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Abstract—The calculation of exact outage probabilities in delay-
constrained multiuser-systems has been an unsolved problem.
This paper introduces an analytical method to calculate the
probability of an outage for max-based schedulers, which take
a scheduling decision by choosing the user with an associated
maximum metric. While this analysis is, therefore, suited for
purely opportunistic scheduling, it is also suited for proportional
fair scheduling, the arguably most important scheme in today’s
wireless systems. The approach presented in this paper does not
restrict key system properties in any way: it can be applied to
an arbitrary number of users with arbitrary channel statistics
and arbitrary delay constraints. In order to prove the practi-
cability, the outage probability is calculated for opportunistic
and proportional fair scheduling scenarios, and it is shown to
perfectly match the results of extensive numerical simulations.
Furthermore, the most important practical implementation issues
are discussed, and a new and highly useful interpretation of the
maximum order statistic of i.n.i.d. (independent non-identically
distributed) random variables is introduced.

Index Terms—Proportional Fair Scheduling, Outage Probability,
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I. INTRODUCTION

The ability of modern wireless communication systems to

deliver some service with a certain reliability is often included

in the notion of a “quality-of-service”. This is, however, a very

flexibly used term that may mean entirely different things in

different situations. The term “outage”, on the other hand,

though very often seen as an aspect of QoS, describes the

most crucial ability of a wireless multiuser system – the ability

to deliver a certain amount of information within a given

and usually limited period of time. This paper introduces

an algorithm to precisely calculate the probability of such

an outage for max-based scheduling schemes. This family of

schedulers can be characterized by assigning a figure of merit

(FOM) to each user, selecting the user with the maximum

FOM for scheduling – two prominent scheduling schemes

based on this approach, and therefore within the scope of the

present analysis, are opportunistic [1] and proportional fair

scheduling [2].

While proportional fair scheduling has, due to its popularity

and use in modern wireless networks, drawn a lot of attention,

there seems to be a lack of analysis concerning its “short-

term” behavior with respect to hard1 delay constraints. While

1The definition of a hard delay constraint is detailed below.

proportional fairness has been investigated for fairness in

delay-constrained environments [3], [4], most publications

address cell throughput analyses [4], [5] rather than throughput

for individual users. Also, asymptotic analyses [6], [7] have

usually been performed rather than analyses that take care

of practically important short-term availability of throughput.

Furthermore, perhaps for mathematical tractability, many anal-

yses specialize on Rayleigh fading assumptions [8], [7].

The algorithm presented in this paper calculates the outage

probability for a specific set of parameters, which include hard

delay constraints, arbitrary channel statistics for an arbitrary

number of users, a constant transmit-power of every user, and

a receiver noise-level for every user. The present analysis can

even be applied to users with an arbitrary number of antennas

(as long as selection diversity is applied).

The paper is organized as follows. Section II introduces the

channel model. Section III contains an analytic solution to

the problem at hand, which is specialized in section IV

to opportunistic and proportional fair scheduling. Section V

concludes the paper.

II. CHANNEL MODEL

This paper elaborates on the downlink case with perfect Chan-

nel State Information (CSI) at the transmitting base-station

serving U users; CSI is required for the scheduler to take

optimum scheduling decisions. The following analysis applies

a block-fading AWGN channel model for which the “Gaussian

Shannon-capacity” is assumed to be achieved within each

block. However, the results of the analysis can be extended to

non-ideal systems by assuming a power margin. An outage is

defined as the event that the sum rate Rsum (a random variable)

transmitted within a window of N consecutive blocks is below

a required rate rreq

sum (a given number, typically determined by

the service constraints of an application). This definition also

clarifies the notion of a “hard” delay constraint: there is no

possibility of carrying over “excess-information” transmitted

within one window of N consecutive blocks to the next

window during which a required rate has to be achieved.

This is a realistic assumption, e.g., in wireless multimedia

transmission where a source signal is divided into blocks of

samples (e.g. speech/audio samples or pixels) and each block

is separately source-encoded and transmitted. At the receiving

end, all source-bits that belong to a block of samples must

be received “in time”; otherwise the source signal can not be



reconstructed2 rendering the block of received data useless.

The analysis does not distinguish the cases where these N -

block windows overlap or not: the probability of an outage

is strictly defined as the probability that Rsum < rreq

sum in any

window of N consecutive blocks.

For the statistical analysis of the outage probability to hold,

uncorrelated channel-coefficients (both between users and

individually for each user) are assumed. Without loss of

generality, the probability of an outage is calculated for one

distinct user (u1, representing user 1), given the statistical

channel knowledge of all users in the system.

III. ANALYSIS OF max-BASED SCHEDULING

As pointed out above, the fundamental approach presented in

this paper does not distinguish different scheduling schemes,

as long as the core-decision is memoryless and based solely

on a max-operation to identify the user with the currently best

FOM. This FOM may be the channel-power coefficients |h|2

in case of opportunistic scheduling (which is fully equivalent

to taking the rate R achievable in the current block into

account), or it may be the normalized current rate R̄ = R/T
in case of proportional-fair scheduling, with T denoting the

long-term average of rates achieved in the past. To preserve

most general validity, the following analysis will therefore

not deal with rates or channel-coefficients per se, but will

consider FOMs exclusively, so that the same analysis can

directly be applied to both opportunistic and proportional-

fair scheduling. Specific results are subsequently presented in

Section IV. Please note that the analysis presented in this paper

is, in fact, not limited to strictly max-based scheduling. With

the same approach, also scheduling schemes performing min-

based scheduling (such as minimization of interference) can

be assessed, since

argmin{x1, x2, ...xU} = argmax{−x1,−x2, ...−xU} . (1)

The presented considerations are therefore applicable to all

scheduling schemes based on the search for extremums, how-

ever, all examples given in this paper refer to max-based

schemes.

A. Outage Probability of max-Based Scheduling

Based on the above presented naming conventions, the prob-

ability of an outage for user 1 is the following sum of

probabilities of mutually exclusive events:

P1,out(x
req

1,sum)=

N∑

k=0

P{X1,sum<xreq

1,sum|S1=k}P{S1=k}.

(2)

Here,X1,sum denotes the sum of the FOMs in individual blocks

of user u1 that is achieved within a window of N consecutive

2Although embedded source coding schemes (or multiple descriptions) may
be used that produce a “basic” quality from a subset of the transmitted source
bits, those techniques are not widely used, because embedded multimedia
coding does often not produce a satisfactory quality trade-off compared with
the quality-level of non-embedded coding at various rate-levels transmitted in
parallel (multi-cast).

blocks, i.e. N expresses a hard delay constraint. The quantity

xreq

1,sum is the sum of FOMs that is requested3 to be achieved

within a window of N blocks; if it is not achieved an outage

event occurred, and the goal in what follows is to analytically

compute this outage probability. S1 denotes the number of

times user 1 is scheduled out of N possible times within a

window of length N blocks: S1 is, therefore, an integer-valued

random variable ranging from 0 to N . Throughout the paper,

the algorithms are developed to compute the probability of

an outage for user 1. If the probability of an outage shall

be calculated for a different user, this can be achieved by

reordering of the user indices; hence, no generality is lost.

The first summand of (2) (for k = 0) can be simplified to

P{S1 = 0}, since an outage will occur when the user is not

scheduled at all, i.e.,

P{X1,sum < xreq

1,sum|S1 = 0} = 1 . (3)

Analysis of (2) reveals two different structures: the expressions

P{X1,sum < xreq

1,sum | S1 = k} on the one hand, and the

probabilities, P{S1 = k}, for user 1 to be scheduled k times

on the other hand. Following this structure, the mathematical

derivation of the outage-calculation for max-based schedulers

is organized accordingly: In Section III-B, the expression

P{S1 = k} is analyzed, and in Section III-C the expressions

of the form P{X1,sum < xreq

1,sum | S1 = k} are explored.

B. Probability of User 1 being Scheduled k Times.

Given that user 1 can only be scheduled once or twice or

three times, etc (where “or” is exclusive) the event “user 1

is scheduled a times within N blocks” is distinct from the

event “user 1 is scheduled b times within N blocks” for a 6=
b. Therefore, P{S1 = k} can be calculated by drawing a

probability tree of depth N , with p1 being the probability that

user 1 is scheduled in a block, and 1−p1 meaning the opposite.

Therefore,

P{S1 = k} =

(
N

k

)

· pk1 · (1− p1)
(N−k) . (4)

The actual calculation of an outage probability requires p1
to be known, with p1 being the probability that user 1 is

scheduled in a particular block. From a max-based scheduling

perspective this is equivalent to the current FOM X1 of

user 1 being larger than the current FOMs X2, . . . , XU

of all other users u2, . . . , uU . These random variables (or

their realizations) could be rates in the case of opportunistic

scheduling or normalized rates in case of proportional-fair

scheduling or something entirely different. It is only important

for this analysis that these FOMs are compared, and the user

associated with the maximum FOM is chosen to be scheduled

in the current block (out of N blocks, over which the sum

of FOMs is calculated to determine the outage probability by

(2)). The “current” FOMs are going to be called Xu, with X1

the FOM of user 1 (the user of interest). Since all competing

users (i.e. the users associated with FOMs X2, . . . , XU ) are

3
x
req

1,sum is a number such as a bit rate requested by an application



compared to user 1 in a memoryless max-operation, the first

step is to simplify the problem by only considering the largest

FOM among all competing users, and this FOM will be

denoted by Y . This approach does not ignore any information

available, since the statistics of all users are implicitly taken

into account. With those assumptions, we state the following

theorem:

Theorem 1. The probability p1 that the FOM X1 of user 1

(u1) is larger than the FOMs X2, X3, ..., XU of all competing

users u2 . . . uU is given by

p1
.
= P{X1 > Y } = 1−

U∑

u=2

∞∫

−∞

(
d

dy
FXu

(y)

) U∏

k=1
k 6=u

FXk
(y)dy

(5)

=

∞∫

−∞

(
d

dy
FX1

(y)

) U∏

k=2

FXk
(y)dy (6)

where Y
.
= max{X2, X3, ..., XU} and the cumulated density

functions (cdfs) of the FOMs of the users are defined by

FXu
(y)

.
= P{Xu < y}.

Proof: (Theorem 1)

P{X1 > Y } =

∞∫

−∞

P{X1 > Y |Y = y}fY (y)dy (7)

=

∞∫

−∞

(1− FX1
(y)) fY (y)dy (8)

= 1−

∞∫

−∞

FX1
(y)fY (y)dy (9)

This leaves FY (y), the cdf of the largest competing FOM, to

be defined. As FY (y) is the probability that all other users at

the same time have a FOM smaller than y, statistical indepen-
dence of all FOMs leads to the simple “product probability”

FY (y) = P{Y ≤ y} =

U∏

u=2

P{Xu ≤ y} =

U∏

u=2

FXu
(y) ,

(10)

and the corresponding pdf fY (y) is, therefore,

fY (y) =
d

dy
FY (y) =

d

dy

U∏

u=2

FXu
(y) (11)

=

U∑

u=2






(
d

dy
FXu

(y)

) U∏

k=2
k 6=u

FXk
(y)




 . (12)

Hence, the probability of the FOM of user 1 being larger than

those of the competing users can be expressed as:

P{X1 > Y } = 1−

∞∫

−∞

FX1
(y)

U∑

u=2

(
d

dy
FXu

(y)

) U∏

k=2
k 6=u

FXk
(y)dy

(13)

= 1−

U∑

u=2

∞∫

−∞

FX1
(y)

(
d

dy
FXu

(y)

) U∏

k=2
k 6=u

FXk
(y)dy

(14)

= 1−

U∑

u=2

∞∫

−∞

(
d

dy
FXu

(y)

) U∏

k=1
k 6=u

FXk
(y)dy (15)

Now, the integral in (15) will be evaluated by integration by

parts (
∫ b

a
u′v = [uv]

∣
∣
b

a
−
∫ b

a
uv′):

pu
.
=

∞∫

−∞

(
d

dy
FXu

(y)

) U∏

k=1
k 6=u

FXk
(y)dy (16)

= FXu
(y))

U∏

k=1
k 6=u

FXk
(y)

∣
∣
∣
∣
∣

∞

−∞

(17)

−

∞∫

−∞

FXu
(y)

U∑

k=1
k 6=u

(
d

dy
FXk

(y)

) U∏

n=1
n6=k
n6=u

FXn
(y)dy

= 1−
U∑

k=1
k 6=u

∞∫

−∞

FXu
(y)

(
d

dy
FXk

(y)

) U∏

n=1
n6=k
n6=u

FXn
(y)dy

(18)

= 1−

U∑

k=1
k 6=u

∞∫

−∞

(
d

dy
FXk

(y)

) U∏

n=1
n6=k

FXn
(y)dy (19)

= 1−

U∑

k=1
k 6=u

pk = pu (20)

with (19) proving (5), and due to (20) we also have

U∑

k=1

pk = 1 . (21)

And, finally, (6) is obtained from (19) according to

P{X1 > Y } = 1−

U∑

u=2

pu = p1 . (22)

The normalization property in (21) leads to the simplification

in the calculation of P{X1 > Y } in (22).



C. Outage Probability, Conditioned on S1 = k.

The pdf of the “system-FOM” (as opposed to user-individual

FOMs) that can be achieved system-wide, i.e. across all users,

in the current transmit block (out of N blocks we consider),

can be found applying the maximum-order statistic theorems

for i.n.i.d (independent, non-identically distributed) random

variables. However, observing the FOMs that are assigned to

a specific user in case of being scheduled reveals that these

FOMs are not distributed according to the maximum-order

statistic. Instead, it will be shown that the weighted pdfs of

the FOMs assigned to the users will sum up to the maximum-

order statistic of the system-FOM. The weights can be found

by calculating the probabilities of the users being scheduled

in a certain block n. With

Z
.
= max{X1, X2, . . . , XU} , (23)

the cdf FZ(z) of the maximum of the system-FOMs (i.e. of the

current FOMs of all users) can, for i.n.i.d. FOMs, be calculated

as [9]:

FZ(z) = P{Z ≤ z} =

U∏

u=1

P{Xu ≤ z} =

U∏

u=1

FXu
(z) .

(24)

Calculating the pdf fZ(z) = d
dz
FZ(z) of (24) reveals the

following structure:

fZ(z) =

U∑

u=1






( d

dz
FXu

(z)
)

U∏

k=1
k 6=u

FXk
(z)




 (25)

A comparison of (16) and (25) reveals structural similarity

and suggests that the maximum order statistics of statisti-

cally independent (but not necessarily identically distributed)

random variables is a linear combination of the statistics

of the instances of the individual random variables which

contribute to the maximum order statistics, weighted with the

probability pu of each individual random variable to contribute

the maximum. The probability p1 was, however, computed

above in (5) and (6) with the general form for any user u
given in (16). Hence, (25) is equivalently written as

fZ(z) =
U∑

u=1

[

f̃Xu
(z) · pu

]

. (26)

with

f̃Xu
(z) =

( d
dz
FXu

(z))
∏U

k=1
k 6=u

FXk
(z)

pu
(27)

the pdf associated to the FOM of user u in case this user

is scheduled for transmission. The corresponding pdf of the

FOM of the scheduled user 1 can therefore be written as

f̃X1
(z) =

fX1
(z) · FX2

(z) · FX3
(z) . . . FXU

(z)

p1
(28)

and be used to compute the outage probability

P{X1,sum < xreq

1,sum|S1 = 1} =

x
req

1,sum∫

0

f̃X1
(x)dx (29)

for the case that user 1 is scheduled once (S1 = 1) within

N transmit blocks. For S1 = 2 (i.e., user 1 being scheduled

twice within N blocks) the result reads

P{X1,sum<xreq

1,sum|S1=2}=

x
req

1,sum∫

0

∞∫

0

f̃X1
(ρ) · f̃X1

(x− ρ)dρdx

(30)

as the pdf of a sum of two independent pdfs follows from a

convolution of the pdfs. Consequently, for S1 = k, we obtain

P{X1,sum < xreq

1,sum|S1=k}=

x
req

1,sum∫

0

(

f̃X1
∗ · · · ∗ f̃X1

)

︸ ︷︷ ︸

k times

(x)dx,

(31)

where “∗” denotes convolution.

IV. RESULTS FOR SPECIFIC SCHEDULERS AND CHANNELS

In the following, the pdfs of the FOMs of opportunistic and

proportional-fair scheduling are derived for the special case

of user-individual Rayleigh-fading channels. The reason to

pick Rayleigh-fading is that it allows for compact analytical

expressions for the statistics of the FOMs, i.e., fX1
(z) and

FXu
(z), that are used in (6) and (28): using the results from

there, the outage probabilities are calculated by (29)–(31) and

finally in (4) and (2). For the last two steps a numerical

approach (incl. convolutions) is required anyway (as analytical

solutions are intractable) so the whole scheme can as well

be run with measured pdfs fX1
(z) and cdfs FXu

(z) that are

used in the numerical implementations, e.g. of the integrations

in (29)–(31). This is to say that, although the analytical

results from Section III are demonstrated for simple Rayleigh

fading, they could equally be applied for any measured channel

statistics, so the method as such is not restricted to any specific

simple channel model.

A. Opportunistic Scheduling

If a channel-coefficient h is Rayleigh-distributed with scale-

parameter λ, the pdf can be expressed as:

fH(h) =
h

λ2
e−

h2

2λ2 , h > 0 . (32)

According to elementary probability calculus (e.g. [10,

p. 130]) the magnitude-square |H|2 has the exponential dis-

tribution

f|H|2(|h|
2) =

1

2λ2
e−

|h|2

2λ2 . (33)

If the scheduler applies a classic opportunistic scheme (i.e.

decides in favor of the user with the highest achievable rate),

it applies a max-operation on the rates for all users. Therefore,

the pdf of the rate r needs to be determined. With

r = g(|h|2) = log2(1 +
P

2σ2
|h|2) (34)

(Gaussian channel capacity for a fixed channel coefficient h)
and the derivative

g′(|h|2) =
1

log(2)
·

P
2σ2

|h|2 P
2σ2 + 1

, (35)



the standard pdf-transformation (e.g. [10])

fR(r) = f|h|2(|h|
2)/g′(|h|2)

∣
∣
∣
|h|2=g−1(r)

(36)

(note that g(|h|2) is monotonic) results in

fR(|h|
2) = log(2) ·

|h|2 P
2σ2 + 1
P
2σ2

·
1

2λ2
· e

−|h|2

2λ2 , (37)

and substituting |h|2 = 2σ2

P
(2r − 1) leads to the rate-pdf

fR(r) = log(2)β · 2r · e−β(2r−1) . (38)

with

β =
σ2

λ2P
. (39)

The cdf follows by direct integration of (38); it reads

FR(r) = 1− e−β(2r−1) . (40)

The pdf (38) and the cdf (40) are to be used in place of

fX1
(z) and FXu

(z) in (6) and (28) to compute p1 and f̃X1
(z)

respectively. The pdf and the cdf only depend on the parameter

β in (39), which contains the transmit power P , the parameter

λ of the fading process and noise variance σ2 at the receiver.

All those parameters can (and will in practice) be different for

every user.

Using a Matlab implementation, Figure 1 illustrates the outage

probability for a system with 5 users, a window-length of 10

and 20 blocks and transmit SNRs (= 10 log10
P
2σ2 ) of 0, 10

and 20dB. The fading statistics of all users are assumed to be

Rayleigh-distributed with scale-parameters λ = [2, 2, 3, 4, 5]
for the 5 users, respectively. The x-axis is the sum-rate across

all blocks in a window of size N (= 10, 20) that is achieved

by user 1. This sum rate adds the rates in “bits per channel-

use” according to (34) from the individual blocks (all of which

are assumed to be infinitely long by the common block fading

model) within a window of size N blocks: this approach has

been chosen to separate the curves in the plots (and, hence

improve readability). In practice one could normalise the sum-

rate axis by the window length N to obtain a normalized

average rate in bits per channel use. The probability of outage

was calculated for user 1 by the method described in Section

III for transmit SNRs of (0, 10, 20 dB from left to right in the

curves). The solid curves stem from a Monte-Carlo simulation

approach, and the individually marked points were calculated

according to the analytical approach stated above. As to be

expected, the figure shows that higher SNR and larger window-

size N always cause a lower outage probability. The figure

also demonstrates that the analytical approach (with numerical

computations of integrals and convolutions) is rather accurate

as the marked points computed are sitting almost exactly on

the curves found by extensive Monte-Carlo simulations.

B. Proportional Fair Scheduling

Opportunistic scheduling and proportional fair scheduling are

similar schemes in the sense that both select the user with

the highest FOM. For opportunistic scheduling, the FOM is

the achievable rate in the current block; for proportional-fair
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Fig. 1. Outage probability of user 1 for 5-user opportunistic scheduling
in a Rayleigh-fading environment with transmit-SNRs 0dB, 10dB, and 20dB
and window-lengths of 10 and 20 blocks. Numerical results based on 10

6

simulated windows of length N (solid lines) are compared with outage
probabilities computed analytically (individually marked points).

scheduling, the FOM is the rate that can be achieved in the

current block, divided by the “recently achieved” rate: a user

is scheduled, if their ratio is larger than for any other user.

We will model this scheme by using a long-term average for

the normalization of the current rate. Since there is currently

no universally-valid closed-form expression for the long-term

average achieved rate known for proportional-fair scheduling,

we use the iterative solution suggested in [6] and refined in

[11]:

E{T1} =

∫ ∞

0

r · fR1
(r)

U∏

u=2

FRu

(

r ·
E{Tu}

E{T1}

)

dr . (41)

This expression has been shown by [12] to converge to the

measured mean throughput of u1, if the instantaneous rate

follows a continuous distribution.

Therefore, u1’s figure of merit for PF-scheduling is

R̄1 =
R1

T1
. (42)

Then, the pdf of user 1’s FOM can be written as (compare

(38)):

fR̄1
(r̄1) = T1 · log(2)β1 · 2

T1r̄1 · e−β1(2
T1r̄1−1) (43)

Again, this pdf is to be used in (29), in place of fX1
(z). The

following Figure 2 illustrates the precision of the approach.

The simulation parameters chosen are the same as in the

opportunistic scheduling case. Please note that a proportional-

fair scheduler updates the average-achieved rates Tu of the

served users by applying an exponentially-weighted moving-

average (EWMA) filter. Since in this paper, the expected value

for the average-achieved rates Tu was used, the EWMA-

filter in the simulations was assigned a long memory, i.e., a

weighting-factor of α = 105.
The presented results for opportunistic and proportional-fair

scheduling demonstrate the accuracy of the approach intro-

duced in this paper. It should be noted that, although a
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Fig. 2. Outage probability of user 1 for 5-user proportional-fair scheduling
in a Rayleigh-fading environment with a transmit-SNR of 10dB and window-
lengths of 10, 20, 30, 40, and 50 blocks. Numerical results based on 10

7

simulated blocks and an EWMA weighting-factor of 10
5 (solid lines) are

compared to outage probabilities computed analytically (individually marked
points).

Rayleigh-fading channel was assumed for all users (albeit with

different parameters for each user), the presented approach

is by no means limited to a Rayleigh-fading environment.

This was only chosen for mathematical tractability and ease

of analysis. The presented principles can be applied to any

scheduler which assigns resources based on a max-operation.

In that, the approach is highly general, but at the same time, as

demonstrated, also practically useful. Especially in a world of

multimedia transmissions, the possibility of evaluating one of

the most highly regarded wireless schedulers, the proportional

fair, for outage probability without any principle restrictions on

system parameters is in our opinion highly valuable. Based on

the insights of this paper, the question if a numerical simula-

tion is long enough for the results to be sufficiently accurate is

no longer necessary. Due to the considerable processing time

of the algorithm, we do not propose to generate a “smooth”

outage-plot, but to use it as a benchmark for assessing the

numerical accuracy of simulations.

V. CONCLUSIONS

This paper introduces an novel analytical approach to calculate

the outage probability – the probability that a certain rate-

request can not be met – of max-based scheduling under delay

constraints.

The problem is solved in a most general fashion, neither

restricting the number of users to be served by the base-

station, their channel statistics nor their delay constraints. It

is shown that the presented approach is also applicable to

min-based schedulers; the demonstration, however, is carried

out only for the max-based opportunistic and proportional fair

schemes. To prove the correctness of the approach, results of

analytical calculations and extensive numerical (Monte-Carlo)

simulations are found to match accurately. Furthermore, in

the course of this work, a new and useful interpretation of

the mathematical structure of the maximum order statistic for

i.n.i.d. random variables (that is also valid for the special case

of i.i.d random variables) has been found and exploited to

obtain the results.
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