
A Lightweight Defence against the Packet in Packet
Attack in ZigBee Networks

Anshuman Biswas, Abdulaziz Alkhalid, Thomas Kunz, Chung-Horng Lung
Department of Systems and Computer Engineering, Carleton University

Ottawa, Ontario, K1S 5B6, Canada
{anshuman, akhalid, tkunz, chlung}@sce.carleton.ca

Abstract�—ZigBee is a standard for low-power, low-rate wireless
communication. It is modeled on the physical layer and medium
access control defined in IEEE 802.15.4. In this paper, we study
an attack on modern radios called the �“Packet in Packet�” (PIP)
attack. We replicate the attack in ZigBee devices and discuss
possible defenses against the attack. We implement a solution to
thwart the PIP attack in TinyOS and show through extensive
experiments that the solution defends against the attack, while
imposing little additional overhead.

Keywords�—ZigBee; TinyOS; Wireless; Communications;
KillerBee; Security; Defence; Packet-in-Packet Injection

I. INTRODUCTION
ZigBee is a low-power, low data rate wireless protocol with

a throughput of up to 250 kbps [2, 3]. It uses a small,
lightweight stack (120 KB). However, where simplicity and
low cost are goals, security frequently suffers. The Packet in
Packet (PIP) attack is an in-band signaling mechanism that can
be abused to inject raw digital frames, given control of data in
the interior of a frame [1]. The mechanism depends on
injecting a raw frame into the Layer 1 from upper-layer
protocols through abusing in-band signaling methods. In-band
signaling [4] allows signaling data to be transferred in the same
packet as user data by piggybacking the signaling data. The
piggybacking technique allows any attacker to hide malicious
packets inside a normal packet payload that is permitted onto
the network. When the Packet-in-Packets (PIPs) traverse
through the wireless network, a bit error in the outer frame
causes the inner frame to be interpreted instead of the outer
frame. This enables the attacker to evade the firewalls and
intrusion detection/prevention systems, user-land networking
restrictions and similar defenses. Using the interior fields of
higher networking layers, the packet will be constructed. Thus,
the attacker only needs authority to send a clear text data over
the air even if it is wrapped within several network layers. The
motivation of our work is to study the PIP attack technique in
ZigBee networks and propose and evaluate a solution based on
byte stuffing to counter the attack with little overhead. Using
an approach based on byte stuffing, we are able to thwart the
attack, with little overhead in terms of network throughput or
packet latency.

The rest of this paper is organized as the following: Section
II demonstrates the PIP attack on TinyOS motes. Section III
presents our chosen defence, based on byte stuffing, discusses
our implementation and presents experimental results. Section
IV discusses our conclusions.

II. DEMONSTRATING THE PIP ATTACK
We used TelosB devices in our experiments. TelosB is an
open source, low-power wireless sensor module designed by
MEMSIC. We exploit the attack as a characteristic of the PHY
layer. Using ZigBee makes it easier to demonstrate the attack
as it does not implement certain features implemented in other
wireless technologies like IEEE 802.11. The environment was
setup in an Ubuntu 12.04, 64 bit box. We cross-compiled the
GoodFET [5] firmware. We also installed the KillerBee [6]
framework on our machine to compile GoodGET. Or scenario
had Trudy send malicious packets to Bob routed via Alice.
Once our TelosB nodes with the appropriate firmware were
flashed and connected to the machine, we configured one to
act as the sniffer node and the others to act as Alice and
Trudy. In our scenario, Trudy would send her packets to Bob
via Alice. The sniffer node was acting as Bob and picked up
all packets directed to it. To check whether the attack was
working, we confirmed that a node (even a sniffer) could
mistake a data inside the payload to be a valid frame.

#goodfet.ccspi sniff 1 head
Listening as 00deadbeef on 2405
#DEBUG Clearing Overflow
#2f 01 08 82 de ff ff ff ff de ad be ef ba be c0 00 00 00 00 a7 0f 01 08
82 ff ff ff ff de ad be ef ba be c0 ff ff ff
#00 00 00 00 a7 0f 01 08 82 ff ff ff ff de ad be ef ba be c0 ff 1e
#2f 01 08 82 de ff ff ff ff de ad be ef ba be c0 00 00 00 00 a7 0f 01 08
82 ff ff ff ff de ad be ef ba be c0 ff ff ff
#2f 01 08 82 de ff ff ff ff de ad be ef ba be c0 00 00 00 00 a7 0f 01 08
82 ff ff ff ff de ad be ef ba be c0 ff ff ff

Figure 1. The result from the GOODFET sniffer

We realized that the number of packets with the outer frame

missing increased considerably by reducing the transmission
power, the sending frequency, and the distance from the
receiver. We set the frequency to 2405 MHz, the distance was
about 8m.

Figure 1 demonstrates the results. To sniff raw IEEE
802.15.4 packets on Channel 1, we used the sniff option in the
goodfet.ccspi. We programmed Trudy to send a packet to Alice
every 20ms, which she would forward to Bob. The output of
the sniffer was the packet being sent from Alice to Bob. The
sniffer did not suspect anything as the packet seemed to arrive
from a legitimate source. The highlighted line in Figure 1
indicates where the packet injection was successful.

978-1-4673-4404-3/12/$31.00 ©2012 IEEE

In ZigBee, the symbol size is 1 nibble (4 bit), so we saw
the damage of entire nibbles rather than individual bits. As
long as the attack is aligned to a nibble boundary, the inner
packet had a chance of being (mis-)interpreted. However, we
noticed that when the malicious packet was inserted at a
position not divisible by 4, the attack failed.

III. DEFENCE �– BYTE STUFFING
In this section, we present our solution which we chose

after investigating different alternatives. The proposed
solution is based on bit stuffing. Bit stuffing is an error
detection mechanism to stop control information from
appearing in the payload of a MAC frame. As explained in [7],
the beginning and end of frames are marked in HDLC by a
unique 8-bit pattern (01111110) called a flag, without any
explicit frame length field. To avoid the simulation of a flag
within a frame, HDLC provides an escape mechanism called
bit stuffing: the transmitter inserts a 0 (insertion 0-bit) after
any 5 contiguous 1-bits in the frame, and the receiver deletes
any 0-bit following 5 contiguous 1-bit (if there are more than 5
contiguous 1-bit this will be a flag, an abort or an idle
sequence).

To implement that defense, we operate at the byte level
instead of the bit level, as the smallest symbol used by ZigBee
devices is at least one nibble long. Bit or byte stuffing does not
suffer from the problems of key distribution as some of the
other possible solutions we explored, using cryptographic
defenses. Even if the attacker knows that byte stuffing is being
performed at every node, there is no way to get around this
defense, unless the attacker starts sending the packets directly
to the victim, instead of routing it through an intermediate
node. To compare between the performance of the non-byte
stuffed implementation and the byte-stuffed solution, we
designed two sets of experiments for measuring the
throughput and the latency of the ZigBee nodes under similar
scenarios. We used six TelosB motes, five of which were used
for the experiment and the sixth one was dedicated to sniffing
the packets in the air to measure the performance. To sniff
packets graphically, we used a software called Z-Monitor [8].

 We determine the throughput as the function of the
number of contending nodes and the frequency of sending
packets. For our experiment, we assume that four nodes are
sending packets for 60 seconds to the fifth node, which after a
certain interval sends a packet with the count of the number of
packets it received within the 60 second window. Latency is
measured by sending a packet that is returned to the sender
and the round-trip time is considered the latency. We measure
the ZigBee MAC latency by having a node inject packets
every 3 seconds into a line network of multiple hops and wait
for the time it takes for the packet to travel the network and
return back to the originating node. We vary the number of
hops by changing the number of nodes from 2 to 3 and 4. We
have one node acting as the base station, which injects packets
into the system. The last node reverses the direction of the
packet, once it reaches it. The middle nodes forward the
packet in a particular upstream or downstream direction,
depending on the direction from which they received it. In

both experiments, we keep a fixed packet size of 99 bytes for
the payload and 14 bytes for the header. For the byte stuffed
scenario, the on-air packet size may vary and depends on the
number of byte stuffing operations performed, in addition to
the original 99 bytes of payload.

We implemented byte stuffing as a middleware layer
embedded in every node. In TinyOS, each node accesses the
radio through a well-defined interface. We added an additional
implementation of that interface which allowed the required
functionalities of byte stuffing and de-stuffing operations to be
performed. Hence the sender and receiver interface of a node
were �‘wired�’ to interact with our interface before
communicating with the radio. From the application�’s
perspective, nothing needs be changed other than the wiring of
the application component to the radio. This meant that the
solution was easy to deploy without requiring any changes to
the existing code.

The middleware layer is deployed on all nodes in the byte
stuffed scenario. This layer gets activated before the packet is
sent through the radio. A reverse operation is performed every
time a packet is received. The nodes scan through the payload
to detect the occurrence of four continuous �‘00�’ symbols.
Irrespective of whether the fifth symbol is a Sync �‘A7�’
symbol, we byte stuff the payload with a �‘FF�’. On the other
end, if the node encounters a set of four �‘00�’ symbols,
followed by a �‘FF�’ symbol; it removes the �‘FF�’ symbol and
continues reading the payload. Note that this also deals with
byte patterns of for �‘00�’ symbols followed by an �‘FF�’ in the
original payload: the transmitted packet will have a sequence
of four �‘00�’s followed by two �‘FF�’s, one of which will be
removed by the receiver. When the outer packet actually
breaks, the injected inner packet will be misinterpreted as
background noise as the recipient�’s radio would encounter an
�‘FF�’ symbol instead of the Sync symbol. We force the node to
scan through the entire packet before forwarding it. It might be
advisable to drop packets where the node is required to
perform more than one byte stuffing operation. This may lead
to the occasional packet getting lost, but it may lead to a
significant improvement in the performance of our solution.
Also, there exists a low probability of the same data packet
containing two sets of four consecutive �‘00�’ symbols.

Figure 2. Throughput

In Figure 2, we compare the throughput of 4 ZigBee devices
with and without byte stuffing. We have measured the

throughput of these devices at 5 different packet sending rates.
This starts from 20ms and increments in a 20ms step size until
100ms. This means that the nodes start sending packets after
the timer has elapsed for a particular frequency. The nodes are
programmed to send packets to a receiver for 60 seconds, after
which the receiver sends a packet to the sniffer with the count
of the number of packets received during the 60 second
period. In the byte stuffing scenario, each node has to perform
the corresponding operations: the sender nodes ensures that
the packets they send to the receiver have been processed by
our byte stuffing routine. On the receivers end, the node must
ensure that, before increasing the count of the packet received,
it performed the de-stuffing operation and recovers the
original payload. However, these operations show very little
impact on the throughput. At lower intervals of 20 milli-
seconds, we expect the nodes to generate higher overall
throughput. Here, we observe a difference of 0.6% between
the two scenarios. The byte stuffing solution performs almost
as well as the non-byte stuffed ones at higher intervals (i.e.,
less traffic/offered load). Also, we observed that going below
the 20 milliseconds timer value reduced the measured
throughput. We expect that this happened as random access
MAC protocols such as the one used in ZigBee have a
saturation threshold. If the offered load exceeds this threshold,
the channel capacity drops.

In Figure 3, we compare the latencies of the two scenarios.
We changed the number of hops a packet has to travel. We
have scenarios involving 2 nodes, 3 nodes, 4 nodes and finally
5 nodes, resulting in hop counts of 2 to 8. Each time the base
node generates a packet; it sends it to its neighbor and awaits a
reply. This packet travels through the line topology hop by
hop. When the packet reaches the last node, the packet
direction is reversed and is sent back to the base station. In the
byte stuffing scenario, each node performs byte stuffing and
de-stuffing and the base/initiator node sends a packet with a
malicious packet inside its payload. The latency should
increase linearly as a function of the hop count as the time to
process the packet at each node should take nearly the same
amount of time.

Figure 3. Latency

To calculate the latencies, we use 50 round trip times

between the nodes and then calculate a 95% confidence

interval. We observe from the graph that as the number of
hops increases, the time spent in processing the packet
increases as well, as expected. The increase is larger for byte
stuffing. For 8 hops, we get a latency difference of around 38
milliseconds for the averages of the byte stuffing and non-byte
stuffing scenarios. The confidence interval helps us evaluate
the range overlap between the two scenarios. They show that
starting with a 3 hop line topology the difference in
performance becomes statistically significant at the 95%
confidence level.

IV. CONCLUSIONS
The PIP attack demonstrates a way of affecting the network

stack�’s perception of the lower layer medium and messages by
merely manipulating the payloads of a higher layer. We have
provided tested examples of using this technique, between
networking layers of single radio architecture to inject raw
frames between architectures that differ at the physical layer
and to evade packet filtering defenses. Our results have
demonstrated that an attacker can exploit this property
wherever she is able to predict the on-air pattern produced by
encapsulated data. This can be mitigated within a networking
stack in a number of ways. We implemented a prevention
based on byte stuffing, demonstrating that the defense is
designed to thwart the PIP attack, and quantified the induced
overheads. We observed that our solution has virtually no
impact on the throughput. The latency of our solution does get
affected significantly, as we use a packet size of 113 bytes and
add extra bytes whenever we encounter the preamble in the
payload. However, the latency increase is relatively small,
accumulating to around 38 milliseconds for 8 hops or slightly
less than 5 milliseconds per hop. This would also explain why
we saw little or no change in the throughputs reported in
Figure 2, as the additional latency is lower than the shortest
packet interval.

REFERENCES
[1] T. Goodspeed, S. Bratus, R. Melgares, R. Shapiro and R. Speers,

"Packets in Packets: Orson Welles' in-band signaling attacks for modern
radios, "In Proceedings of the 5th USENIX conference on Offensive
Technologies, 7-7, 2011

[2] D, Gascón, "Security in 802.15.4 and ZigBee networks," http://sensor-
networks.org/index.php?page=0823123150, 2010

[3] Software Technologies Group, "How does ZigBee compare with other
wireless standards?," http://www.stg.com/wireless/ZigBee_comp.html

[4] D. Preston, J. Preston and R. Leyendecke, "In-band signaling for data
communications over digital wireless telecommunications network," US
Patent, 2004

[5] T. Goodspeed, �“GoodFET on the TelosB,�”
http://travisgoodspeed.blogspot.ca/2011/03/goodfet-on-telosb-tmote-
sky.html

[6] J. Wright, "KillerBee: Practical ZigBee Exploitation Framework,"
http://www.willhackforsushi.com/presentations/toorcon11-wright.pdf,
October 2009

[7] D. Fiorini, M. Chiani, V. Tralli and C. Salati, �“Can we trust in HDLC?�”
SIGCOMM Computer Communication Rev. 24, 5, pp. 61-80., 1994

[8] A. Koubaa, S. Chaudhry, O. Gaddour, R. Chaari,N. Al-Elaiwi, H. Al-
Soli and H. Boujelben, �“Z-Monitor: Monitoring and Analyzing IEEE
802.15.4-based

