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Abstract�—ZigBee is a standard for low-power, low-rate wireless 
communication. It is modeled on the physical layer and medium 
access control defined in IEEE 802.15.4. In this paper, we study 
an attack on modern radios called the �“Packet in Packet�” (PIP) 
attack. We replicate the attack in ZigBee devices and discuss 
possible defenses against the attack. We implement a solution to 
thwart the PIP attack in TinyOS and show through extensive 
experiments that the solution defends against the attack, while 
imposing little additional overhead. 
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I.  INTRODUCTION 
ZigBee is a low-power, low data rate wireless protocol with 

a throughput of up to 250 kbps [2, 3]. It uses a small, 
lightweight stack (120 KB). However, where simplicity and 
low cost are goals, security frequently suffers. The Packet in 
Packet (PIP) attack is an in-band signaling mechanism that can 
be abused to inject raw digital frames, given control of data in 
the interior of a frame [1]. The mechanism depends on 
injecting a raw frame into the Layer 1 from upper-layer 
protocols through abusing in-band signaling methods. In-band 
signaling [4] allows signaling data to be transferred in the same 
packet as user data by piggybacking the signaling data. The 
piggybacking technique allows any attacker to hide malicious 
packets inside a normal packet payload that is permitted onto 
the network. When the Packet-in-Packets (PIPs) traverse 
through the wireless network, a bit error in the outer frame 
causes the inner frame to be interpreted instead of the outer 
frame. This enables the attacker to evade the firewalls and 
intrusion detection/prevention systems, user-land networking 
restrictions and similar defenses. Using the interior fields of 
higher networking layers, the packet will be constructed. Thus, 
the attacker only needs authority to send a clear text data over 
the air even if it is wrapped within several network layers. The 
motivation of our work is to study the PIP attack technique in 
ZigBee networks and propose and evaluate a solution based on 
byte stuffing to counter the attack with little overhead. Using 
an approach based on byte stuffing, we are able to thwart the 
attack, with little overhead in terms of network throughput or 
packet latency. 

The rest of this paper is organized as the following: Section 
II demonstrates the PIP attack on TinyOS motes. Section III 
presents our chosen defence, based on byte stuffing, discusses 
our implementation and presents experimental results. Section 
IV discusses our conclusions. 

II. DEMONSTRATING THE PIP ATTACK 
We used TelosB devices in our experiments. TelosB is an 
open source, low-power wireless sensor module designed by 
MEMSIC. We exploit the attack as a characteristic of the PHY 
layer. Using ZigBee makes it easier to demonstrate the attack 
as it does not implement certain features implemented in other 
wireless technologies like IEEE 802.11. The environment was 
setup in an Ubuntu 12.04, 64 bit box. We cross-compiled the 
GoodFET [5] firmware. We also installed the KillerBee [6] 
framework on our machine to compile GoodGET. Or scenario 
had Trudy send malicious packets to Bob routed via Alice. 
Once our TelosB nodes with the appropriate firmware were 
flashed and connected to the machine, we configured one to 
act as the sniffer node and the others to act as Alice and 
Trudy. In our scenario, Trudy would send her packets to Bob 
via Alice. The sniffer node was acting as Bob and picked up 
all packets directed to it. To check whether the attack was 
working, we confirmed that a node (even a sniffer) could 
mistake a data inside the payload to be a valid frame. 

 
#goodfet.ccspi sniff 1 head 
Listening as 00deadbeef on 2405 
#DEBUG Clearing Overflow 
#2f 01 08 82 de ff ff ff ff de ad be ef ba be c0 00 00 00 00 a7 0f 01 08 
82 ff ff ff ff de ad be ef ba be c0 ff ff ff 
#00 00 00 00 a7 0f 01 08 82 ff ff ff ff de ad be ef ba be c0 ff 1e 
#2f 01 08 82 de ff ff ff ff de ad be ef ba be c0 00 00 00 00 a7 0f 01 08 
82 ff ff ff ff de ad be ef ba be c0 ff ff ff 
#2f 01 08 82 de ff ff ff ff de ad be ef ba be c0 00 00 00 00 a7 0f 01 08 
82 ff ff ff ff de ad be ef ba be c0 ff ff ff 

Figure 1.  The result from the GOODFET sniffer 

 
We realized that the number of packets with the outer frame 

missing increased considerably by reducing the transmission 
power, the sending frequency, and the distance from the 
receiver. We set the frequency to 2405 MHz, the distance was 
about 8m. 

Figure 1 demonstrates the results. To sniff raw IEEE 
802.15.4 packets on Channel 1, we used the sniff option in the 
goodfet.ccspi. We programmed Trudy to send a packet to Alice 
every 20ms, which she would forward to Bob. The output of 
the sniffer was the packet being sent from Alice to Bob. The 
sniffer did not suspect anything as the packet seemed to arrive 
from a legitimate source. The highlighted line in Figure 1 
indicates where the packet injection was successful. 
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In ZigBee, the symbol size is 1 nibble (4 bit), so we saw 
the damage of entire nibbles rather than individual bits. As 
long as the attack is aligned to a nibble boundary, the inner 
packet had a chance of being (mis-)interpreted. However, we 
noticed that when the malicious packet was inserted at a 
position not divisible by 4, the attack failed. 

III. DEFENCE �– BYTE STUFFING 
In this section, we present our solution which we chose 

after investigating different alternatives. The proposed 
solution is based on bit stuffing. Bit stuffing is an error 
detection mechanism to stop control information from 
appearing in the payload of a MAC frame. As explained in [7], 
the beginning and end of frames are marked in HDLC by a 
unique 8-bit pattern (01111110) called a flag, without any 
explicit frame length field. To avoid the simulation of a flag 
within a frame, HDLC provides an escape mechanism called 
bit stuffing: the transmitter inserts a 0 (insertion 0-bit) after 
any 5 contiguous 1-bits in the frame, and the receiver deletes 
any 0-bit following 5 contiguous 1-bit (if there are more than 5 
contiguous 1-bit this will be a flag, an abort or an idle 
sequence). 

To implement that defense, we operate at the byte level 
instead of the bit level, as the smallest symbol used by ZigBee 
devices is at least one nibble long. Bit or byte stuffing does not 
suffer from the problems of key distribution as some of the 
other possible solutions we explored, using cryptographic 
defenses. Even if the attacker knows that byte stuffing is being 
performed at every node, there is no way to get around this 
defense, unless the attacker starts sending the packets directly 
to the victim, instead of routing it through an intermediate 
node. To compare between the performance of the non-byte 
stuffed implementation and the byte-stuffed solution, we 
designed two sets of experiments for measuring the 
throughput and the latency of the ZigBee nodes under similar 
scenarios. We used six TelosB motes, five of which were used 
for the experiment and the sixth one was dedicated to sniffing 
the packets in the air to measure the performance. To sniff 
packets graphically, we used a software called Z-Monitor [8]. 

 We determine the throughput as the function of the 
number of contending nodes and the frequency of sending 
packets. For our experiment, we assume that four nodes are 
sending packets for 60 seconds to the fifth node, which after a 
certain interval sends a packet with the count of the number of 
packets it received within the 60 second window. Latency is 
measured by sending a packet that is returned to the sender 
and the round-trip time is considered the latency. We measure 
the ZigBee MAC latency by having a node inject packets 
every 3 seconds into a line network of multiple hops and wait 
for the time it takes for the packet to travel the network and 
return back to the originating node. We vary the number of 
hops by changing the number of nodes from 2 to 3 and 4. We 
have one node acting as the base station, which injects packets 
into the system. The last node reverses the direction of the 
packet, once it reaches it. The middle nodes forward the 
packet in a particular upstream or downstream direction, 
depending on the direction from which they received it. In 

both experiments, we keep a fixed packet size of 99 bytes for 
the payload and 14 bytes for the header. For the byte stuffed 
scenario, the on-air packet size may vary and depends on the 
number of byte stuffing operations performed, in addition to 
the original 99 bytes of payload. 

We implemented byte stuffing as a middleware layer 
embedded in every node. In TinyOS, each node accesses the 
radio through a well-defined interface. We added an additional 
implementation of that interface which allowed the required 
functionalities of byte stuffing and de-stuffing operations to be 
performed. Hence the sender and receiver interface of a node 
were �‘wired�’ to interact with our interface before 
communicating with the radio. From the application�’s 
perspective, nothing needs be changed other than the wiring of 
the application component to the radio.  This meant that the 
solution was easy to deploy without requiring any changes to 
the existing code.  

The middleware layer is deployed on all nodes in the byte 
stuffed scenario. This layer gets activated before the packet is 
sent through the radio. A reverse operation is performed every 
time a packet is received. The nodes scan through the payload 
to detect the occurrence of four continuous �‘00�’ symbols. 
Irrespective of whether the fifth symbol is a Sync �‘A7�’ 
symbol, we byte stuff the payload with a �‘FF�’. On the other 
end, if the node encounters a set of four �‘00�’ symbols, 
followed by a �‘FF�’ symbol; it removes the �‘FF�’ symbol and 
continues reading the payload. Note that this also deals with 
byte patterns of for �‘00�’ symbols followed by an �‘FF�’ in the 
original payload: the transmitted packet will have a sequence 
of four �‘00�’s followed by two �‘FF�’s, one of which will be 
removed by the receiver. When the outer packet actually 
breaks, the injected inner packet will be misinterpreted as 
background noise as the recipient�’s radio would encounter an 
�‘FF�’ symbol instead of the Sync symbol. We force the node to 
scan through the entire packet before forwarding it. It might be 
advisable to drop packets where the node is required to 
perform more than one byte stuffing operation. This may lead 
to the occasional packet getting lost, but it may lead to a 
significant improvement in the performance of our solution. 
Also, there exists a low probability of the same data packet 
containing two sets of four consecutive �‘00�’ symbols. 

 

 
Figure 2.  Throughput 

In Figure 2, we compare the throughput of 4 ZigBee devices 
with and without byte stuffing. We have measured the 



throughput of these devices at 5 different packet sending rates. 
This starts from 20ms and increments in a 20ms step size until 
100ms. This means that the nodes start sending packets after 
the timer has elapsed for a particular frequency. The nodes are 
programmed to send packets to a receiver for 60 seconds, after 
which the receiver sends a packet to the sniffer with the count 
of the number of packets received during the 60 second 
period. In the byte stuffing scenario, each node has to perform 
the corresponding operations: the sender nodes ensures that 
the packets they send to the receiver have been processed by 
our byte stuffing routine. On the receivers end, the node must 
ensure that, before increasing the count of the packet received, 
it performed the de-stuffing operation and recovers the 
original payload. However, these operations show very little 
impact on the throughput. At lower intervals of 20 milli-
seconds, we expect the nodes to generate higher overall 
throughput. Here, we observe a difference of 0.6% between 
the two scenarios. The byte stuffing solution performs almost 
as well as the non-byte stuffed ones at higher intervals (i.e., 
less traffic/offered load). Also, we observed that going below 
the 20 milliseconds timer value reduced the measured 
throughput. We expect that this happened as random access 
MAC protocols such as the one used in ZigBee have a 
saturation threshold. If the offered load exceeds this threshold, 
the channel capacity drops. 

In Figure 3, we compare the latencies of the two scenarios. 
We changed the number of hops a packet has to travel. We 
have scenarios involving 2 nodes, 3 nodes, 4 nodes and finally 
5 nodes, resulting in hop counts of 2 to 8. Each time the base 
node generates a packet; it sends it to its neighbor and awaits a 
reply. This packet travels through the line topology hop by 
hop. When the packet reaches the last node, the packet 
direction is reversed and is sent back to the base station. In the 
byte stuffing scenario, each node performs byte stuffing and 
de-stuffing and the base/initiator node sends a packet with a 
malicious packet inside its payload. The latency should 
increase linearly as a function of the hop count as the time to 
process the packet at each node should take nearly the same 
amount of time. 
 

 
Figure 3.  Latency 

 
To calculate the latencies, we use 50 round trip times 

between the nodes and then calculate a 95% confidence 

interval. We observe from the graph that as the number of 
hops increases, the time spent in processing the packet 
increases as well, as expected. The increase is larger for byte 
stuffing. For 8 hops, we get a latency difference of around 38 
milliseconds for the averages of the byte stuffing and non-byte 
stuffing scenarios. The confidence interval helps us evaluate 
the range overlap between the two scenarios. They show that 
starting with a 3 hop line topology the difference in 
performance becomes statistically significant at the 95% 
confidence level. 

IV. CONCLUSIONS 
The PIP attack demonstrates a way of affecting the network 

stack�’s perception of the lower layer medium and messages by 
merely manipulating the payloads of a higher layer. We have 
provided tested examples of using this technique, between 
networking layers of single radio architecture to inject raw 
frames between architectures that differ at the physical layer 
and to evade packet filtering defenses. Our results have 
demonstrated that an attacker can exploit this property 
wherever she is able to predict the on-air pattern produced by 
encapsulated data. This can be mitigated within a networking 
stack in a number of ways. We implemented a prevention 
based on byte stuffing, demonstrating that the defense is 
designed to thwart the PIP attack, and quantified the induced 
overheads. We observed that our solution has virtually no 
impact on the throughput. The latency of our solution does get 
affected significantly, as we use a packet size of 113 bytes and 
add extra bytes whenever we encounter the preamble in the 
payload. However, the latency increase is relatively small, 
accumulating to around 38 milliseconds for 8 hops or slightly 
less than 5 milliseconds per hop. This would also explain why 
we saw little or no change in the throughputs reported in 
Figure 2, as the additional latency is lower than the shortest 
packet interval.  
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