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Abstract—Self-organizing networks (SONs) are expected to

improve the quality of service (QoS) while reducing the operator’s

capital and operational expenditures. In order to achieve this

ambitious goal, SON concepts are required to manage multiple

key performance indicators (KPIs) by modifying several different

network control parameters. Developing concepts and algorithms

that cope with such complexity is not easy. In order to avoid the

complexity of joint optimization, the research so far focused on

concepts, which coordinate multiple algorithms [1], [2]. Usually,

each of these algorithms is dedicated to managing a single use

case or KPI. In contrast, we introduce and analyse a force field

based joint optimization concept which considers all KPIs and

network control parameters concurrently. Despite the holistic

approach, our concept offers an acceptable complexity. Using

an algorithm based on this concept, we can resolve a high load

scenario by jointly adjusting the tilts and cell individual offsets

(CIOs).

Index Terms—Self-Organizing Networks, Joint Optimization,

Coordinated Optimization, Force Field, Load Balancing.

I. INTRODUCTION

Network operators expect SONs to reliably reduce their op-
erational and capital expenses while improving the network’s
QoS. Aiming for this ambitious goal, SONs need to consider
an extensive variety of KPIs while adjusting various network
control parameters (short: parameters). As a result, a major
challenge of future SONs is their enormous complexity. Thus,
it is not surprising that current approaches try to simplify the
problem by dividing the task into multiple use cases [1], [2].
Employing a separate algorithm for each use case, comes at the
added cost of necessitating a coordination of these algorithms.
Moreover, obtaining optimal trade-offs is very challenging.
Each algorithm may optimize one or a small subset of all
KPIs while neglecting other KPIs. If a neglected KPI behaves
contrary to the KPIs considered for a particular parameter,
the QoS can be worsened by the usage of the algorithm.
In order to drive all KPIs into their desired value ranges,
various algorithms are employed successively what requires
an additional coordination algorithm. Let us consider a simple
example: We take an algorithm dedicated to optimizing the
coverage. Such an algorithm may increase the transmit power
of a site in order to cover the maximum area possible.
However, increasing the transmit power may also increase
interference with neighbouring sites. Hence, the algorithm
optimizes coverage while worsening the interference situation.
Subsequently, an algorithm which is designed to optimize

the interference needs to be employed until both coverage
and interference are within their desired value ranges. In
recent work, researchers explore joint optimization approaches
as they expect these approaches to outperform coordination
concepts while dealing with higher complexity [3]. In contrast
to coordination concepts, joint optimization concepts consider
all relevant KPIs simultaneously, i.e. one algorithm optimizes
all relevant KPIs. In this paper we

• Propose a force field based joint optimization concept for
SONs (section II-B). The concept uses ideas and laws
from classical physics in order to modify m parameters
concurrently while considering n KPIs. Despite using
such a holistic approach this concept remains at an easily
manageable complexity level. Moreover, this concept
contains the ability to seamlessly balance trade-offs as
desired by the operator.

• Investigate the convergence behaviour of the concept
proposed in II-C. Using Zangwill’s convergence theorem,
we can state that an algorithm based on the concept
proposed will converge to a point in the solution set if a
certain convergence condition is fulfilled.

• Analyse the solution set. We show that under the given
conditions, all possible solutions are Pareto optimal
(II-D). Furthermore, we discuss the results obtained in
II-E.

• Employ the proposed concept to balance a high load
scenario (section III) by simultaneously adjusting the cell
individual offsets (CIOs) and the antenna tilts. Apart from
adjusting the load, we will also consider the 5th percentile
of the signal-to-interference-and-noise-ratio (SINR) and
obtain fundamental trade-offs between the latter and an
optimal load balancing.

We conclude our work in section IV.

II. FORCE FIELD BASED APPROACH FOR SON

A. Initial Situation

Let us consider the downlink of a cellular network with L
cells. At each cell, the SON-algorithm modifies M parame-
ters in order to manage N KPIs. The parameters and KPIs
considered are the same at every cell. We use the following
definitions:

• All N ·L KPI values are successively written into a vector
K ∈ Y ⊂ RNL, where the coordinates K1 . . .KN contain
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the KPI values of the first cell, KN+1 . . .K2N the KPI
values of the second cell and so forth. All Kn are scaled
to cover the range from 0 to 100.

• All parameter values are successively written into a vector
P ∈ X ⊂ RML, where the coordinates P1 . . . PM contain
the parameter values of the first cell, PM+1 . . . P2M the
parameter values of the second cell and so forth. All Pm

are also scaled from 0 to 100.
• The mapping Ω : X ⊂ RML → Y ⊂ RNL maps

the system setting (the M · L parameters) to the KPIs:
Ω(P) = K. In general Ω is unknown. However, Ω always
fulfills: K� = K if P� = P. Ωn maps the system setting
to Kn: Ωn(P) = Kn. We assume that Ω and Ωn are
differentiable with respect to P.

• Φ(K) ∈ RML×N is the potential matrix:

Φ =




Φ1,1(K1) . . . Φ1,N (KN )

...
. . .

...
ΦML,1(K1) . . . ΦML,N (KN )



 . (1)

Since we consider the same N KPI-types at each cell, we
refer to the N KPIs at cell l also as K1 . . .KN instead of
K(l−1)N+1 . . .KlN . Note that we guarantee uniqueness
already by means of the indices of Φm,n. According
to Φ(K), we have for each of the M · L parameters
N potentials. Thus, each potential is with respect to a
specific parameter at a certain cell (rows) and a certain
KPI (columns). Moreover, we require Φm,n to be convex
and differentiable with respect to Kn.

B. Concept

The central idea of our concept is to create situation-
dependent forces which act on the network’s parameters
leading to a force-dependent parameter modification. As in
physics, each force Fm,n is induced by an associated potential
Φm,n(Kn) as follows

Fm,n := −γm,n ·∇KnΦm,n(Kn). (2)

In the formula above, ∇KnΦm,n(Kn) is the gradient of Φm,n

with respect to Kn. γm,n is a non-negative scaling factor.
The potentials express the operator’s goals, i.e. they are flat
(independent of Kn) at desired KPI values and show a gradient
if Kn is not within the desired range. Since we also require
convexity for the potentials, it is given that a force is negative
if the KPI is higher than desired and positive if the KPI is
smaller than desired. The potentials may be interpreted as cost
functions as well. Each force Fm,n acts at its corresponding
parameter m. Hence, N different forces try to change the
same parameter in order to drive their KPI into the desired
value range. According to Eq. (2), a higher gradient leads to
a stronger force which results in a larger parameter change.
The overall parameter change that arises is defined as

∆P := F :=




−
�N

n=1 γ1,n∇KnΦ1,n
...

−
�N

n=1 γML,n∇KnΦML,n



 . (3)

Φm,n

Kn

0 10050 K1K2

Fm,2

Fm,1
Φm,1(K1)

Φm,2(K2)

Fig. 1. Two exemplary potentials for a certain cell and a certain parameter.

All forces which act on the same parameter interfere with each
other, leading to the overall force vector F ∈ RML. Changes
in the parameters result in KPI changes as well. The concept
proposed operates iteratively, i.e. in the next iteration step the
forces will be updated and act on the parameters yet again.
Let us examine an example for a specific cell, which has a
single variable parameter m. The operator wants to balance
two different KPIs. In Fig. 1, exemplary potentials are pre-
sented. We can directly obtain the optimization goals from
the potentials, e.g. KPI 2 should have a larger value than
approx. 80. If we now imagine that the KPIs have the values
as indicated by the dotted lines in Fig. 1, we would have two
counteracting forces. Each force tries to change the parameter
m to its own advantage. However, according to the potentials
it holds that, |Fm,1| > |Fm,2|. Following this, we obtain that
the acting force Fm =

�2
n=1 Fm,n is in the direction of Fm,1,

given that γm,1 = γm,2. Nevertheless, the induced parameter
change is weakened due to a counteracting effect of KPI 2.
The system reaches a stable state if F = 0. This is the case
if either all single forces Fm,n are zero, i.e. if all KPIs are
within their desired value range, or if several counteracting
forces cancel each other out. The latter case means that a
trade-off is present. A SON-algorithm based on this concept
may be dedicated to running permanently, i.e. it runs forever.
We analyse this approach and give a detailed discussion in
the following sections. The idea to employ forces for a joint
optimization is inspired by [4], where a force field approach
is used for optimal base station (BS) placement.

C. Convergence Analysis

In order to evaluate an algorithm it is important to know
which kind of solutions we obtain by using the algorithm
and under which conditions we obtain these results. In order
to analyse the latter property for an algorithm based on
the concept proposed, we examine a convergence analysis
following Zangwill’s Global Convergence Theorem [5] in
this section. We will analyse the solution set in section
II-D. Prior to the convergence analysis, we will introduce an
algorithm following the force field approach explained above.



Let A(Kj) = Kj+1 be the iterative algorithm as defined below.
The algorithm A is expected to run permanently and to balance

Algorithm 1 A(Kj) = Kj+1

Input: P0, Φ, γm,n, ∀m,n
1: j ← 0
2: loop

3: Kj ← Ω(Pj)
4: Fj ← (−

�N
n=1 γ1,n∇KnΦ1,n(Kj

n), . . .)
T

5: Adjust all parameters: Pj ← Pj +∆Pj = Pj + Fj

6: j ← j + 1
7: end loop

all KPIs considered. Let us define the solution set Γ as follows

Γ := {K|F = 0}. (4)

In the following convergence analysis, we want to investigate
the conditions under which the sequence {K}∞j=0, generated
by A, converges to an element in the solution set. According
to [5], the limit of any convergent subsequence of {K}∞j=0 is
a solution if

1) the sequence {K}∞j=0 ⊂ S and S is a compact set,
2) the mapping A(Kj) = Kj+1 is closed, and
3) there is a continuous function Z such that Z(Kj+1) <

Z(Kj) for Kj /∈ Γ and Z(Kj+1) ≤ Z(Kj) for Kj ∈ Γ.
Condition 1 For S := {K : 0 ≤ Kn ≤ 100, ∀n} the sequence
{K}∞j=0 is a subset of S. By definition, S is bounded and
closed. Hence, it is a compact set.
Condition 2 The algorithm A maps S to S and can be written
as A(Kj) = Kj+1 = Ω(Pj+1) = Ω(Pj + Fj). In section
II-A, we already assumed that Ω is differentiable, thus, Ω
is continuous. As S ⊂ RNL is an euclidean space, it is a
Hausdorff space as well. Hence, A must be closed [6].
Condition 3 We will chose the overall weighted potential

ϕ =
N�

n=1

ML�

m=1

γm,nΦm,n(Kn) (5)

as the continuous function Z . If Kj ∈ Γ, it follows that
Fj = ∆Pj = 0. Since we already assumed that Kj+1 = Kj

if Pj+1 = Pj , we immediately obtain ϕ(Kj+1) = ϕ(Kj)
for Kj ∈ Γ. In case Kj /∈ Γ, condition 3 is satisfied if
�∇Pϕ,∆P� < 0 and the step size chosen is sufficiently small
[7]. The latter can be directly influenced by the non-negative
scaling factors γm,n. We can define them as γm,n := κ · γ̂m,n,
where γ̂m,n accounts for the scaling among the forces and
the global step length κ always ensures a small enough step
length. Note that in algorithm A the step length κ is an input
variable (via γm,n) independent of the iteration j. However,
we could also set the step length κ in every iteration. ∇Pϕ
can be written as

∇Pϕ =
N�

n=1

ML�

m=1

γm,n ∇PΦm,n(Kn(P))� �� �
= ∗

. (6)

In the formula above, ∗ = (∂Φm,n

∂Kn

∂Kn
∂P1

, . . . , ∂Φm,n

∂Kn

∂Kn
∂PML

)T .
Kn is given by the mapping Ωn(P). Thus, we can write
∂Kn
∂Pr

= ∂Ωn
∂Pr

. Following this, we can now obtain a general
convergence condition for the algorithm A as

�∇Pϕ,F� =
ML�

r=1

N�

n=1

ML�

m=1

γm,n
∂Φm,n

∂Kn

∂Ωn

∂Pr
· Fr < 0. (7)

Since Eq. (7) is rather involved, let us write the conver-
gence condition for the simple example introduced above
(M = 1, N = 2, L = 1):

�
γ1

∂Φ1

∂K1

∂Ω1

∂P
+ γ2

∂Φ2

∂K2

∂Ω2

∂P

�
· F < 0 (8)

We know that F ·γ1 ∂Φ1
∂K1

< 0 and F ·γ2 ∂Φ2
∂K2

> 0. Furthermore,
we know that |γ1 ∂Φ1

∂K1
| > |γ2 ∂Φ2

∂K2
|. Hence, in this example A

converges for sure, if ∂Ω1
∂P = ∂Ω2

∂P > 0. Now, it is obvious that
in general A converges, if

∂Ωn

∂Pr
=

∂Ωu

∂Pv
> 0 ∀n, r, u, v. (9)

This implies that all KPIs K are required to 1) increase
if a parameter increases, and 2) to increase with the same
slope. Since the inequality in Eq. (9) is coherent with the
mathematical definition of a strictly monotonic increasing
function, we referred to it in the title as strictly monotonic
KPI. An example for a strictly monotonic KPI could be
the reference-signal-receive-power-coverage as a function of
the transmit power. Condition 2) seems to be rather strong.
Nevertheless, it should be pointed out that the convergence
condition in Eq. (9) is much stronger than required. In general,
Eq. (7) provides the weakest convergence condition.

D. Solution Set Analysis

Now that we know the conditions under which the algorithm
A converges to an element in the solution set Γ (defined in
Eq. (4)), let us analyse the solution set itself. Γ includes
situations where 1) all Fm,n are zero, and 2) where all
components of F are zero. Case 1) implies that all KPIs are
within their desired value range. Thus, 1) equals the optimal
solution. In case 2), several forces which act on the same
parameter m, cancel each other out, i.e. at least two KPIs
are not within their desired value range. Hence, we denote
solutions according to case 2) as trade-off solutions. But what
kind of trade-offs are these solutions? Before answering this,
let us first introduce the concept of a Pareto optimal solution
[8].
Definition A solution K̂ is called efficient or Pareto optimal, if
there is no other K such that Φm,n(Kn) ≤ Φm,n(K̂n) ∀ m,n
and Φm,n(Kn) < Φm,n(K̂n) for some m,n.
Now, we can state the following.
Theorem 1 If every Ωn(P) is strictly monotonically increas-
ing, then every K ∈ Γ is a Pareto optimal solution.

Proof: We separate our proof into the two different
solution types: 1) optimal solutions and 2) trade-off solutions.
In case 1), Fm,n = 0, ∀m,n. Since all Φm,n are convex, no



solution can lead to some m,n with a smaller Φm,n. For trade-
off solutions 2), we have at least two counteracting forces or
rather counteracting KPIs for at least one parameter m. Thus,
we have at least one m,n for which ∂Φm,n

∂Kn
> 0 and at least

one m�, n� for which ∂Φm�,n�

∂Kn�
< 0. We can only decrease the

potential at the counteracting KPIs, since all other KPIs are
within their desired value range leading to the fact, that their
potential cannot be decreased. In order to decrease a particular
counteracting KPI, we need to adjust some parameters. Since
we define that all Ωn(P ) are strictly monotonically increasing
we have to decrease a parameter, if ∂Φm,n

∂Kn
> 0 (and vice versa)

in order to decrease the corresponding potential. However, by
applying such a parameter change we always increase the
potential of the counteracting KPI(s) because the derivative
of their potential has the opposite sign. Thus, all trade-off
solutions must be Pareto optimal solutions.

Remark 1 Please note that we have modified the definition
of a Pareto optimal solution in [8] slightly, in order for it to
be applicable to the problem at hand.
Remark 2 If we consider Ωn(P) to be monotonically increas-
ing instead of strictly monotonically increasing not all K ∈ Γ
must be Pareto optimal solutions. Let us consider the example
of two counteracting KPIs, K1 and K2, which corresponding
forces act on the same parameter P and cancel each other out,
which implies that K ∈ Γ. If for some reason, ∂Ω1(P )

∂P = 0
for some interval around P, then we can decrease the potential
of K2 without increasing the potential of K1. Nevertheless, a
more advanced algorithm could also take such situations into
account leading to a weaker condition in Theorem 1.

E. Discussion

If there exist mappings Ωn that are not strictly monotonic
increasing for a small parameter range X � ⊂ X , then the
convergence condition may be violated in this parameter range.
Thus, the overall weighted potential may increase for the
iterations in which Pj ∈ X �. However, after the not strictly
monotonic increasing parameter range is passed the overall
weighted potential will resume its decreasing trend. Following
this, we infer that algorithm A can converge to a K ∈ Γ even
though the convergence condition in Eq. (7) is violated for
some iterations j. Note, that a non-increasing parameter range
X � will be passed always because the corresponding force
will act in X � as well and will not be weakened because
Ωn is not increasing. Investigating the influence of Ω on
the convergence behaviour of the concept proposed will be
a subject of future research. As another subject of future
work, we can extend the force definition (see Eq. (3)) by a
factor R(Ω, . . .). In R(Ω, . . .) we can apply automatic control
techniques which compensate a disadvantageous behaviour of
Ω, in order to ensure that the convergence condition in Eq. (7)
is always satisfied. Furthermore, we can introduce an explicit
interconnection between various cells. One way to realize such
an interconnection is to consider the potentials to be a function
of all KPIs, i.e. Φm,n = Φm,n(K). In this way, we can
define optimization goals at cell l which depend on a KPI
in cell l�. Correspondingly, the definition of a force would be

Fm,n := −γm,n
�NL

i=1 ∇KiΦm,n(K). One can verify, that for
this case the convergence condition in Eq. (7) becomes weaker
since another sum appears:

ML�

r=1

N�

n=1

ML�

m=1

�
NL�

i=1

γm,n
∂Ωi

∂Pr

∂Φm,n

∂Ki
· Fr

�
< 0. (10)

Furthermore, we want to point out that the proposed concept
equals a gradient search, if M = N = 1 at each cell. From
the authors point of view, the concept’s main advantage is
that it follows a joint optimization approach while maintaining
a relatively low complexity level. However, this advantage
comes at the cost of a rather stringent convergence condition.
Moreover, the concept can balance multiple counteracting
KPIs efficiently and enables a seamless adjustment of the
resulting trade-offs according to operator-dependent priorities.

III. JOINT OPTIMIZATION OF TILTS AND CELL SELECTION
POLICIES

A. System Model

The larger part of the system model used here has been
adopted from [3]. Thus, the system model assumptions are
presented in an abbreviated form. We model the downlink
of a wireless network consisting of L

3 three-fold sectorized
base stations (L equals the number of cells) serving an area
R ⊆ R2. The user locations are assumed to be randomly dis-
tributed according to a distribution δ(u) with

�
R δ(u) du = 1.

The network traffic is modelled at flow level, where the
arrival of flow requests is represented by a Poisson process
with intensity λ in 1

s·km2 . The flow size is exponentially
distributed with a mean Ψ. We can write the traffic intensity
as σ(u) = λΨδ(u) in Mbit

s·km2 . The signal-to-interference-and-
noise-ratio α(u,η) (SINR) is calculated as

α(u,η) =

�
Prx,l(u)�

t �=l ηtPrx,t(u)+θ Prx,l ≥ Prx,min

0 otherwise
(11)

where Prx,l(u) equals the power received from BS l at loca-
tion u, Prx,min equals the minimum signal power, ηt denotes the
load of BS t, η denotes the load vector η = (η1, . . . , ηL)T , and
θ accounts the noise power. The achievable data rate cl(u,η)
is modelled according to the Shannon capacity. We assume
the users to have the same location over the duration of the
flow. Furthermore, we assume a round robin scheduler. In our
model, the cell selection is simplified in comparison to [3],
i.e. a user connects to BS l if l = s(u) := argmaxtPrx,t(u).
The corresponding cell areas are independent of η and can
be written as Ll := {u|l = s(u), Prx,l ≥ Prx,min}. The load of
cell l is modelled as

ηl = fl(η) :=

�

Ll

σ(u)

cl(u,η)
du. (12)

Eq. (12) only gives an implicit formulation of ηl. Thus, we
obtain η via the fixed point iteration ηk+1 := g(ηk), k =
1, 2, . . . with g(ηk+1) := bkf(ηk) + (1 − bk)ηk and some
bk ∈ [0, 1]. The convergence of this iteration is proven in [3].
We calculate the overall signal attenuation as χ = χPL+χBeam,
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where the path loss χPL is calculated using the 3GPP path loss
model for the urban scenario and macro sites [9]. We model
the 3D beam pattern as a superposition of a 2D horizontal and
2D vertical pattern [10]: χBeam = Bazi + Bele. Both elevation
and azimuth pattern are taken from [11].

B. Simulation Scenario

In the simulation presented in this paper, we employ the
force field approach introduced above in order to balance
a high load scenario by adjusting the cell individual offsets
(CIOs) and the tilts T . Fig. 2 shows the scenario layout. We
assume a regular hexagonal grid with 19 sites. Specifications
for the network considered are presented in TABLE I. For
the simulation, we employ algorithm A as presented above.
The potentials are chosen such that the optimization goal is to
avoid highly loaded cells (η > 0.7) and to prevent cell loads
under 30%. All potentials are with respect to the load. Thus,
we change the assignment of the indices as follows: The first
index defines the parameter-type and the second index assigns
the cell. For example, ΦT,11 denotes the potential with respect
to the tilt at cell 11. We generate a high load scenario at cells
11, 12, and 13, by setting the arrival intensity at these cells to
λhigh. At all other cells the arrival intensity is λlow.

TABLE I
CONSIDERED SIMULATION PARAMETERS

System Parameters

Carrier Frequency 2.0 GHz
Bandwidth 10 MHz
BS Transmit Power 46 dBm
BS Height 15 m
Backward Attenuation B0 20 dBm
BS Antenna Gain 14 dBi
Thermal Noise θ −104 dBm
Terminal Receiver Sensitivity Prx,min −100 dBm
Terminal Height 1.5m
Initial Tilt Tl 7◦ ∀l
Mean Flow Size Ψ 500 kbit
Arrival Intensity λlow 5200 s−1 · km−2

Arrival Intensity λhigh 16500 s−1 · km−2

Spatial Resolution 20 m

C. Simulation Results

For the evaluation of the simulation, we consider the sets
ηhigh = {η11, η12, η13} and ηlow = {η21, η22, η23, η31, . . . η73},
where ηab denotes the load at cell ab. Moreover, we evaluate
the 5th percentile of the SINR Q5(α) and the overall weighted
potential ϕ of the cells 11, 12, . . . , 73. In all simulations, we
set γT,l =

1
25 , ∀l while we diversify γCIO,l = {0, 1

40 ,
1
25}, ∀l.

In Fig. 4, we present the progress of the maximum cell load
among the high load area, i.e. max(ηhigh) and the maximum
cell load among the surrounding cells, i.e. max(ηlow). It is
clearly visible that the algorithm shifts the traffic from a highly
loaded area to the neighbouring cells. We can see that the
load balancing becomes faster by increasing usage of the CIO-
force (increasing γCIO,l). Nevertheless, the system converges
to the same situation for both versions, γCIO,l = 0.04 and
γCIO,l = 0.025. If the CIOs are not modified (γCIO,l = 0 leads
to FCIO,l = 0), it is not possible to balance the high load
situation. For γCIO,l = {0.025, 0.04}, the system reaches an
almost completely balanced situation after 43 iterations. In this
situation, cell 11 with a load of 0.73 is confronted with loads
of 0.73, 0.66, 0.72, and 0.67 at the cells 22, 23, 32, and 73.
But why are some loads not below 70%? Let us postpone this
discussion for a minute, in order to analyse the behaviour of
the 5th percentile of the SINR Q5(α) and the overall weighted
potential ϕ. The progress of the 5th percentile of the SINR
Q5(α) is shown in Fig. 5. We can see that the 5th percentile
becomes worse in all cases. If we observe only the first 15
iterations, we can see that the 5th percentile decreases as the
adjustment of the CIOs increases, i.e. as γCIO,l increases. To
us, this behaviour seems reasonable since adjusting the CIOs
pushes cell edge users into cells where they experience a
lower SINR. However, starting from iteration 15 the scenarios
γCIO,l = {0.025, 0.04} outperform the case where γCIO,l = 0.
Obviously, the SINR can also be considerably worsened by
adjusting the tilt. Thus, we can infer from Fig. 5, that a
well-matched trade-off between the usage of tilts and CIOs
is required in order to harm the 5th percentile of the SINR
Q5(α) as little as possible. In Fig. 6, we present the progress of
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the overall weighted potential ϕ during the simulation. Again,
we can conclude that adjusting just the tilts is not favourable.
Even though the overall weighted potential ϕ is decreased
considerably in the scenarios γCIO,l = {0.025, 0.04}, it does
not converge to zero. As already mentioned above, some cells
still have loads approx. 2-3% higher than 70%. This causes
the residual potential. From the authors point of view, this
residual overload is caused by 1) the spatial quantization with
a resolution of 20×20 m, 2) a high load scenario that is rather
difficult to handle, and 3) the small scaling factors. The spatial
quantization leads to the fact, that only 20× 20 m planes can
change the sector from which they are served. Hence, it is not
possible to adjust the loads precisely. However, this is only
a computational issue. Due to a difficult high load scenario
(max(ηj=0

high ) = 1.19) we also reach the upper load limit (70%)
at cells next to the high load hot spot after balancing. From
point 3) it follows that the system converges rather slowly.

IV. CONCLUSION

In this work, we introduced a novel force field based joint
optimization concept. Basis of the concept are potentials which
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Fig. 6. The progress of the overall weighted potential ϕ during the simulation.
The units are arbitrary.

define the optimization goals and induce acting forces. These
forces modify the network’s parameters in order to balance all
KPIs considered. Forces which act on one and the same pa-
rameter interfere with each other. Resulting trade-offs between
counteracting KPIs are Pareto optimal under given conditions
and can be regulated seamlessly by means of scaling factors.
Moreover, we created an algorithm based on the force field
approach. We also defined a solution set and obtained a general
convergence condition. The algorithm always converges to
a point in the solution set if the convergence condition is
satisfied. We employed the algorithm created for balancing
a high load scenario by concurrently adjusting the tilts and
the CIOs.
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