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Abstract—In this paper, we propose a multi-channel paralleltransmission mechanism for channel assignment in cognitiveradio (CR) networks. The proposed mechanism enables sec-ondary users (SUs) to effectively utilize the spectrum whilelimiting the disruption rate at both SUs and primary users(PUs). The main novelty in our mechanism lies in considering therandomness of link-quality conditions and lifetime durations ofidle channels to provide a statistical performance guarantee forSUs. This consideration results in improved spectrum utilization.Specifically, our mechanism attempts at minimizing the requiredspectrum resources for SU transmissions subject to minimum ratedemand and minimum success probability requirements. Simu-lation results indicate that our proposed assignment satisfies theperformance requirements at SUs. Results also show that utilizingthe parallel transmission capability of CRs while considering therandomly time-varying nature of their operating environmentallows for higher spectrum utilization and more energy saving.
I. INTRODUCTION

Recently, CRs are recognized as the key enabling tech-nology to enhance spectrum utilization through opportunisticaccess to the licensed spectrum. Due to the randomness of PUchannel availabilities and link-quality conditions, the operatingenvironment of CR networks (CRNs) is characterized by theirrandom time-varying nature. This dynamic and random natureposes many challenges related to development of distributedchannel assignment/access mechanisms that capable of provid-ing efficient SU communications [1]–[6]. Specifically, a CRNis expected to operate over a set of highly-separated frequencychannels with different propagation characteristics and time-varying link-quality conditions. Worse yet, the availabilityof these channels and their lifetimes are also dynamicallychanging due to the randomness of PU activities [2]. Even afteridentifying an idle channel (or channels) and using it for a SUtransmission, the SU may be required to immediately interruptits transmission, vacate the operating channel (channels), andrenegotiate the operating channels if new PUs become active.Therefore, the transmission time needed for a successful SUtransmission can be quite critical. Thus, to improve spectrumutilization, SUs should select their operating channels whilejointly considering the required transmission times over theselected channels and the randomness in their lifetime dura-tions. Such consideration can significantly improve the packetsuccess probability, which consequently reduces the averagenumber of retransmission attempts for a successful packetdelivery. This preserves more channels for potential futureSUs, which reduces the SU blocking probability and allowsfor higher spectrum utilization and more energy saving.

In this paper, we develop a statistical approach by whichSUs can opportunistically communicate over multiple chan-nels while probabilistically guaranteeing their performance.Our approach leverages the unique capabilities of CRs whileconsidering the peculiar characteristics of their operating envi-ronment. Specifically, the contributions of this paper are as fol-lows. Based on generic stochastic models of PUs’ activity, wefirst derive a general expression for the probability of successfor a SU packet transmission over multiple channels. We showthat the derived expression is a function of the instantaneouslink-quality conditions and the statistical distribution of theavailability durations of PU channels. Based on the derivedexpression, we formulate the spectrum assignment problemas an optimization problem with the objective of minimizingthe required spectrum resources for a given SU transmissionwhile satisfying pre-specified probability of success and ratedemand requirements. We show that this optimization problemconstitutes a binary linear programming (BLP) problem, whichis, in general, NP-hard. Since computing the optimal solutionfor such problem grows exponentially with the number ofidle channels, we develop a polynomial-time approximatealgorithm for the BLP based on a sequential fixing procedurethat provides a near-optimal solution. Through simulations,we show that the approximate solution is within 5% of theoptimal one. The results indicate that our algorithm statisticallysatisfies the performance requirements under different trafficloads. Our simulation results also show that our assignmentrsults to a significant performance improvement in terms ofthroughput and energy consumption over reference channelassignment algorithms. The rest of the paper is organizedas follows. In section II-A, the network model is presented.An analytical expression for the packet success probabilityis derived in section II-B. In section III, the our problemis formulated. Section IV describes the proposed solution.In section V, we present numerical and simulation results.Conclusions are presented in section VI.
II. PRELIMINARIESA. System ModelWe consider a licensed spectrum containing |K| non-overlapping channels of the same bandwidth. The status ofchannel i is modeled as an independent 2-state model alter-nating between BUSY and IDLE states. The BUSY period(T (i)

B ) represents the time that some PUs are transmitting overchannel i. In this case, channel i cannot be used for SUtransmissions. The IDLE period (T (i)
I ) represents the time that



no PUs are transmitting over channel i, and thus this channelcan opportunistically be used by SUs. We assume that T (i)
B and
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B ).We also consider a distributed network of SUs, where each SUis equipped with nr transceivers that can be used simultane-ously. The nr transceivers can be dynamically tuned to anyidle channel in K. For channel i, ∀i ∈ K, the transmissionpower that a SU can use is 0 if the channel is busy, or
P

(i)
max if channel i is idle, where P

(i)
max is the FCC regulatorymaximum transmission power over channel i. In addition,the total transmission power over all selected channels fora given SU transmission is limited to Pmax, where Pmaxis the maximum power supported by the CR’s battery. Weassume that each SU can sense the spectrum and estimatethe instantaneous interference over each channel. Each SUrequires a minimum transmission rate, i.e., the aggregate datarate over all assigned channels should be greater than a pre-specified transmission rate requirement. The probability ofsuccessfully transmitting a SU packet, denoted by Psuc, isour main quality of service (QoS) metric of interest. Becauseof the random nature of the operating environment of SUs,here we consider a soft success probability requirement in theform Psuc ≥ γ, where γ is a given parameter.

B. Probability of Success Analysis
We now derive an expression for Psuc as a function ofnetwork parameters for a SU data packet of size L with agiven channel assignment Ω = {m1,m2, ...,m|Ω|}, where mjrepresents the jth channel in Ω. Before proceeding further,we need to determine the distribution of the residual timeduration of the various PU channels. Let the random variable

T
(i)
r denote the residual time duration of channel i. The CDFof T (i)

r can be computed in terms of the CDF of IDLE durationas [7]:
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Let M ∈ K and R = {R(i), ∀i ∈ M} respectively denotethe set of all idle channels sensed by communicating SUs andthe set of achieved transmission rates over all channels inM.Given the channel assignment Ω ⊆ M and the transmissionrates over the channels in Ω, the required transmission timeover the assigned channels (t(Ω)

x ) can be computed as:
t(Ω)
x =

L
∑

i∈Ω R(i)
. (2)

To proceed in our analysis, we note that a packet trans-mission is considered to be successful over the channels in Ωif the residual idle durations of all channels in Ω are greaterthan the required transmission time t
(Ω)
x . Given the above andnoting that IDLE durations of PU channels are statisticallyindependent, the packet success probability over the selected

channels in Ω (P (Ω)
suc ) can be computed as:
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Substituting (1) into (3), P (Ω)

suc can be rewritten in terms of
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I as follows:
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To make our analysis tractable, we model the status of aPU channel i, ∀i ∈ K as a Markov renewal process (MRP)that alternates between IDLE and BUSY states. This modelwas previously used in (e.g., [8]–[12]). This model can cap-ture the temporal characteristics of PU channel availabilities.According to this model, IDLE (BUSY) durations for thevarious channels are statistically independent exponentiallydistributed random variables. In addition, for a given channel
i, the durations of successive IDLE and BUSY durations areindependent of each other. Based on this model and using
(1), we can show that F
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For i ∈ K, let xi be a binary variable that is defined as:

xi =

{

1, if channel i ∈ Ω
0, otherwise. (6)

By introducing the binary variable xi, P (Ω)
suc can be rewrittenin terms of xi as:
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where t

(Ω)
x = L∑

i∈M R(i)xi

.We note that the expression in (7) will be used in formu-lating our channel assignment problem in Section III.
III. PROBLEM FORMULATION AND DESIGN CONSTRAINTS
Our objective is to optimize spectrum-utilization efficiencyby minimizing the total spectrum resource needed for success-ful SU transmissions. Specifically, our treatment is targetedat a distributed CRN that uses CSMA/CA-like policy forcontrol communications to resolve channel contention betweendifferent SU pairs. CSMA/CA-based protocols ensure thatonly one transmission (a SU transmitter-receiver pair) can



access the control channel at any given time. For this SUtransmission, the transmitter and the receiver need to selectthe minimum number of channels to use while meeting thefollowing constraints:C1. Hardware constraint: Each SU is equipped with nrtransceivers that can be used simultaneously, i.e.,
∑

i∈M

xi ≤ nr. (8)
C2. Received SINR and aggregate data rate constraints:The received signal-to-interference-noise ratio (SINR) overa selected channel i must be greater than a pre-specifiedthreshold µ∗. This constraint can be ensured by setting xi = 0for any channel i with SINR < µ∗. In addition, the aggregaterate over all selected channels must be greater than or equalto a given rate demand RD, i.e.,

∑

i∈M

R(i)xi ≥ RD. (9)
C3. Total transmit power constraint: For a SU trans-mission, the total transmission power (Ptot) over all selectedchannels is restricted to Pmax, i.e.,

∑

i∈M

P (i)
maxxi ≤ Pmax. (10)

where Pmax is the maximum power supported by the CR’sbattery.C4. Probability of success constraint: The probability ofsuccess P (Ω)
suc for a given SU transmission must be greater thana pre-specified value γ. This constraint can be expressed as:
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By taking the natural log of both sides of (11) and algebraicallymanipulating the result, this constraint can be linearized as:
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Recall that our objective is to compute the optimal assign-ment Ω that uses the least spectrum resource (i.e., minimumpossible number of channels) for a given SU transmission suchthat the performance requirements are guaranteed. Formally,our problem can be formulated as:

minimize
xi

|Ω| =
∑

i∈M

xi

subject to C1-C4. (13)
If multiple solutions exist for this optimizationproblem, we seek the one with the maximum aggregaterate. This can be ensured by adding the term

(

−1∑
i∈M R(i)

∑

i∈MR(i)xi = −
∑

i∈M rixi

) to the objective
function, where ri = R(i)

∑
i∈MR(i) . Note that the introducedterm is always < 1. Hence, for any two feasible assignment

Ω1 with |Ω1| channels and Ω2 with |Ω2| > |Ω1| channels,our formulation will selects Ω1 over Ω2, irrespective of their

aggregate transmission rates. It is clear that the optimizationproblem in (13) with the new objective function (i.e.,
∑

i∈M (1− ri)xi) constitutes a BLP problem.
IV. A NEAR-OPTIMAL APPROXIMATION

Because our problem is a BLP problem, which is, ingeneral, NP-hard, we develop a polynomial-time approximatealgorithm to solve our BLP based on a sequential fixingprocedure that provides a near-optimal solution. We note herethat the use of sequential fixing-based suboptimal algorithmsin solving integer programming problems were previouslyproposed and evaluated in several studies (e.g., [13], [14]).The key idea of our algorithm is to iteratively determine thebinary variables xi’s by solving a sequence of relaxed LP(RLP) problems with one xi is finalized to a binary value ineach iteration. The details of our sequential fixing algorithmis described as follows:
• The algorithm first sets xi’s for all idle channels withSINR < µ∗ to 0 and relaxes all unfixed xi’s into real numbersin [0, 1].
• The algorithm then solves the resulting RLP. If the RLPis infeasible, then our BLP has no feasible solution (i.e., nofeasible assignment). Otherwise, among the real-valued xi’ssolution to the RLP, the algorithm sets the largest to 1.
• The algorithm then checks the constraints C1-C4 assum-ing that all unfixed xi’s are set to zero. If these constraints aremet, the selected channel is our feasible assignment.
• Otherwise, at iteration j, j = 2, . . . , |M|, the algorithmrelaxes all unfixed xi’s to real values in [0, 1]. Then, it checksthe feasibility region of the new RLP at iteration j. If thisregion is empty, this means the last fixed variable in the j− 1iteration should be changed to 0 and the jth RLP should beupdated.
• The algorithm then solves the resulting RLP, whosevariables are all unfixed xi’s, and sets the largest xi to 1.
• Given all fixed xi’s at iteration j, the algorithm checksthe constraints C1-C4 assuming that all unfixed xi’s are set tozero. If these constraints are met, the set of selected channelsup to the jth iteration is the feasible channel assignment.
• This process is repeated until a feasible assignment iscomputed, or a total of nr xi’s are fixed to 1 (or all xi’s arefixed, i.e., j = |M|) and no feasible assignment can be found.We note that our algorithm can determine a feasible solutionor no feasible solution in no more than |M| iterations. Hence,its time complexity is bounded by the complexity of the LPsolver times |M|, which is polynomial.

V. PERFORMANCE EVALUATION
We first consider a single SU transmission, and investigatethe accuracy of our algorithm through MATLAB simulations.We consider a licensed spectrum containing 20 non-overlapping channels, each with bandwidth 2.5 MHz.The status of a PU channel is determined accordingto the 2-state MRP model described in Section II-A.The T I average idle durations for the 20 channels are

21, 51, 3, 21, 14, 2, 51, 14, 1, 21, 21, 51, 3, 21, 11, 2, 51, 14, 1, 21ms, respectively. We set the idle probability P
(i)
I = PI for allchannels. The transmission power for each PU is 0.5 Watt.
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Fig. 1. Algorithm verification for different values of γ.

The simulation results are presented for 1000 “optimizationinstances” that can produce feasible solutions. For eachinstant, the source-destination distance is randomly generatedfrom the range [20, 150] meter. Each SU generates 4-KBdata packets, and requires a minimum data rate RD and aminimum Psuc of γ. We set the SINR threshold to µ∗ = 1dB, Pmax = 1 Watt, P (i)
max = 0.25 Watt, ∀i ∈ K, and thethermal noise to 10−21 Watt/Hz. To describe the fadingchannel between any two SUs, a Rayleigh fading channelmodel with path loss exponent n = 4 is considered.Fig. 1(a) and (b) plot the normalized cost obtained usingour algorithm relative to the optimal cost obtained throughexhaustive search for 100 instances for nr = 4, PI = 0.5 andfor different values of γ. In most cases, our solution is identicalto the optimal solution. Hence, our algorithm achieves a near-optimal solution (within 5% of the optimal). Fig. 1(c) and (d)plot Psuc as a function of PI for different values of RD and γ.These figures1 show that the bound on Psuc is always satisfied.Fig. 2 investigates the performance of our near-optimal algo-rithm (NearOpt) as a function of the idle probability PI fordifferent values of RD and γ = 0.85 and 0.9. Our algorithm iscompared with two multi-channel assignment algorithms: Thelink-quality-aware (referred to as MaxRate [11]) and lifetime-aware (referred to as MaxIdle). MaxRate (MaxIdle) sorts idlechannels in a descending order of their data rates (lifetimedurations), then it picks the minimum number of channelsfrom the top of the sorted list such that the rate demand

1The performance of our algorithm is comparable to the one for the optimalsolution. Hence, for clarity, the optimal solution is not shown in our figures.
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Fig. 2. Performance of a single SU link: Average number of channels perreceived packet.

RD is satisfied. If the number of selected channels exceeds
nr or all idle channels cannot support RD, or Psuc over theselected channels (computed using (5)) does not satisfy therequirement γ, then no feasible channel assignment can befound. Fig. 2 reveals that NearOpt requires less number ofchannels for a successful packet transmission, which resultsin improved spectrum utilization. Fig. 3 plots the averageenergy consumption for a successful packet transmission for
γ = 0.85 and 0.9. It is clear that the performance of ourNearOpt significantly outperforms the performance of theother algorithms in terms of energy consumption.We now evaluate the performance of our algorithm ina multi-user environment via simulations. Specifically, wesimulate a CRN with N SUs distributed over a 150 x 150meter2 area. We set nr = 3. To resolve channel contentionbetween SUs, we adopt the multi-channel CSMA/CA MACprotocol presented in [11]. As shown in Figs. 4 and 5, NearOptachieves higher network throughput and and lower energyconsumption than the other two algorithms under differentSU and PU traffic loads. Other results indicate that the boundon Psuc is always satisfied for all algorithms. In summary,our algorithm allows for better spectrum utilization and moreenergy saving.

VI. CONCLUSION
We proposed a multi-channel parallel transmission mecha-nism for channel assignment in CRNs. Our mechanism consid-
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Fig. 3. Performance of a single SU link: Average energy consumption.

ers the randomness of link qualities and lifetime durations ofPU channels to provide a statistical performance guarantee forSUs. Simulation results showed that this consideration resultsin improved spectrum utilization and more energy saving.
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