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Abstract—Distributed cluster detection has been widely applied
to the problem of efficient data delivery in Pocket Switched
Networks (PSNs). However, previously proposed methods can
become less efficient over long periods of time as more and
more transient, pair-wise connections are used to form clusters
which monotonically increase in size. Monotonically increasing
clusters, also known as aggregated clusters, suffer an inevitable
loss of temporal information. Thus cluster relevance to individual
movement patterns at particular times is diminished. This paper
applies expectation-based spatio-temporal clustering to the prob-
lem of data delivery in PSNs. We will show that spatio-temporal
clusters can be detected distributively and can improve the data
delivery efficiency by 7% and deliver 6% more packets compared
to aggregated methods. Furthermore, 3 data delivery strategies
which utilise spatio-temporal clusters are proposed.

Index Terms—Delay Tolerant Networks, Pocket Switched Net-
works, Distributed cluster detection, Spatio-temporal clustering

I. INTRODUCTION

Mobile Ad-hoc Networks (MANETs) are created from
mobile electronic devices forming ad hoc connections between
themselves using wireless links. MANETs have been a popular
research topic since the 1990s. Consequently there is no
exhaustive list of applications for MANETS, nor is there
one specific configuration of devices and mobility which is
prevalent in the field of MANET research.

Recent research into one particular type of MANET looks at
the opportunistic exchange of data during encounters between
personal mobile devices. This is sometimes called Pocket
Switched Networking (PSN) [1], [2]. As well as providing
inter-human data dissemination, PSNs may also include “gate-
ways” to external services such as the Internet.

Reality Mining [3] experimental data can be used to in-
fer the prevalence of PSNs in the real world. In Reality
Mining experiments, data is collected on human movement
and encounter patterns by devices belonging to or given to
participants to use in an unsupervised manner. As encounters
between participants are recorded, studies can be undertaken
on new techniques for data dissemination in PSNs.

In this paper we have constructed PSNs from empirical
data on inter-human encounters belonging to the Infocom,
Cambridge [4] and Reality [5] data-sets shown in Table I. We
have used these data-sets to conduct data delivery experiments
between virtual mobile devices using The One Simulator [6].

TABLE I
COMPARISON OF SOME REALITY MINING DATA-SETS. !" IS THE

INTER-PROBE TIME OF BLUETOOTH SCANS IN SECONDS.

Infocom5 Infocom6 Cambridge Reality
Duration (Days) 3 3 12 246

Environment Conference Campus
Mobile Devices 41 78 36 97

Device Type iMote iMote iMote Phone
Number of Connections 22459 128979 10641 102594

Daily Encounter Probability 0.78 0.73 0.24 0.01
!" 120 120 600 300

Location trace No No No Cell ID

By limiting the size of the spanning tree needed to reach a
destination, distributed cluster detection techniques [7]–[10]
can result in data delivery in PSNs being more efficient in
terms of the number of duplicate packets needed to deliver a
message.

However, the traditional definition of a cluster used in
distributed clustering only allows for monotonically increasing
cluster sizes over time. As the algorithms run, they aggregate
many distinct encounter patterns from different times of the
day into aggregate clusters. As a result, data delivery efficien-
cies using aggregated clusters can suffer efficiency losses as
obsolete cluster memberships persist. Using the Quality [10]
distributed aggregate clustering and data delivery method,
Fig. 1 illustrates the increased cost of delivering a message
in terms of duplicate packets as cluster size increases.

The transient encounters between devices in PSNs can be
represented as vertices and edges respectively in dynamic
contact graphs [11]. If data is aggregated into a single graph,
then there is an ever increasing likelihood that there will be
an edge between any two vertices. When aggregated graphs
grow they may grow to a Densification Power Law (DPL)
exponent [12], where the number of edges over time raised
to some power ! is proportional to the number of vertices,
"(#) ∝ $(#)!. The higher the DPL exponent ! is, the faster
additional edges are added to vertices in the graph. Fig. 2
illustrates the densification rate of the reality mining data-sets
under consideration in this paper. We found that all of the
data-sets densify at a fairly consistent rate (DPL exponent!
of around 1.25) until 75% of the devices have been added to
the graph. This conclusion may be helpful when modelling
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Fig. 1. Cost of data delivery in duplicate packets as a function of cluster
size for the Quality algorithm in the Cambridge data-set.
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Fig. 2. Densification of PSNs over time.

human behaviour in the future. In the Infocom data-sets ! is
1.27, and in the Cambridge and Reality data-sets ! is 1.25
and 1.24 respectively.

A. Related work

Early epidemic label propagation methods [8] for distributed
aggregate clustering suffered the monster cluster problem
where a single cluster evolves to dominate the entire network.
SHARC [9] prevents monster clusters but suffers from the
wandering cluster problem in dynamic networks caused when
a large number of devices and propagate their cluster labels
elsewhere.

The Bubble clustering and data delivery algorithm for
dynamic networks [13] is a hybrid routing protocol in that
it combines aggregate cluster detection and centrality mea-
surements. In Bubble, data is passed to devices with higher
global centrality values until it reaches a cluster containing
the destination node, at which point local centrality rankings
within clusters take over. Local rankings within clusters are
calculated using a temporal mechanism Cumulative Window
(C-Window) which recalculates centrality every 6 hours.

Experiments in how distributed aggregate clustering meth-
ods partition a network [10] showed that the larger the clusters
in device memory, called the local clusters, the more suitable
they are for data delivery. With cluster size of 30% of the total
data-set size being adequate to replicate the data delivery rates
of Epidemic at a lower duplicate packet cost.

Work by Borgia et al [14] proposed a temporal adaptation
to the Simple distributed clustering mechanism [7] used in
Bubble. Their proposal called AD-Simple, relies on pruning
clusters of obsolete members using a timer which counts down
from the moment devices are entered into local clusters. AD-
Simple successfully maintains home clusters, whilst removing
information on obsolete or rarely visited clusters.

II. DISTRIBUTED EXPECTATION-BASED SPATIO-TEMPORAL

CLUSTERING

Distributed Expectation-Based Spatio-Temporal Clustering
(DEBT) will address concerns around monster and wandering
clusters whilst allowing home cluster membership to vary over
time.

The restrictions imposed on DEBT are similar to that of
other distributed clustering mechanisms such as Bubble and
Quality. Firstly, devices can only communicate with other
nearby devices during pair-wise, ad-hoc wireless connections.
Secondly, devices each keep a record of their own local cluster.
Lastly, a calculation is performed on connected devices to
decide if they should include each other in their local clusters.
In this section, how clusters are created and maintained in
DEBT is addressed. Data delivery mechanisms are considered
a separate problem and explored later in Section III.

Where DEBT differs from aggregate clustering methods, is
that each device splits the passage of time into discrete time
frames of length # seconds in order to compare communication
metrics between frames. Based on the comparison between
frames, devices can then decide to add or remove devices from
their local clusters. An illustration of how the data-sets look
when using this stratified sampling is given by plotting the
total connection times within hourly time frames in Fig. 3. We
found that all of the data-sets have long periods of inactivity.
Moreover, in the conference data-sets between 42-48% of
hour long frames have a higher connection time than previous
frames. In the campus and city wide environments values are
similarly grouped, with between 36-37% of hourly frames
having a higher connection time than previous frames.

A. Local spatio-temporal cluster building

The first step in calculating expectation-based spatio-
temporal clusters is the calculation of the expected connection
baseline. Cumulative connection duration within frames is
used as this is easy to measure and allows us to detect the
best connected pairs of devices despite connections being
frequently disrupted [15].

When calculating the baseline, one could choose to ignore,
stratify or adjust for the seasonal effects which can give rise
to repeating patterns in the data. The purpose of DEBT is to
detect any encounters between devices which are out of the
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Fig. 3. Hourly total contact times in the Infocom5, Infocom6, Cambridge and Reality data-sets.

ordinary compared to seasonal trends. Therefore, the specific
time series analysis method used to compute the baseline is
the mean of means from the last % frames.

The Baseline is renewed by each device at the end of
each time frame. To do this, a device &" calculates the mean
connection duration, '#!" , from all connected devices at the
end of time frame ($. The mean of the results from current
and previous % − 1 time frames is then taken to produce
the baseline for &", referred to as )#!" . This process can be
summarised in Equation 1.

)#!" =
'#!" + '#!−1

" + ⋅ ⋅ ⋅+ '
#!−("−1)

"

%
(1)

Once the expected baseline has been calculated at the end
of frame ($, it is compared with cumulative connection times
for individual devices within frame ($. For &" to consider &%
for inclusion in &"’s local cluster, the cumulative connection
time * between &" and &% within time frame ($ (denoted
*#!
&#&$

) should be higher than a coefficient, +'( multiplied by
the baseline for &" as shown in Equation 2. E.g. if the new
baseline on device &" is 20, and the cumulative connection
time between &" and &% in time frame ($ was 30. Then with
+'( = 1, Equation 2 is true and &% will be added to &"’s
local cluster. However, if +'( = 2, then Equation 2 is false
and &% will not be included. So that devices can be added to
local clusters at any point during a time frame, DEBT will
also perform the comparison in Equation 2 with the existing
baseline as cumulative connection times are increased.

*#!
&#&$

> ()#!" ∗ +'() (2)

The final stage of the cluster building process is choosing
what data the devices should exchange. In DEBT, each device
keeps a local cluster table which contains devices it’s currently
got in it’s local cluster called the neighbour column, and
a copy of each neighbour’s local cluster table stored in the
branch column. When devices meet they exchange their local
cluster tables, and once Equation 2 has been evaluated to true
for a remote device, the information can be entered into the
local cluster table on the local device.

With neighbour and branch data stored in local cluster
tables, each device can identify clusters which may be multiple
hops in size. However, as ad-hoc connections are transient,
connections to all of the devices in the local cluster table
can not be guaranteed, but connections to neighbours can

TABLE II
DEPT PARAMETERS CHOSEN BY THE USER.

Parameter Description

# Length of time frames in seconds.
$ Number of previous frames used in baseline calculation.

%!" Neighbour promotion coefficient.
%#$%& Neighbour demotion coefficient.

be assumed to be more stable than those indicated by the
branch data. Furthermore, devices in the branch column are not
unique, a device can belong to many branch fields, a property
which will later be used in Section III-B to detect paths which
may contain routing loops.

B. Cluster maintenance

Without a mechanism to remove devices from local clusters,
DEBT would suffer from the monotonically increasing cluster
sizes seen by aggregated methods. Devices could adopt a large
number of policies when deciding to remove others from local
cluster tables. Some of the issues to be aware of in DEBT are:

1) Removing devices at the end of frames as soon as
cumulative connection times fall below the baseline
keeps local clusters relevant to the previous time frame
but means that cluster membership may not accurately
reflect periods longer than the time frame length.

2) Not removing devices often enough may cause large
message delivery overheads as messages are exchanged
between devices who are no longer spatially related.

3) Due to the possible long wait between encounters,
devices should be able to act independently in order to
delete neighbours.

To guard against these concerns, devices who previously
had each other in their local clusters but have failed the test
in Equation 3 are not deleted immediately but are marked for
deletion at the end of the next frame. Devices who are marked
for deletion are only removed from the local cluster table, and
their corresponding branch data deleted if Equation 2 is not
satisfied by the end of the next frame.

*#!
&#&$

≤ ()#!" ∗ +&)*$) (3)

C. Spatio-temporal cluster analysis

Having a mechanism to delete devices from local cluster
tables prevents the monster and wandering clusters seen in
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Fig. 4. Distributed cluster timings for Infocom6.

epidemic label propagation methods. Also with DEBT, the
monotonic increase in cluster sizes seen in [7], [9], [10] are
not an issue if reasonable coefficient values are chosen.

The coefficients which govern how much greater or lower
metrics should be than the baselines before considering devices
for inclusion or deletion from local clusters are called +'(

and +&)*$ respectively. These coefficients govern how quickly
clusters are built up and destroyed. For example, when +'( is
set to 1, clusters are built up from devices whose connection
times exceed the baseline multiplied by 1. In the case of
the Infocom6 data-set, a +'( of 1 is too lenient. In other
words as soon as devices are removed they are likely to be
re-added to local clusters in the next frame. Setting +'( to
2 instead creates cluster sizes which respond to the temporal
connectivity metrics as the difference between Fig. 4a and
Fig. 4b shows.

Identifying suitable time frame length is critical to matching
the rate of change in network structure [16]. It will be useful
to present the level of change between time frames of different
lengths, but due to lack of space, only # values of 300, 600,
1200, and 3600 s are shown in Fig 4. The effect of frame
sizes effects the ability of expectation-based spatio-temporal
clustering to track changes in the data. In most cases, when
frame size is large, the ability of DEBT to react to changing
behaviours is diminished as there is less metric differences
between large frames. However, in a sparse data-set such as
Reality, short frame sizes of 300 s don’t make much sense as
every connection becomes significant. Therefore for Reality,
frames 1 hour in length are used in the data delivery results
detailed in the next section. For all the other data-sets, DEBT
uses a frame size of 300 s.

III. MULTI-HOP DATA ROUTING

Besides Bubble, few data delivery methods utilise dis-
tributed cluster detection to provide a balance between data
delivery success and efficiency in dynamic networks. A large
proportion of packets can be delivered using intra-cluster
duplication if local clusters are large enough [10], but this
can create large numbers of redundant data packets. In this
section, three new data delivery methods for use with DEBT
are evaluated.

The transfer and storage of remote local clusters as branch
data acts as a mechanism for local clusters to be merged and
inter-cluster path information to be preserved. This allows for
inter-cluster delivery as in Fig. 5. In this example, a message

d’s Clusterj

d’s Clusterk

d’s Clusteri

dj

di

dk

dl

Fig. 5. Inter-cluster data delivery overview.
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d’s Clusterj
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c) DEBTT

Fig. 6. Example intra-cluster delivery scenarios. Generally DEBTE will
try to flood clusters with duplicate packets, where DEBTC attempts intra-
cluster delivery by waiting for an encounter between message carrier and the
destination.

is generated by &" to be delivered to &+. The message can be
passed to &% if &% knows of &+ via branch data in it’s local
cluster table.

Our work has resulted in three suggested data delivery
strategies to provide inter and intra-cluster routing via the
local cluster tables. The first two protocols DEPT Epidemic
(DEBTE) and DEBT Clustering (DEBTC) look at the branch
data within the local cluster tables as non-hierarchical sets.
The third method called DEBT Trees (DEBTT), preserves
path information within the branch data as trees and offers the
ability to spot routing loops at the expense of some additional
processing. Here are some brief observations which were used
to inform our choices for our data delivery methods but are
not fully elaborated on due to space.

1) Most of the duplicate messages using DEBT are caused
by inter-cluster data duplication. An issue Bubble ad-
dresses with its pre-cluster “bubbling” using centrality.

2) If intra-cluster message duplication is stopped at devices
which have branches that contain the transmitting device
and the destination, then data delivery success rates
suffer.



A. Epidemic based delivery (DEBTE)

DEBTE makes use of the neighbour and branch data to
forward data as given in the example in Fig. 6a. Simply
put, if the message destination is anywhere in an encountered
devices’ local cluster table then the message is copied to the
encountered device.

B. Cluster based delivery (DEBTC)

DEBTC makes more conservative decisions regarding the
data delivery compared with DEBTE. If a message can be
delivered via an encountered device, but the encountered
device also has the transmitting device in the same branch
field as the destination, then the message will not be forwarded
unless there is another route which does not contain the
transmitting device.

In the example illustrated in Fig. 6b, the packet may not be
passed between &" and &% if either: &% got it’s only information
about the destination from &". Or all of the branches on &%
which contain the destination, also contain &".

C. Tree based delivery (DEBTT)

The aim of DEBTT is to address the case from the example
of DEBTC where there may be a path to the destination
contained within the branch data, but a message is not trans-
fered because it may contain a routing loop. Routing loops
can not be identified in the branch data if the information is
processed as a non-hierarchical set of other devices, so DEBTT
constructs a tree in the branch field by preserving who received
local cluster tables from whom and by sharing this information
using a tree data structure.

IV. DEBTE VS. DEBTC VS. DEBTT

Fig. 7 shows that the data delivery results of all of the
methods using DEBT. The general pattern is that DEBTE will
produce many duplicate packets in an attempt to flood clusters
until a message reaches it’s destination; DEBTC will not
flood clusters and wait for an intra-cluster encounter between
devices; DEBTT falls in between DEBTE and DEBTC in
terms of message delivery success ratio.

It may be reasonable to suggest that DEBTT might deliver
the same number of packets as DEBTE with less duplication
(see Fig. 6c). However this is not the case in temporal contact
graphs as there is no guarantee that pair-wise connections
will be established between neighbours in the order needed to
deliver all packets. As a result DEBTT delivered 10% fewer
packets than DEBTE overall.

V. RESULTS

In this section the data delivery methods introduced will
be compared against 2 aggregate clustering delivery methods,
Bubble [13] and Quality [10]. For Bubble, both the K-clique
and Simple [7] clustering techniques were used as a basis for
the aggregate clustering. In total, 5 random message generation
patterns for each data-set/protocol combination were used to
send small (1KB) messages between random devices with a
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TABLE III
FINAL AVERAGE DATA DELIVERY RESULTS ACROSS ALL EXPERIMENTS.

Method Data Delivery Overheads
Bubble K-Clique 0.1141 20.6972

Quality 0.1717 56.3885
DEBTE 0.1356 28.9228
DEBTC 0.106 12.4691
DEBTT 0.1213 19.1464
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Fig. 9. Data delivery efficiency over time.

time to live of 1 hour increased to 1 day in the Reality data-set
due to the sparsity of connections.

The results presented in Fig. 8a show that the data delivery
success ratios of Quality tend to be higher than the other meth-
ods. This is expected as Quality effectively floods networks
with duplicate packets after constructing very large clusters.

The results from each experiment are collated into Table III.
Overheads were calculated as the number of messages relayed,
minus number of messages delivered, divided by the number of
messages delivered. From these results we see that compared
to Quality, the data delivery success ratio of DEBTE is 21%
lower, but for half the cost. However, compared to Bubble,
the cost of the DEBTT algorithm is 7% lower with 6% more
packets delivered.

Finally, Fig. 9 shows the efficiency of all the protocols over
time. Efficiency in these charts is calculated daily by dividing
the number of delivered packets by the number of relayed
packets. Measured in this way the effectiveness of Quality is
very poor, and the spikes in the charts show that the DEBT
protocols are reacting to times in the data-sets where new
devices cluster.

VI. CONCLUSIONS

We have shown that spatio-temporal clusters can be detected
using distributed algorithms, and that by choosing the method
carefully, data delivery efficiency can be improved when doing
so. The choice of time frame size, introduced in Fig. 4
was not fully explored in this paper due to lack of space.
In summary it was found that frame sizes # of 3600 s for

Reality and 300 s for the other data-sets not only gave clusters
which closely represent the pattern of the data, but also gave
efficient data delivery results. An expectation-based approach
for PSNs would not work with frame sizes longer than a day as
human movement is diurnal [17] and cumulative connection
times would not differ greatly between frames. This shows
the importance of calculating adequate frame size to the
performance of the DEBT protocols.

In future work it may be possible to detect spatio-temporal
clusters without artificially splitting time into discrete frames.
It may also be possible to predict future cluster formations
in order to further improve data delivery success without
sacrificing efficiency.

We believe there is no panacea for all conceivable PSN use
cases, and that more effort will be needed in the future from
academics and engineers to specify and design for more tightly
defined scenarios. However, as with Bubble we have presented
a general solution and methods which can be tweaked and
applied to more specific uses cases as they arise.
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