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A B S T R A C T

Internet of Things (IoT) devices rely on cloud computing for processing user-sensitive data, like health
recordings and geolocalization. In this case, security primitives like cryptography and certificate-based
authentication does not prevent the cloud provider from acting against the privacy policy. This paper
presents a framework for clouds to execute arbitrarily complex processing tasks over IoT data while
maintaining the access control policies over the client’s control. We rely on a memory enclave to
enforce that the cloud follows personal and customizable access policies and analyzed the security
properties of our scheme. The performance evaluation reveals that these robust security improvements
come with a latency overhead of just 0.1ms, confirming the system’s viability. The system leverages
multi-threaded processing inside an enclave to process thousands of client messages per second, achieving
high scalability. This work also contributes with a microbenchmark that identifies how much each step
of an enclave application influences the performance and evaluates the enclave viability for performing
realistic IoT data processing.

1. Introduction
Internet of Things (IoT) provides connectivity and intel-

ligence to billions of devices in home appliances, industrial
plants, vehicles, and agriculture [2, 3, 4]. Data collected by
IoT sensors are usually sent to a remote server since these
devices offer very limited storage and processing capabili-
ties. Companies use the collected data to provide services
that promise more comfort and automation to the customers
by leveraging cloud infrastructure. Cloud computing reduces
costs by instantiating multiple virtual machines on the same
physical hardware. In addition, clouds provide elasticity, as
physical machines can dynamically and efficiently allocate
virtual resources based on demand [5].

Today, many applications rely on IoT data in clouds, e.g.,
AI-based natural language processing or control of critical
industrial processes, which depend on confidential data from
clients. At the same time, researchers have already shown
that commercial IoT systems are vulnerable to attacks, which
allow the attacker to control smart-home devices, such as
door locks [6]. Hence, there is a gap in ensuring clients that
their data is exclusively used as agreed with companies, even
considering the increasing level of legal regulation [7]. Clients
then lose control over their data, and companies can misuse it
to obtain commercial advantages [8, 9]. Current architectures
that employ encryption and authentication fail if the company
controlling the cloud acts maliciously, as it can run any soft-
ware without clients’ consent.

This paper proposes an IoT cloud architecture in which the
client customizes the actions upon sensitive data sent to the
cloud and who will have access to it. The system leverages
enclaves, which are isolated regions of main memory that
prevent access for reading and writing by any computer com-
ponent, even those with higher privileges, such as the operating
system and hypervisors. Enclaves are state-of-art solutions to
secure data collection and aggregation, manage cryptographic
keys, and secure databases [10, 11, 12, 13]. In these proposals,

⋆Extended version of [1]
∗Corresponding author.

guiaraujo@gta.ufrj.br (G.A. Thomaz)
ORCID(s): 0000-0001-7511-2910 (G.A. Thomaz)

however, the client does not decide which entities have access
to its data and which entities cannot. In this sense, our main
contribution to the current literature is to ensure that the access
control policies to access clients’ data are complied with by
the cloud server, even when it tries to act maliciously. This
work also stands out from other architectures by ensuring
cloud security without requiring a specific database, type of
sensor, or communication protocol, promoting its adoption in
IoT infrastructures already in the market.

The server implementation uses the Intel Software Guard
Extensions (SGX) technology to perform processing in en-
claves, store persistent data with integrity and confidentiality,
and prove to the client that the system is secure. Performance
evaluation results reveal that the platform provides security
for data processing in enclaves, introducing an imperceptible
latency overhead for each client. The system is also scalable,
as it processes thousands of requests per second, attesting
its viability in IoT infrastructures. In addition, we confirm
that the main sources of overhead introduced by enclaves
are the initialization and the entry processes. For optimized
performance, the system: (𝑖) initializes the enclave only on
the server startup; (𝑖𝑖) entries the enclave just once for each
message received from the client; and (𝑖𝑖𝑖) executes only the
critical security tasks inside the enclave.

Compared with our previous work1, the CACIC (Trusted
Access Control Using Enclaves for Internet of Things Data,
translating from Portuguese) architecture now relies on the
coexistence of multiple threads inside an enclave instead of
a single one to handle each publish/query request. This mod-
ification improves the performance of CACIC by order of
magnitude as enclave initialization imposes a significant over-
head. In addition to this implementation improvement, we also
analyze CACIC under the microscope using our benchmarking
tool based on a high-precision timer. This evaluation explains
why queries perform better than publications and allows us to
dissect CACIC to highlight the overhead added by particular
procedures. We improve the assessment of CACIC by demon-
strating the impact of realistic processing tasks, such as IoT

1Previous work available at http://www.gta.ufrj.br/ftp/gta/

TechReports/TGS22.pdf. This paper is written in Portuguese and accepted
in a Brazilian conference (SBRC 2022).
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Figure 1: Typical IoT scenario where devices send data to the
cloud. The cloud server must process the data and provide
services to other devices, companies, and institutions. Clients’
privacy is at risk if the cloud uses their data maliciously.

data aggregation. Our experiments show that CACIC performs
thousands of publications and queries per second and does
not introduce a perceptible latency for the final user, even for
realistic IoT processing tasks.

The remaining of this article is organized as follows. Sec-
tion 2 describes the IoT cloud scenario and attacker model.
Section 3 introduces trusted computing technology, which en-
ables processing in isolated memory enclaves. Section 4 details
the proposed architecture, specifying the modules, protocols,
and message formats developed. This section also highlights
the consequences of each design decision in the security prop-
erties of the system. Section 5 provides the implementation
benchmark results. Section 6 discusses the related work. Fi-
nally, Section 7 concludes the paper and presents directions
for future work.

2. Infrastructure and Threat Model
Figure 1 shows a typical IoT infrastructure where sensors

send the collected data to be processed in a remote server
due to their low computational power. The access points apply
some pre-processing over the data, like encryption and data
correction, composing the edge computing [14]. Then, the
data is sent to virtual machines instantiated in the cloud,
which apply more computationally intensive processing tasks
over a massive amount of data, like machine learning models
training [15]. Companies and devices must query some of these
data in the cloud to make business decisions and automate
processes.

Once the data is uploaded to the cloud, the client loses
control over what will be done with the data if the servers
are unreliable. Eibl et al. demonstrate that data regarding
energy consumption processed in the cloud reveal private
information, such as the number of people using a facility at
a given time [16]. In another scenario, a malicious agent can
impersonate an authentic client to fabricate fake data to access
an electronic lock or harm an automated industrial production.

These examples show that cloud servers must always meet the
following requirements:

1. confidentiality: sensitive data cannot be revealed to any
client;

2. integrity: data cannot be changed by any client
3. authentication: clients must identify themselves to send

and receive data; and
4. access control: clients must choose who has the access

permissions to their data and what can be done with it.

Intrusion Detection Systems (IDS) are efficient in prevent-
ing network intrusion attacks that could compromise system
availability and data security [17]. However, traditional secu-
rity schemes assume that the cloud provider is trustworthy and
uses the clients’ data according to the privacy policy [18, 19].
We consider a threat model where the attacker can be a mali-
cious insider client or a compromised operating system. There-
fore, the attacker can get privileged access to the server [20]
and can:

1. read or write any file;
2. intercept, read, re-transmit or fabricate any network

package.
3. execute or modify any application;

Nevertheless, the attacker cannot:

1. access the place where data is generated, like residences
or factories where sensors, actuators, and local area
network gateways are installed;

2. tamper with cryptographic primitives;
3. perform physical attacks on the CPU package or side-

channel attacks.

To meet the security requirements with this threat model,
we leverage trusted computing using enclaves, as described in
the next section.

3. Trusted Computing Using Enclaves
Trusted computing constitutes a set of technologies that

offers security using hardware resources. The most commonly
used trusted computing technology in cloud computing is the
Software Guard Extensions (SGX), available in the most recent
Intel Xeon processors. Intel SGX uses special x86 architecture
instructions to instantiate isolated regions in the computer’s
main memory, called enclaves. Enclave contents are encrypted
in main memory and are only decrypted inside the CPU
using a unique key that never leaves the device and cannot be
accessed externally [21]. Figure 2 shows that the application
first initializes the enclave by creating and transferring memory
pages to the enclave reserved memory region, which imposes
a significant overhead. The SGX instructions that initialize
the enclave also compute a hash-based measurement of its
content at the microarchitectural level so that no software can
tamper with the result. When an insecure application needs
to execute sensitive computations, it can access an enclave
routine through an ECALL instruction, which inserts overhead by
copying data from untrusted memory to the enclave reserved
memory. The enclave entry also involves security checks at the
microarchitectural level to ensure confidentiality and integrity
of code and data even if the BIOS, the operating system, the
hypervisor, or the super-user are malicious [22].
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Figure 2: An application initializes an enclave and calls a trusted
function (ECALL instruction) that processes confidential data in an
isolated environment, with privileged access by the processor.

Before sending its data to an enclave in the cloud, the
client must ask the server to perform a remote attestation. The
attestation proves that the server is running on a legitimate
SGX-enabled platform with the expected code [21]. Intel’s
Data Center Attestation Primitives (DCAP) is an attestation
mechanism based on public key infrastructure (PKI) [23]. A
pre-made Intel enclave, called quoting enclave, uses a unique
private key, in the format of the x509 certificate, to sign
the enclave measurement done in the initialization step. This
signed measurement is forwarded to the client, and the enclave
is considered trusted if the signature can be decrypted using
the data center public key provided on the certificate. The
client can also compare the measurement with an expected
value to ensure that the enclave code loaded into the main
memory is the expected. The attestation protocol is based
on Elliptic Curve Diffie-Hellman Key Exchange (ECDHKE)
between client and server enclave to transmit the report using
symmetric encryption [24]. If the attestation is successful,
the client can transmit confidential secrets over this encrypted
channel so that only the enclave can decrypt them.

Intel also offers a service called Enhanced Privacy ID
(EPID), where the client needs to access an online centralized
Intel Attestation Server (IAS) to verify the validity of the sig-
nature [1, 25]. DCAP eliminates relying on a single verification
point since Intel servers are only requested in the provisioning
step. In this step, Intel servers provide the quoting enclave with
the private key that never leaves this enclave used to sign the
measurement, the corresponding public key, and the lists of
revoked certificates.

Enclaves have the sealing capability, which allows data to
be persistently stored in secondary storage out of the main
memory region of the enclave. The data is encrypted with a
key derived from a hard-coded secret inside the CPU. As this
key is never visible outside the enclave scope, sealed data can
only be recovered by an enclave [26].

A limitation of using enclaves regards the attestation pro-
cedure which requires the code to be publicly available for the

Figure 3: Client access points send and receive data encrypted
with their registered communication keys. Data received by the
cloud is decrypted, processed, and encrypted in enclaves before
being published.

attesters [27]. In fact, the enclave code is already available
outside the protected memory before it is loaded into the
enclave. Also, distributed computing is more complex with
enclaves because they all must attest to each other. Further-
more, transferring data into an enclave is a known source of
overhead. Thus, the overhead introduced by distributing a task
into multiple enclaves may become even more significant [28].

The threat model of SGX assumes that the attacker cannot
perform a physical attack inside the CPU package to steal
hard-coded secrets or tamper with the microcode. However,
a well-known SGX vulnerability that compromises enclave
confidentiality is side-channel attacks. These software attacks
can happen through OS kernel manipulation to infer the ap-
plication memory access pattern by measuring computation
time [29]. The most common side-channel attack regarding
SGX is the cache side-channel attack, in which the attacker
uses a malicious process to fill the cache used by a given
core executing enclave code. Then, every time enclave pages
are accessed, they are loaded into the cache, evicting existing
attacker pages. Periodically, the malicious process accesses
its data, which filled the cache before. If the access time to
a certain location becomes high, this means that the content
there was evicted. This location was then accessed by the
enclave [30]. Information obtained this way is reverse engi-
neered into actual data since the attacker has access to how
the OS kernel maps the application memory. Many solutions
have been proposed to protect SGX enclaves from side-channel
attacks but eliminating this threat is still an open problem in the
literature that goes beyond the scope of this paper [31].

4. System Architecture
Figure 3 illustrates the architecture composed of clients

that send data to or receive data from a trusted cloud server
through its access points. The communication uses Hyper Text
Transfer Protocol Secure (HTTPS) [32] because it is a secure
and widely adopted protocol in web servers. However, the
sole deployment of HTTPS is not enough to meet the security
requirements proposed in Section 2. Therefore, we leverage
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Figure 4: Data in transit is encrypted with the communication key (CK) and stored data is encrypted with the enclave-exclusive sealing
key. Only the enclave decrypts and processes the data in the cloud. The blue color highlights the security mechanisms introduced by
the architecture. The customization of access permissions (perm) by the client is an innovation of the proposal.
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memory enclaves to equip our system with the four proce-
dures described below. Figure 4 summarizes the protocols that
clients and the server follow to accomplish these procedures.

4.1. Protocols for secure procedures
Initially, the client access point must register in the plat-

form (1) to share its symmetric communication key (CK) with
the server, used to encrypt sent data and decrypt received data.
In the registration, the client access point must attest that the
server is trusted (2), as presented in Section 3. The access point
sends the key to the enclave if the attestation is successful.
The attestation procedure involves not only one message but
multiple messages in both directions during the key exchange.
We indicate that by using double arrows in the diagram. The
server seals the key before writing it on disk and associates this
key with the client public key used to identify who is sending
the following messages.

When the access point receives data from sensors for
publication (3), it assembles a message (M[publication], 4)
with the following fields:

M[publication]=[pub|nonce|type|size|CK(data|perm|nonce)].

The symbol | symbolizes the concatenation of bytes. The
public key (pub) identifies the client to the server, which locates
the communication key (CK) sealed on disk. The data type
identifies the originating device so that the platform applies
the appropriate processing for each case. Client access permis-
sions (perm) permit the server to be aware of who can access
the published data using a list of public keys. In addition,
permissions are encrypted together with the data, as they are
private information. The nonce is sent to avoid replay attacks.
Once the publication message is received, the server enclave
retrieves the communication key, decrypts the data, verifies if
the nonce is fresh, and applies some processing, depending on
the data type (5). The enclave also verifies if the encrypted
nonce is consistent with the plain-text nonce to confirm that an
authenticated client constructed the message with the correct
CK.

To illustrate a common application of the system, we
describe the aggregation of energy consumption data of a
client. The client sends a M[publication] identifying the data as
a smart meter data using type field. After receiving the message
and identifying the type, the server reads from the database
other energy consumption data from the client. Therefore,
the enclave can decrypt the samples and calculate a sum, as
described in Algorithm 1. With the proposed architecture, a
control center can use this data to make decisions regarding
energy distribution planning, for example, without gaining ac-
cess to confidential consumption patterns. Other proposals use
homomorphic cryptography for computing the sum while the
data is encrypted. However, enclaves stand out for introducing
a much smaller processing delay, as well as allowing arbitrarily
complex operations on the data, such as filtering [33]. Before
publication in the database, the data is sealed with access
permissions and nonce.

In the query procedure, the client access point sends a
message M[query] (7) with the following format:

M[query]=[pub|nonce|size|req|CK(nonce)],

where pub is the public key that identifies the client and req

is the command used to locate and request the data in the
database. The request is forwarded to the database (8) and

Algorithm 1 Algorithm for aggregating data inside the en-
clave. The MAC and nonce checks are omitted. The enclave
uses the result to build an encrypted sample for publication.
Input: (𝑠𝑖𝑧𝑒, 𝑒𝑛𝑐_𝑑𝑎𝑡𝑎[𝑠𝑖𝑧𝑒], 𝑠𝑒𝑎𝑙𝑒𝑑_𝐶𝐾)
Output: 𝑠𝑢𝑚

𝑠𝑢𝑚 ← 0
𝐶𝐾 ← Unseal(𝑠𝑒𝑎𝑙𝑒𝑑_𝐶𝐾)
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
while 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≠ 𝑠𝑖𝑧𝑒 do

𝑑𝑎𝑡𝑎 ← Decrypt(𝑒𝑛𝑐_𝑑𝑎𝑡𝑎[𝑐𝑜𝑢𝑛𝑡𝑒𝑟], 𝐶𝐾)
𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ← GetPayload(𝑑𝑎𝑡𝑎)
𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑝𝑎𝑦𝑙𝑜𝑎𝑑
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

end while

the response is the sealed data (9). Then, the server enclave
retrieves the client communication key (CK), decrypts the nonce
with the CK and verifies if the nonce is fresh and consistent
with the plain-text nonce (10). Therefore, it unseals the data
received from the database and checks if the access permis-
sions (perm stored with the data) allow access to the data by the
interested client (10). If so, the enclave encrypts the result with
the CK and sends it to the access point. Finally, the access point
decrypts the received data using the CK, making it available to
the interested device (11).

An advantage of our proposal is that it does not impose
any computational requirements or rigid message format on
the sensor. This advantage is a consequence of delegating to
the access point the key establishment and data encryption,
regardless of the message format used by the sensors. The
diversity of IoT devices in terms of protocols and perfor-
mance specifications justifies this design choice, making the
proposal flexible and device-agnostic [34]. The architecture is
database-agnostic, so the query message has a flexible format
according to the application. The cloud provider is free to
deploy the database on the same machine as the server, on a
separate server, or even in a distributed fashion. Our approach
is not agnostic regarding the access point since we assume
it must have the computational power to perform encryption
and HTTPS communication. That way, the sensor can employ
more lightweight network protocols, such as the Constrained
Application Protocol (CoAP), since the access point can act
as a proxy. The access point translates the message by iden-
tifying the data source (type), encrypting the data together
with access permissions, preparing the publication message
M[publication], and forwarding it using the widely adopted
HTTPS.

A differential of the architecture is the possibility for the
client to configure access permissions on the access point. The
access point adds the field perm to the publication message
(M[publication]) so that the enclave prevents or allows access
when a client requests this data. A client can prevent the
biomedical signals from their smartwatch from being made
available to the watch manufacturer but can allow them to
be accessed by a biomedical research institution, for example.
This is only possible because the client has established a trust-
worthy relationship with the trusted execution environment in
the cloud.

This access control mechanism is based on sticky policies,
first proposed by Karjoth et al. [35]. Sticky policies are stored
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Figure 5: The enclave reduces the maximum publication rate by
12%, but the system still processes thousands of publications per
second.

and transmitted along with the data, providing the data pro-
ducer with in-depth control over access rules for every single
data unit [36]. This approach relies on a Trusted Authority
(TA) for managing decryption keys and enforcing access con-
trol, which is the enclave in our proposal. For evaluating the
system, we implement the policies as Access Control Lists
(ACL) containing the identity of the clients allowed to access
the data. Although this implementation is simple, the archi-
tecture supports other access control attributes like expiration
timestamps or restrictions for the data usage.

The client can revoke the access permission or even com-
pletely remove the data, sending a revocation message in the
following format:

M[revocation]=[pub|nonce|size|req|CK(perm|nonce)].

The server first queries the data published together with the
access permissions from the database using the req command
(13, 14). The enclave verifies the nonce and unseals the data as
described for other procedures. Therefore, it updates the access
permissions of this data with the new permissions sent on the
perm field (15). If this field in the message is null, this means
that the data must be removed from the database. If not, it
overwrites the database entry with new data containing new
access permissions (16). In essence, the revocation procedure
is a combination of querying old data and publishing a new
one.

4.2. Security properties
This section describes how the mechanisms described in

Section 4.1 can make the system resilient to the threat model
described in Section 2. We do not prove the system security,
since formal methods are out of the scope of this paper.
However, we would like to provide a pointer on this area that
could be interesting for readers [37].. An attacker who gains
privileged access control over the server may read data from
arbitrary files. The system stores two sensible information in
the file system: the client’s communication keys (CK) and the
client’s data in the database, along with the access permissions.
With the CK, the attacker can decrypt the data and access
permissions sent on the client publication messages. It can
even use the CK to build a valid query request (M[query]), send

Figure 6: The latency quickly increases when the system achieves
its maximum publication rate since new messages are inserted
into a queue.

it to the server enclave, and decrypt the result, violating the
access control policies and authentication requirements. To
avoid these attacks, the server encrypts the communication
keys with the sealing key. We assume that no one can tamper
with the SGX hardware, making it impossible for the attacker
to obtain the sealing key. The access point generates the CK

during the attestation, but this does not affect the security of
the proposal, as the attacker model assumes that the client is
trustworthy. The remote client is responsible for maintaining
its CK confidential. The database is also encrypted with the
sealing key. Since all data encrypted with the sealing key is
also accompanied by a Message Authentication Code (MAC),
the attacker cannot write fake data into the database or modify
a CK. We do not deal with system availability issues such as
deleting contents from the disk or simply shutting down the
server by the cloud provider.

As described in Section 2, the attacker can also intercept
network packets to read or modify their content. Data and
database requests are encrypted with the communication key
and are accompanied by a MAC, ensuring communication
confidentiality and integrity, respectively. An attacker cannot
replicate old messages because of the nonce freshness verifica-
tion performed by the enclave. The enclave compares the plain-
text nonce with the decrypted nonce using the CK. That way, an
attacker interested in generating a random nonce to fabricate a
fake message will not be able to encrypt the nonce since it does
not have access to the client CK. Availability attacks such as
Distributed Denial of Service attacks (DDoS) or packet drop
attacks are not considered.

The attacks described above only manipulate the I/O (net-
work or disk), and do not involve modifying currently running
applications or running a malicious application. As described
in Section 2, the attacker can modify the existing code to
introduce a malicious task such as revealing client data in the
clear. The OS is also not trusted, so an attacker can read, write
or execute code in any memory region outside the one reserved
for the enclave. To avoid these attacks, the cloud developer
must design the applications to process the data inside the
enclave, to ensure confidentiality and integrity at runtime. All
the sensible information, like CK, data, access permissions, and
encrypted message fields are only decrypted after entering
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Figure 7: This result is analogous to Figure 5. The reduction in
message processing rate due to the enclave is more significant in
that case since queries are faster.

the enclave and only encrypted before leaving the enclave, as
shown in Figure 4. The attestation protocol at the registration
phase guarantees that the server does not falsify the code that
runs inside the enclave, as the client checks if the signed
measurement of the enclave code matches an expected value.
As described in Section 3, the signature relies on a trusted
system enclave owned by Intel that cannot be tampered with
by any other component in the software stack. The client does
not proceed with the communication if the code measurement
is not the expected one, or if the signature cannot be verified,
indicating that the server does not leverage a genuine enclave.
That way, the client has complete control over who accesses its
data, as access requests are processed in a trusted and isolated
environment, even if the server is controlled by a malicious
agent.

5. Implementation and Results
The performance evaluation aims to: i) verify if the archi-

tecture is scalable, ii) measure the processing latency intro-
duced by enclaves, and iii) verify how the architecture deals
with a processing task that operates over a large amount of
data instead of just publishing the received data. IoT cloud
systems need to serve a large number of clients at the same
time, given the growing number of devices. This challenge
justifies evaluating the performance of security proposals with
a large number of clients [38]. The experiments evaluate the
number of requests the platform processes per second and
the time for publishing and querying data. The trusted server
was implemented in a computer with an Intel i9-10900 CPU
2.80 GHz, 32 GB RAM, and 20 threads. This machine also
sends messages for querying and publishing synthetic data in
the Ultralight 2.0 format, a standard adopted by the FIWARE
platform for developing intelligent applications used in other
works [39, 12, 40, 41]. Still, the data format supported by
the platform is generic, as described in Section 4. A Software
Development Kit (SDK) for using the Intel SGX trusted in-
structions in C++ language was used2.

2Project repository available at https://github.com/GTA-UFRJ-team/

TACIoT.

Figure 8: This result is analogous to Figure 6. The system
processes more queries than publications per second.

We organize our results into four subsections. Subsec-
tion 5.1 presents the results concerning the maximum process-
ing rate in publications per second and queries per second. It
also presents the latency increase when the system is at its max-
imum processing capacity. Subsection 5.2 presents the latency
overhead introduced by the enclave. Subsection 5.3 presents
the microbenchmark results, detailing the influence of each
step on the total overhead. Subsection 5.4 presents the time for
aggregating data samples. The idea is to confirm the system
viability for realistic IoT processing. Subsection 5.5 presents
the server resource usage while processing requests, revealing
how much of the server CPU and memory capacity is used. We
do not measure the registration time since the Intel attestation
procedure is not a contribution from our work, and other works
already evaluated its performance in the literature [42, 32].
The attestation time greatly depends on the network latency
because of message exchanging, as presented in our previous
work [1]. Also, the attestation procedure is executed only once
by the user when bootstrapping the system. The results use 95%
confidence interval.

5.1. System scalability
The first experiment evaluates the number of publication

messages a server can process per second, which includes steps
4 to 6, as denoted in Figure 4. We reproduce clients sending
publication messages at the same time with a constant rate
of publications per second (pub/sec) and measure the server
processing rate. For this, we use the wrk2 tool for sending
constant HTTP workloads and evaluating the performance
statistics [43]. The experiment was repeated without the en-
clave (step 5 in Figure 4) to evaluate the overhead added
by the proposed security mechanisms. Figure 5 shows that
the publication rate increases rapidly with the sending rate
as the system processes requests in parallel. For less than 4k
messages sent per second, the processing rate is similar to the
sending rate, suggesting that, until this point, the server does
not reach its processing limit yet. As the sending rate increases,
the curve inclination decreases until the processing rate stabi-
lizes at a maximum value, representing the server processing
capacity limit. The maximum processing rate is 5,500 pub/sec
for the secure server (with enclave) and 6,250 pub/sec for
the insecure server (without enclave). This represents a 12%
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Figure 9: The enclave adds an imperceptible latency overhead
for the clients. The enclave does not perform any computation-
intensive processing and the overhead is mainly due to the ECALL.

decrease in the maximum publication processing rate, which
is small considering that our system can still serve thousands
of clients per second with a much stronger threat model.

Figure 6 reveals that the latency of a single publication
message is in the order of a few milliseconds when the system
is below its processing rate limit. When the system achieves
its maximum parallelism, every new message is inserted into a
queue and is only processed when a thread becomes available.
This is confirmed by the rapid growth in latency around the
maximum processing rate. The client will notice a response
time in the order of seconds in both secure and insecure
cases when the server is at its parallelism limit. Repeating the
experiments using a server with higher parallelism will lead to
a higher maximum processing rate.

The second experiment evaluates the number of query
messages processed per second (que/sec) by the server, which
includes steps 7 to 10 in Figure 4. We follow the same method-
ology described for the first experiment. The results presented
in Figure 7 are analogous to the first experiment, with a
maximum rate equal to 13,540 que/sec without enclaves and
10,110 que/sec with enclaves. In both cases, the query rate is
higher than the publication rate, suggesting that the query pro-
cedure is faster than the publication procedure. The overhead
added by the enclave in the query is not that negligible, leading
to a performance drop of 25% compared with the insecure case.

Figure 8 is analogous to Figure 6, confirming that the
latency increases rapidly when the server reaches its maximum
processing rate. For the query messages, this maximum pro-
cessing rate is much higher than for publication messages. As
we increase the sending rate, the curve for the secure server
starts to grow before the curve for the insecure server. This
happens because the maximum rate is much lower when using
the enclave.

5.2. Message latency
The third experiment evaluates the time between the client

transmission of a single request and the reception of a suc-
cessful response using the wrk2 tool. This experiment aims
to verify if the enclave adds significant overhead in response
time. Figure 9 shows that, in both cases, the enclave adds only
0.1 ms of delay, which is imperceptible for most applications.

Procedure Elapsed time (𝜇s)
Enclave initialization 5848
Enclave publication
message processing 105

Database write 387
Other procedures 42

Total publication time
(not considering HTTP) 534

Enclave query
message processing 105

Database read 56
Other procedures 74
Total query time

(not considering HTTP) 235

Table 1
Publication and query latency microbenchmark results. The
publication time is dominated by the disk writing and the query
time is dominated by the enclave.

The enclave does not apply expansive computation over the
published data since the experiment only evaluates the publi-
cation/query messages processing times. The time introduced
by the enclave processing is the same for publication and
query because the system executes three sealing/unsealing and
encryption/decryption operations in both cases, as presented
in steps 5 and 10 of Figure 4. The experiment also confirms
that publication time is approximately 25% higher than the
query time for both secure and insecure servers. This result
explains why the maximum query rate of the server is much
higher than the maximum publication rate, as discussed before.
The time added by the enclave has more influence on the total
query time than on the total publication time since the query
procedure is faster. This explains the significant reduction in
the maximum query rate caused by the enclave, as discussed
before. These experiments confirm an inverse relationship
between the latency of a single request in seconds and the
maximum rate in requests per second. The performance of the
revocation procedure must be analogous as it is a combination
of querying old data and publishing it with updated access
permissions.

5.3. Microbenchmarking
The previous experiments treated the server as a black box

since we leverage the wrk2 tool to simulate clients interacting
with the server through HTTP requests and measure the time
and the rate by the responses. The fourth experiment analyses
the system under the microscope, detailing how much each
procedure contributes to the total overhead. For this, we de-
veloped our own custom benchmarking tool based on high-
precision timers. The microbenchmarking tool individually
measures the elapsed time of each critical code section and
computes statistics, such as mean and variance, at the end of
an experiment epoch, with 1 𝜇s resolution. This measurement
does not include the overhead added by HTTP processing.
Table 1 presents the mean elapsed time in microseconds for
each procedure. After repeatedly running the experiments, we
observe that the confidence interval is negligible (lower than
the resolution). The first row represents enclave initialization,
which includes creating and transferring memory pages to the
processor reserved memory, as described in Section 3. The
following four rows relate to the publication procedure. In
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Figure 10: The enclave overhead increases as more data is
transferred to it. However, the time for reading the samples from
the database is much higher than this enclave overhead.

that case, the bottleneck is the time to write to the secondary
storage, which does not depend on the proposed architecture.
The last four rows relate to the query procedure. In that case,
the smaller time to access the database led to much better
performance. The bottleneck for the query becomes the en-
clave, explaining why removing the enclave from the query
procedure results in a substantial performance improvement
(Figures 7 and 8).

Previously, we proposed initializing and destroying an
enclave for processing each publication and query message.
Table 1 revealed that just the enclave initialization time is
10 times higher than the total publication time and 25 times
higher than the total query time, dominating the total overhead.
This very slow initialization imposes a significant performance
bottleneck in our previous implementation. Now, the server
takes advantage of multi-threaded processing inside a single
enclave to initialize the enclave only on the startup, optimizing
the system performance by order of magnitudes.

5.4. Use case: Aggregation
The fifth experiment evaluates the time taken to perform

realistic data processing over some fictitious IoT data samples.
We consider the use case of aggregation, described in Sec-
tion 4. Figure 10 presents the time to aggregate the samples
with and without enclaves. We measure the time for aggre-
gating 1; 500; 1,000; 1,500; and 2,000 samples to verify the
influence of the number of samples. When the number of
samples is 1, the system just decrypts the data and does not
perform any sum. In both cases, the time depends linearly
on the number of data aggregated. This is expected since the
asymptotic complexity of the Algorithm 1 is O(n), where n is
the number of samples, considering that it repeats the same
efficient decryption and sum operations for every data sample.
However, the aggregation time with the enclave is always
higher. This is a consequence of an additional step to execute an
ECALL instruction to call the enclave and transfer the data buffer
by reference before starting the described algorithm. Other
works demonstrated that the ECALL instruction is one of the
main performance overheads introduced by enclave utilization,
going from 4K clock cycles up to 20k clock cycles, depending
on the amount of data transferred to the enclave [44, 45]. The

Figure 11: Percentage of CPU time for the server process,
considering the sum of all CPUs. The resource usage is dominated
by the HTTPS protocol implementation, as seen in gray.

difference between the secure and insecure curves represents
the overhead added by entering the enclave. As the amount
of data transferred to the enclave grows, the time taken to
enter the enclave also increases, and the curves diverge. This
is compatible with the results presented since the secure curve
inclination is higher than the insecure case.

The time for reading a single sample from the secondary
storage is approximately 56 𝜇s, as presented in Table 5.3. For
thousands of samples, the total reading time is in the order of
tens of milliseconds, which is much higher than the time for
processing these samples. As the number of samples grows, the
overhead introduced by the enclave increases, but the time for
reading these samples from the database increases as well. This
result suggests that the overhead introduced by the enclave can
be imperceptible for the client if the application involves in-
tensive I/O operations, as the bottleneck is on disk read. These
results are promising, considering that many applications, such
as those requiring machine learning model training, are I/O
intensive. Even though this is a straightforward conclusion, we
still need more experiments to confirm.

5.5. Resources Usage
The sixth experiment evaluates the CPU usage in terms of

the percentage (%) of CPU time the kernel dedicated to the
server process and physical memory usage in MB. We used the
psrecord tool to monitor the server’s resources while receiving
2k HTTPS messages per second for 30 seconds. Figure 11
shows the CPU consumption. The values can be greater than
100% because the result is the sum of all percentages of time
dedicated to the process by all CPUs. Thus, the maximum CPU
usage for the entire 20-core machine is 2,000%. We initially
disabled the publication and query functionalities to measure
the resource usage by the HTTPS protocol alone, i.e., to create
a baseline, presented in Figure 11 in gray bars. In that case,
the mean CPU usage for receiving HTTPS messages is 148%
for publications and 68% for queries. Publication messages
tend to be larger, taking more time to process by the HTTPS
library. Afterward, we re-enabled the system functionalities
to measure the impact of the proposed publication and query
protocols on resource usage. For that, we define the CPU usage
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overhead as the difference between the CPU usage while pro-
cessing the requests and the CPU usage baseline, as defined be-
fore. For the insecure case, the CPU usage overhead is 24% for
both publications and queries. For the secure case, on the other
hand, the CPU usage overhead is 50% for publications and 32%
for queries. The architecture does not impose significant CPU
usage, considering that the overhead introduced by the security
procedures is not very significant. Furthermore, it is evident
that the HTTPS protocol dominates CPU usage and that the
values are very distant from the maximum server capacity. The
memory consumption maintained stable at around 7MB for all
experiments, indicating that the operations are not memory
intensive. Repeating the experiment with rates greater than
2k messages per second leads to similar results. These results
confirm that high message processing rates do not require an
architecture with lots of CPU and memory resources.

6. Related Work
Trusted computing technologies are used in the literature to

protect data at every component of IoT infrastructure when the
user controlling the component can be malicious. Therefore,
the works presented here can be divided into the following
categories: (i) trusted sensor [10]; (ii) trusted database [13];
(iii) trusted consumer [12]; and (iv) trusted middleware [11,
46, 47].

Yang et al. implement a custom trusted computing platform
for Industrial Internet of Things (IIoT) to ensure the reliability
of published data in a scenario where sensors and actuators
can be compromised [10]. The proposal uses a blockchain to
maintain a transparent, auditable, and distributed record of the
data, as well as to perform more complex processing on the
data with smart contracts [48]. The paper does not deal with
the security of data sent to the cloud. Moreover, the system
is not completely confidential, since the data published in the
distributed ledger is public.

Priebe et al. developed a database engine running in-
side memory enclaves using Intel SGX [13]. The system is
promising for the IoT architecture, in which sensors publish
and query data in the cloud, as requests are processed in an
environment isolated from the administrator and the operating
system. The proposal focuses on data storage and is not a
complete solution for IoT. In a scenario where the cloud is
malicious, the attacker gains access to the data processed in
the main memory before it is published. Zegzhda et al. describe
the use of SGX functionalities to provide cloud Platform-as-a-
Service (PaaS) services for loading and running generic web
applications on enclaves [19]. The work neither focuses on
sensitive IoT data storage nor implements an architecture.

Li et al. perform smart meters data aggregation, dynamic
pricing, and consumption forecasting within memory en-
claves [11]. These tasks require access to data from several
clients and are prohibitive for devices with low computing
power, forcing the users to deliver their data to a remote
server. The architecture employs Intel SGX on the client access
point and the remote server. Furthermore, it focuses on the
secure availability of data for the energy company and does not
implement an access control system for authorized customers
to query the stored data. Trusted execution environments are
not the only tools to ensure security while data is processed.
Silva et al. compare the aggregation time of energy consump-
tion measurements using trusted computing with Intel SGX

and homomorphic computing [33]. The two aggregation mech-
anisms ensure runtime privacy. However, trusted computing
performed ten thousand times faster, confirming that trusted
execution environments are not only secure but also offer a
much lower overhead.

Valadares et al. expand the architecture of the FIWARE
smart applications development platform to provide sensitive
sensor data to authenticated users [12]. The authors use en-
claves in the cloud to store keys for encrypting data generated
by producers and decrypting data queried by consumers. The
architecture does not process data in the cloud, requiring the
consumer to have a processor with SGX support, perform
an attestation to receive the data decryption key, and process
the data locally. The cloud platform implements a publish-
subscribe server, responsible only for disseminating the data to
authenticated consumers and managing the keys. The platform
does not allow the producer to customize the actions done upon
their data.

Ayoade et al. leverages trusted computing to process IoT
data from different companies in a shared cloud middle-
ware [46]. The paper highlights that, despite the high cost-
benefit of cloud services, vulnerabilities in these environments
allow a company to gain access to industrial secrets and
sensitive customer data. The authors isolate data processing in
enclaves and make the data from devices available only to the
company that manufactured them. The system uses enclaves at
the access point, assuming that the gateway can be malicious.
The architecture proposed by Ayoade et al. is not optimized
since the server initializes an enclave before processing each
received message and performs an attestation before each
data publication. In addition, the server performs entries and
exits in enclaves much more frequently. The platform offers a
performance overhead more significant than the one presented
by our proposed architecture.

Anciaux et al. analyze personal data management systems
for private clouds and describe the requirements for providing
generic computations with a threat model that includes high
privileged attackers [47]. Even though the authors do not
provide implementations, they provide an overview design that
would leverage TrustZone in mobile devices and SGX in the
cloud for managing access control. In recent work, Carpentier
et al. demonstrate a prototype of the architecture proposed in
[47] based on an application for rewarding employees using
bikes with green bonuses [49]. The core, running on an SGX
enclave, includes a Role Based Access Control (RBAC) policy
enforcement module and can be extended with other enclaves,
named data tasks, for specific computations. The authors do
not focus on an IoT scenario, assuming that the device is a
smartphone with high computing capabilities. In another re-
cent work, the authors have shown that the separation between
core and modular data tasks introduces an average overhead of
25% [50]. However, more performance evaluations concern-
ing throughput, latency, and resource usage are necessary to
confirm that the architecture yields high throughput and low
latency requirements for IoT.

Unlike the papers cited above, this paper proposes a high-
performance system that allows users to determine how their
IoT data will be used in the cloud, even when entities with
high-level privileges are malicious. This work optimizes the
performance by relying on multi-threaded enclave execution
and proposes a revocation protocol. In addition, this work
develops a detailed security and performance analysis that
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confirm the advantages and limitations of enclave utilization in
realistic IoT data processing scenarios. We have confirmed that
our architecture is suitable for the diverse IoT settings since it
does not depend on the database or communication protocol
and does not require any specific functionality or minimum
performance requirement for the devices. Another advantage
of our system is that it applies arbitrarily complex processing
to the data, which does not happen in proposals based on
homomorphic cryptography, for example.

By default, SGX is not suitable for applications in which
the code contains industrial secrets since enclaves do not
ensure code confidentiality, as described in Section 3. Silva et
al. propose a tool to protect SGX code privacy by dynamic
loading code inside the enclave whenever needed [27], which
may be useful for a CACIC extension. Also, we do not evaluate
the performance of a computing task distributed among mul-
tiple enclaves. Some intensive tasks benefit from distributed
computing, but the communication between enclaves can be
computationally expansive, as presented in Section 3 [28]
Mathematical proofs of security and defenses against attacks
on the client side are out of our scope in this work.

7. Conclusion and Future Work
This paper proposed an architecture to protect access to IoT

data transmitted, processed, and stored in the cloud. We con-
sidered a threat model with almost complete control over the
system, such as a cloud administrator interested in obtaining
some financial advantage over clients’ data. The architecture
detailed in the article uses trusted execution environments to
address these issues since conventional encryption and intru-
sion detection schemes fail in this scenario. The performance
analysis revealed that the enclave adds only 0.1 ms to the
latency for publishing and querying data and that the system
processes thousands of requests per second.

This work improves the system performance by order of
magnitude by leveraging multi-threaded processing inside an
enclave. We also analyzed the system under the microscope,
concluding that the main performance bottleneck is the disk
write time, in the case of publication, and the enclave, in the
case of query. This analysis revealed that the initialization
time is more significant than other procedures, confirming
that initializing the enclave only on the system startup is an
important design choice for performance enhancement.

In future work, we aim to extend the architecture for
protecting the data within sensors and access points. We also
plan to implement a system for clients to publish their own
data processing codes to be protected in the cloud enclave.
The performance evaluation must also be extended to analyze
the use of enclaves for machine learning, deep learning, and
federated learning, given the relevance of these technologies
in cloud applications. Another promising future research di-
rection is the implementation of distributed processing and
storage architectures using enclaves. Finally, we must formally
demonstrate the system’s security.
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