-
terns and interactive testing of an agent.

• The Sniffer Agent allows to track messages exchanged in a JADE
agent platform: every message directed to or coming from a chosen
agent or group is tracked and displayed in the sniffer window, using a
notation similar to UML Sequence Diagrams.

The JADE is an interesting option that offers interoperability through
the FIPA specification. It offers a friendly and robust support for the devel-
opment of multi-agent systems that meets the requirements of the Horizon
Project.

22

Chapter 5

Conclusions

This document presents a report on the state of the art on autonomic
systems as well as multi-agent systems. These systems are well adapted to
complex environments and are composed of highly dynamic networks that
implement the concept of self-piloting systems. We gave an overview of three
platforms for building agents that can be useful for the development of the
Horizon Project.

23

Acknowledgement

We would like to thank Carlos Roberto Senna, Daniel Macêdo Batista,
Edmundo Roberto Mauro Madeira, and Nelson Luis Saldanha da Fonseca
for their work in improving the final version of this report.

24

Bibliography

[1] IBM, “An Architectural Blueprint for Autonomic Computing,” Jun
2006. White Paper. 4th Edition.

[2] R. Sterritt and D. Bustard, “Towards an Autonomic Computing Envi-
ronment,” in DEXA ’03: Proceedings of the 14th International Work-
shop on Database and Expert Systems Applications, p. 699, IEEE Com-
puter Society, 2003.

[3] S. Dobson, S. Denazis, A. Fernández, D. Gäıti, E. Gelenbe, F. Mas-
sacci, P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, “A Survey of
Autonomic Communications,” ACM Transactions on Autonomous and
Adaptive Systems, vol. 1, no. 2, pp. 223–259, Dec 2006.

[4] T. Bullot, R. Khatoun, L. Hugues, D. Gäıti, and L. Merghem-Boulahia,
“A Situatedness-Based Knowledge Plane for Autonomic Networking,”
International Journal of Network Management, vol. 18, no. 2, pp. 171–
193, Mar 2008.

[5] J. Ferber, Les Systèmes Multi-Agents: Vers Une Intelligence Collective.
Dunod, 1995.

[6] M. Wooldridge, An Introduction to Multi-Agent Systems. John Wiley &
Sons, 2002.

[7] J. Briot and Y. Demazeau, eds., Principes et Architecture des Systèmes
Multi-Agents. Hermes, 2001.

[8] Horizon Project, “Horizon Project: A New Horizon to The Internet,”
2010. http://www.gta.ufrj.br/horizon/. Accessed at Apr 2, 2010.

[9] Ginkgo Networks, “White Paper – Ginkgo Distributed Network Piloting
System,” Sep 2008. http://www.ginkgo-networks.com/IMG/pdf/WP_

Ginkgo_DNPS_v1_1.pdf. Accessed at Apr 2, 2010.

25

[10] N. Faci, Z. Guessoum, and O. Marin, “DimaX: A Fault-Tolerant Multi-
Agent Platform,” in SELMAS ’06: Proceedings of the 2006 Interna-
tional Workshop on Software Engineering for Large-Scale Multi-Agent
Systems, (New York, NY, USA), pp. 13–20, ACM, 2006.

[11] FIPA, “The Foundation for Intelligent Physical Agents,” Oct 2010.
http://www.fipa.org. Accessed at Apr 2, 2010.

[12] R. H. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni, eds., Multi-
Agent Programming Languages, Platforms and Applications. Springer,
2005.

[13] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, “JADE A White
Paper,” Sep 2003. Volume 3, n. 3, http://jade.cselt.it/papers/

2003/WhitePaperJADEEXP.pdf. Accessed at Apr 2, 2010.

[14] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing Multi-Agent Sys-
tems with JADE,” Intelligent Agents VII Agent Theories Architectures
and Languages, vol. 1986, pp. 89–103, 2001.

[15] JESS, “Jess, the Rule Engine for the Java Platform,” Nov 2008. http:
//herzberg.ca.sandia.gov/jess/. Accessed at Apr 2, 2010.

26

