
Future Generation Computer Systems 135 (2022) 1–9

a

b

t
r
d
u
r
t

t
r
t
t
h
v
m
a
e
t
e
c

w

(
(

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Towards drivers’ safetywithmulti-criteria car navigation systems
Leonardo Solé a,∗, Matteo Sammarco b, Marcin Detyniecki b, Miguel Elias M. Campista a

Universidade Federal do Rio de Janeiro (UFRJ), Brazil
Axa, Paris, France

a r t i c l e i n f o

Article history:
Received 31 July 2021
Received in revised form 9 December 2021
Accepted 19 April 2022
Available online 30 April 2022

Keywords:
Car navigation systems
Alternative routes
Multi-criteria classification

a b s t r a c t

Usual car navigation systems are configured to propose either the shortest or the fastest path between
any origin–destination pair, neglecting the particularities of the territory. Some roads are impracticable
when raining, some others are to avoid at night for the scarce lighting, or less safe for the presence of
criminality and high accident ratio. On the other hand, longer paths can be safer and more pleasant
as they pass through less noisy zones, with the presence of beautiful landscapes. In this paper we
analyze the faults in current car navigation systems, especially quantifying the trade-off between
safety and traveling time or path length. We propose two multi-criteria route planning methods,
HVT (Hierarchical with Variable Tolerance) and R2V (Route to Vector), suggesting the best path to
drivers also considering safety or multiple drivers’ specific needs. A dataset of 3,170 paths from 600
origin/destination pairs within London is created and shared to the research community. With this
dataset, we show that selecting routes with reduced driving risks is indeed possible with a marginal
increase in travel times.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The navigation system market, including automotive applica-
ions, is expected to register a CAGR of 11.3% over the forecast pe-
iod 2020–2025 [1]. In particular, car navigation systems contain
igital maps, with information about the neighboring areas, and
se route planning algorithms to give directions to drivers. These
oute planning algorithms tend to focus on finding the fastest or
he shortest path between origin–destination (OD) pairs [2].

The downside of the single-criterion approach, however, is
he chance to lead drivers through unpleasant or even dangerous
outes without significant time-related gains. Other characteris-
ics may have an impact on drivers’ overall satisfaction when
raveling as well. The contact with nature has been found to
ave a positive effect on mental health and wellness, even if just
isual, as is the case for drivers [3]. On the other hand, traffic
ay increase stress levels and even mortality due to noise and
ir pollution [4]. Besides health-related problems, drivers also
xperience anger issues on road, that influences the drivers’ atti-
ude, with an increase in aggressive driving, risky driving, driving
rrors, and accidents [5]. Choosing alternative routes, therefore,
an have an enormous impact on the drivers’ safety [6–9].
Fig. 1 shows an example of a set of routes for a given OD

ithin the London area. The map includes an overlay heatmap
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representing the criminality rates and a second overlay indicating
locations of vehicle accidents with relative severity. Route 1,
represented as a bold yellow path, is the fastest route and it is
recommended by most car navigation systems. It passes through
an area with high criminality rate though. On the other hand,
Route 2, represented by a red line, goes through an area with less
criminality and more nature, and could be preferred over the first
route, especially if the duration of both routes is similar.

This paper aims to provide methods to measure different
route characteristics that may influence the driver’s safety and
pleasantness perception. We evaluate different route selection
methods with either a single or a multiple criteria approach,
with the intent to find the best path from a set of previously
calculated routes. We introduce two novel multi-criteria route
selection methods. The first method, called Route to Vector (R2V),
translates route features into vectors and finds the one closest
to the best vector. The second, called Hierarchical with Variable
Tolerance (HVT), follows a user-defined feature order to reach the
best route.

To evaluate our approaches, we have beforehand built a novel
dataset containing criminality, traffic, accidents, nature, tourist
attractions, and trajectory information data about 3170 routes
from the city of London [10]. Safety-related parameters are in-
dividually evaluated with the proposed methods to emphasize
safety gains. The obtained results show that our multi-criteria ap-
proaches decrease driving risks without significant time-related
penalties. Also, we confirm that relying just on duration or path
length may lead to dangerous and unpleasant trajectories.
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Fig. 1. Example of a set of routes for a given origin–destination (OD) pair within
the London area. The underlying heatmap represents the criminality rates, while
the stars indicate positions of previous vehicle accidents. Route 1 is the fastest
route recommended by most car navigation systems and it goes directly through
a higher criminality area. Route 2, instead, is slightly slower, but it passes
through an area with less criminality and more nature.

Throughout this paper, the names trajectory, route and path are
used interchangeably.

The remainder of this paper is structured as follows.
Section 2 provides an overview of car navigation systems, while
in Section 3 we examine previous works on route classifications.
Next, in Section 4, we describe our collected dataset containing a
set of route parameters that can influence the driver’s satisfaction.
Then, we propose two route selection methods, the Route to
Vector and the Hierarchical with Variable Tolerance, based on
multiple criteria in Section 5. We evaluate the performance of
both proposed methods to assess route classification and drivers’
security improvements in Section 6. Finally, Section 7 concludes
this paper and draw future directions.

2. Car navigation systems overview

Car navigation systems are in-car or smartphone based sys-
tems implemented to aid drivers in planning a route for a given
OD pair. Upon receiving the OD pair translated into coordinates of
a digital map, these systems compute and advise a set of possible
routes, usually considering duration as the preferential single
criterion. Car navigation systems can also have additional fea-
tures such as real-time alerts about traffic events. However, this
functionality can be viewed as an add-on available thanks to in-
tegrated hardware or software. We divide car navigation systems
according to the presence of real-time, predictive, multi-modal,
or multi-criteria planning.

• Real-time planning: This feature contrasts with car navi-
gation systems which exclusively compute routes based on
coordinates of a digital map. In fact, they can rerun the
route planning algorithm if the car moves away from the
planned route. Early car navigation systems relied solely
on GPS coordinates and a digital map to compute routes.
This strategy does not consider the route dynamics im-
posed by accidents or any other event that could affect
2

the set of routes previously selected. To handle real-time
planning, car navigation systems must have access to a real-
time data source through the Internet or even through the
collaboration of other vehicles, such as in crowdsourcing
approaches [11]. Google Maps and Waze are examples of car
navigation systems that rely on the participation of users,
either passively or not, to keep fresh information regarding
traffic conditions.

• Predictive planning: Traffic events follow certain known
patterns, for instance, traffic jams can happen on a certain
road in rush hours but not at different times along the day.
Hence, based on time and also on an increasing trend in the
number of vehicles, the system could be able to anticipate
a probable traffic jam and advice an alternative path be-
forehand [2]. This strategy relies on a previously collected
history of events and thus need additional infrastructure
such as that provided by cloud facilities.

• Multi-modal planning: Public transport may consist of
several different modes of transport, for instance, bus, train,
subway, or ferry. This introduces the need for multi-modal
route planning, where all different modes available are
considered. This type of planning may also include other
transport modes that are not considered public, such as
carpooling [12]. As an example, ROSE combines pedestrian
navigation and public transport to minimize walks and
waiting time through an A*-like algorithm [13].

• Multi-criteria planning: The best route is a very subjective
definition and can vary depending on evaluated features and
personal preferences. Although some navigation systems
take into account multiple criteria, the best path decision
may still be based on a single criterion, for instance, evaluat-
ing different features to find the fastest route. This contrasts
with the subjective nature added by including users into
the loop. Even though finding the best path based on multi-
criteria algorithms is known to culminate in NP-complete
problems, it is important to draw heuristics to at least en-
large the concept of best-path finding to include not only
quantitative but also qualitative metrics, which is our main
contribution in this paper.

3. Related work on multi-criteria planning

In this section, we present an overview of recent navigation
systems that provide different route planning methods, taking
into account the notion of multi-criteria car navigation systems.
These systems are complex and do not exclude real-time, predic-
tive, and multi-modal planning. The multiple criteria approach
may be implemented in different ways. We present different
methods with three different objectives: the first and second ones
focus on tourist needs, the third one is directed to cyclists, and the
last one aims to avoid traffic congestion.

Huang et al. propose a route planning framework, called Multi-
Task Deep Travel Route Planning, addressed to tourists [14]. It
goes through three stages: a feature extraction stage, which gath-
ers data from points of interest, travel routes, and user’s prefer-
ences; a learning model stage, which uses a deep learning model
that considers features collected to uncover the probability for the
best next point of interest; and as the last stage, a route generator,
that provides a travel route based on the user’s preferences. For
a given OD pair, the system finds the best route for sightseeing
in according to the user’s preferences.

Quercia et al. suggest, in their work, routes that are not only
short but also emotionally pleasant, i.e., places considered beau-
tiful, quiet, and happy [15]. At first, a certain number of short OD
paths are identified through the Eppstein’s algorithm. Then, the

path with the highest scores for those three features, relying on
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rowdsourcing data and user generated content posted on online
ocial networks, is considered as the best one.
Derek et al. [16] introduce a bicycle route planning system

ith multiple criteria analysis. The system includes both leisure
nd safety-related features, such as road segment length, road
ype, slope grade, distance to the emergency unit, and distance to
he drinking water source, and calculates the difficulty of the road
egments accordingly. It then proposes three different routes, one
or beginners and two others for more advanced riders. This is
n example of a non-subjective multi-criteria approach since it
nalyzes different features, that uses a well defined single crite-
ion decision metric, the route difficulty level. Another example
f a multi-criteria selection system with single criteria decision
as proposed by Xu et al. to select alternative paths to avoid
raffic congestion [17]. The model divides road segments by road
rade and has an index of traffic performance for each entry. It
ses a deep learning approach with traffic features such as traffic
olume, speed limit, distance, traffic lights, and weather features
o find the best alternative path to avoid heavy traffic.

Although there are many car navigation systems with different
oute planning techniques, there is a gap when it comes to a more
ubjective and personal selection. Huang et al., Quercia et al.,
nd Xu et al. propose multi-criteria approaches with a focus on
ourism, emotional reaction from drivers, and traffic congestion,
espectively. We, instead, propose two methods with config-
rable preferences, following the drivers’ wish. Unlike Derek et al.
he system is mainly proposed to drivers and not to bikers. In ad-
ition, the proposed methods are simple and can easily quantify
he multiple criteria employed for route computation using point
ount, weighted point count, intersection area, and scalars. The
roposed multi-criteria methods are presented in more details in
ection 5.
The main contributions of the proposed methods are cus-

omization and simplicity. Instead of focusing on a specific type of
ser or parameter, we give the user the ability to choose the most
mportant characteristics the best route should have. In addition,
he proposed methods rely on simple computation algorithms,
hich can easily quantify the multiple parameters involved.

. Dataset for multi-criteria planning

To compare our two route selection proposals with the base-
ine single-criterion approach, we built a dataset composed by
everal alternative paths for the same OD pairs within the city of
ondon [10]. The dataset contains 3170 paths from 600 random
D pairs. Each OD pair creates a route set that contains a varying
umber of partially or totally disjoint routes generated using the
ERE Maps API [18], along with duration estimations. The HERE
aps API does not return paths exceeding the fastest one in 20%,

ndividually considering duration or path length. This is an inter-
al API parameter that users cannot tweak, further determining
he number of paths in each set. The city of London was chosen
s scenario due to the availability of crimes and accidents open
ata repositories [19,20].
Each route is described by a n-tuple f, where n is the number of

eatures and each feature has a numerical value assigned f , which
ill be normalized as f̂ . In particular, we consider seven features:

1. Duration: estimated time to reach the destination.
2. Length: kilometers to drive to reach the destination.
3. Traffic: ratio between the duration without traffic and the

current duration estimation.
4. Crime: level of danger along a route due to previous acts

of criminality.
5. Accident: level of danger along a route due to previous

road accidents.
3

Fig. 2. Example of a Route Region (Rr ).

6. Nature: presence of natural surroundings along the path.
7. Attractions: presence of touristic attractions along the

path.

The features described in this section are route characteristics
hat may influence the driver’s choice. While duration, length,
nd traffic are pragmatic path features to consider, crime and
ccident are serious concerns for drivers, especially when driving
n unknown places. The presence of nature and attractions is,
nstead, a subjective preference. Without loss of generality, other
eatures might be added if available such as noise, air pollution,
nd road conditions.
For crime, nature and attractions, a visible region around the

oute, referred to as Route Region (Rr ), is estimated taking into
ccount the route segments and a margin of 100m for the left
nd right side, as shown in Fig. 2. In addition, the value assign-
ent strategy considers four different feature types: point count

or attractions; weighted point count for crime and accidents;
ntersection area for nature; and scalars for duration, length, and
raffic. Among the selected features, nature and attractions cannot
e used as a single criterion since they are not upper bounded:
he more nature or attractions we have, the better the route.
ence, the selected route would be longer and longer. In these
ases, we need an additional feature to previously determine a set
f route candidates and, consequently, an upper bound for nature
nd attractions.
The departure times chosen for each set of routes was a

andom time within each of the five time slots previously defined:
0 am–7 am; 7 am–10 am; 10 am–16 pm; 16 pm–19 pm;
19 am–24 pm}. These five sets were chosen as they have different
vehicular traffic profiles. The first (0 am–7am) and the last one
(19 am–24pm) have low traffic, the second (7 am–10am) and
the fourth one (16pm–19pm) capture rush hours, and the third
one (10 am–16pm) has midday traffic. The value used for the
time dependent features duration and traffic was the mean value
found for each path.

Following, we describe in detail how to compute each feature,
taking into account all other routes from the dataset.

Duration: Route duration is an important parameter commonly
used in most car navigation systems that undoubtedly impacts
drivers’ perception of the trip. Since driving can be a stressful
experience and time is a scarce resource for many people, the
sooner one arrives to destination, the better. Also, reducing the
exposure time on the road reduces the overall driving risk. Route
duration estimation is acquired directly from HERE maps which
takes into account the starting time [18]. Hence, the duration
feature used is the direct value obtained from our dataset.

Length: Route length is another important practical parameter
that is also commonly used in many car navigation systems. This

parameter has a considerable impact on fuel consumption and
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Table 1
Crime severity weights per category. These weights are computed as an average
of all crimes related to a given category.
Category Weight

Anti-social behavior 3
Public order 10
Shoplifting 13
Bicycle theft 16
Other theft 33
Possession of weapons 75
Theft from the person 86
Vehicle crime 124
Drugs 250
Other crime 256
Burglary 438
Criminal damage arson 439
Robbery 746
Violent crime 1098

consequently on the expenses of the trip. HERE maps returns the
exact length of each route [18]. The length feature used is the direct
alue obtained from our dataset.

raffic: Traffic is a known cause of stress among drivers and has a
ajor impact on traveling time. Rather than scoring this feature
y the time length or amount of cars on each route, the traffic
alue is calculated as the ratio between the duration of the trip
n a scenario without any traffic and the route duration at the
ime the data is collected, as returned by the HERE Maps API [18].
he traffic is then computed as the ratio between the no-traffic route
uration (dn) and the route duration considering traffic (dt ).

=
dn
dt

(1)

This assigns the maximum value of 1 to routes without traffic.

Crime: Choosing a route passing through areas with high crimi-
nality rates may result in an additional level of stress and risk.
To assign crime scores to the routes within the dataset, we
employ the UK government open data repository. In fact, the UK
Police Data repository [20] gathers information about crimes that
occurred in the city of London in the year 2018.

Such crimes are geolocalized with latitude and longitude co-
ordinates and labeled with a category. To consider the severity
of each crime, categories are weighted based on the UK Office
for National Statistics Crime Severity Score [21], whose weights
vary from 3 to 7979, with an average of 526. Since the categories
listed in the UK crime dataset have subcategories, the weights
used for our calculations are set as the average weights of all
crimes related to the same category. The categories considered in
our dataset are listed in Table 1, each one with its related average
weight value. The crime value is computed as the weighted sum of
all crimes found inside the route area Ra.

The crime value C is computed as the sum of all crime severity
found inside each Route Region Rr , as seen in Eq. (2), where ck
is a point with the coordinates of the crime with severity csk, and
S(ck) is a set with all accidents that are found inside Rr .

C =

∑
S(ck)

csk , where S(ck) = {ck | ck ∈ Rr} (2)

Accident: One of the most stressful and dangerous events that
can happen during a trip is to be involved in an accident. Hence,
data providing paths having less overall accidents are acquired
through a repository maintained by the UK government: the
UK Government Open Data [19]. This data repository gathers
information of accidents that happened in the city of London in

the year 2018, with geographical coordinates for each accident.

4

Similarly to crime definition, we denote a point ak with the
coordinates of the accident with ack casualties and severity ask ∈

[1; 3]. Thus, the overall value of accidents for each route Ac is
calculated as the sum of all severity and casualties found in it.

As the geolocalization for the accidents is not always accurate,
to determine if an accident happened along the considered route
r inside Rr or in a street nearby, the minimum distance from
the accident location to the route r (d(r; ak)) is compared with
the minimum distance to all streets around (d(•; ak)). Thus, an
accident is only considered if the distance to the route is less
than or equal to the distance to every other street around. as seen
in Eq. (3). We define the set formed by these accidents as S(ak).
The idea of such an approximation is to compensate for possible
errors that may occur from different coordinate sources.

Ac =

∑
S(ak)

(ask + ack) , where S(ak) = {ak | d(r; ak) ≤ d(•; ak)} (3)

Nature: One parameter that affects the aesthetics of a trip is the
presence of natural and green sights. These natural sights are
defined as: parks, gardens, marinas, golf courses, natural reserves,
grass, greenfields, meadows and water. A route with more natural
surroundings can reduce drivers’ overall stress level, resulting
in a more pleasant journey. To evaluate the amount of nature
in each route, we employ the Overpass API [22], that provides
geolocalization information from the OpenStreetMap database,
with the following keywords:

"leisure"~"park|garden|marina|
golf_course|nature_reserve"
"landuse"~"grass|greenfield|meadow"
"water"
"natural"

The data returned is used to create polygons on the map that
are intersected with each Route Region Rr . The nature feature N
is calculated as the total area of all intersections between nature
polygons (Nk) and the Route Region Rr . The set of all Nk that
intersects Rr is defined as S(Nk), as observed in Eq. (4). We
assume that different nature polygons do not overlap.

N =

∑
S(Nk)

∥Nk ∩ Rr∥ , where S(Nk) = {Nk | {Nk ∩ Rr} ̸= ∅} (4)

Attractions: Another feature that contributes to a more pleasant
route is the number of tourist attractions along the route. We re-
trieve this feature from the Overpass API [22] with the following
query:

"tourism"~"[^information|hostel|
guest_house|hotel|apartment|yes]"]

The attractions data is used to create points (tk) on the map.
Hence, the attraction value At is calculated as the number of attrac-
tions found inside each Route Region Rr . Let S(tk) be the set of all
attractions inside Rr . Thus, Eq. (5) computes the cardinality of
S(tk) to find At as follows:.

At = |S(tk)| , where S(tk) = {tk | tk ∈ Rr} (5)

5. Multi-criteria classification methods

The proposed multi-criteria methods follow a workflow com-
posed of: (i) per route feature calculation, (ii) feature normaliza-
tion, and (iii) routes ranking. The input is a set of routes R that can
be randomly selected or previously calculated considering any
preliminary metric of interest. Hence, each route Ri is described
by a n-tuple f considering features of interest. We can select
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ny possible subset computed using any combination of features
vailable. In this paper, we use path duration to select the input
et of routes since this is the most common approach used by
ar navigation systems and we aim to avoid much longer paths
ith respect to the shortest one. After selecting the input set, we
ompute and normalize all features in the n-tuple f̂.
A normalization procedure is required to allow a multi criteria

lassification of routes, since features described in f may have
ifferent value ranges. Note that this normalization is used only
or the sake of computing the best route, the analysis (Sections 6
nd 7) will be done with the non-normalized values. Given the
th route feature fi, its normalized value is computed as follows:

ˆi =
fmax − fi

fmax − fmin
; (6)

where fmax and fmin are the maximum and minimum values,
respectively, for feature f found in R. It is worth noting that, for
some features, lower values represent better choices: e.g., lower
duration or lower length values indicate fastest and shortest
paths, respectively. For other features, instead, the opposite is
true, like the number of attractions or the ratio of green sights
present along the route. In this case, the normalization is inverted,
as shown in Eq. (7):

f̂i =
fi − fmin

fmax − fmin
(7)

Eventually, f̂i ∈ [0 − 1], where 0 and 1 denote the worst
and the best value, respectively. Moreover, this normalization
ensures that, for each feature, at least one route with value 0
and another with value 1 exist. For our chosen features, duration,
length, crime, and accidents, we use the normalization shown
in Eq. (6); whereas traffic, nature, and attractions use the process
described in Eq. (7).

After normalization, all metrics have the same weight for a
multi-criteria approach. Hence, the last step is to apply one of our
proposed methods, called Hierarchical with Variable Tolerance
(HVT) and Route to Vector (R2V) methods, as explained next.

5.1. Hierarchical with variable tolerance (HVT)

The Hierarchical with Variable Tolerance algorithm is pre-
sented as a flowchart in Fig. 3. It assumes that features are sorted
following drivers’ preferences. Each feature filters the best routes
according to its individual metric and outputs them to the next
feature in the pipeline. The algorithm runs until there is only one
route left. After a round of feature analysis, if the final output
reveals more than one route, the entire process restarts. We call
this method hierarchical because the sooner the feature appears
in the pipeline, the more important it gets.

The number of routes filtered from one feature to another
must converge to a single one. Hence, we use a tolerance tol
alue previously defined. This value is used to define the subset of
outes, which will be filtered out by the next feature. This subset
s composed of the best route according to the current feature
nder analysis and all the others satisfying the same normalized
eature tolerance. Note that after each feature filtering step, if
nly one route is left, the HVT algorithm stops. Thus, the tolerance
alue assigns more or less importance to the earlier features in
he pipeline. If the tolerance is very rigorous, then the algorithm
ends to stop earlier. On the other hand, if after a filtering round
or all the features there is still more than one route left, the
ipeline restarts with the remaining routes using an updated
olerance value equal to tol − �. In particular, � =

tol
n , where

∈ N, is the algorithm iteration counter. Intuitively, we gradually
educe the tolerance to avoid early terminations without going
hrough all features at least once. If there is no conclusion after
oing through the entire pipeline, this means that we can reduce
he tolerance and check again.
5

Fig. 3. HVT algorithm flowchart. The set of eligible routes are filtered out as
each feature in the pipeline is individually analyzed. The sequence of features
follows the drivers’ preferences and the procedure ends when a single best route
is found.

5.2. Route to vector (R2V)

The second route selection method considers each route as an
n-dimensional vector, where n is the number of features available
n the n-tuple. We call this the Route to Vector (R2V) method.
ompared to the HVT method, R2V considers all the features
t the same time and not as in a pipeline sorted according to
rivers’ preferences. With the R2V approach, the larger the vector
agnitude, the better the route. This is because the better the

oute in a given feature, the higher the normalized value. The
agnitude of a vector is computed according to its Euclidean
istance from the origin coordinates at the n-dimensional space,
onsidering the n-tuple of normalized features. Even though our
efinition assumes all features have the same importance, these
an be weighted according to the drivers’ will.

. Multi-criteria models evaluation

In this section, we analyze the feature space beforehand, then
e evaluate the proposed methods for multi-criteria route se-

ection with respect to single criterion approaches. Finally, we
ighlight security gains and aspects that could be emphasized
sing our multi-criteria contributions.
The values presented in this section were gathered from three

ifferent sources. HERE Maps API provided route data from the
andom OD coordinate pairs, such as path coordinates, trip dura-
ion with and without traffic, and length. We use path coordinates
o calculate the other features. Nature and attractions data were
etched from the Overpass API and calculated using, respectively,
he intersection area and the point count methods. Crime and
ccident data were gathered from the UK Government database
nd were calculated using weighted point count. Crime computa-
ion used points inside the route region, whereas accidents used
oints closer to the path.
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Fig. 4. Features cumulative distribution.

Fig. 5. Pearson correlation among features.

.1. Feature distribution

Fig. 4 shows the cumulative distribution function for each
eature. In order to be able to compare the distributions from
ifferent features, we decided to show the distribution according
o the minimum and the maximum value found in the dataset.
round 50% of the routes collected had no tourist attractions
hatsoever. We can also see that crimes, accidents and nature

ollow a very similar distribution, and that traffic is more sparsely
istributed.
We also compute and show the Pearson correlation among

eatures from the 600 OD sets in Fig. 5. The highest correlation
agnitude is between duration and traffic, showing that traffic

mpacts duration; and duration and crime, showing that slower
aths tend to be more dangerous, because faster streets have less
edestrians. Crime is also correlated with traffic, probably for the
ame reason.
Some other notable correlations regard length and nature,

howing that paths with more nature between OD in London
sually tale extra-urban roads making the path longer; length and
ccidents, because accidents are computed throughout the whole
ath, longer paths can go through more accidents; and length and
uration, since longer paths tend to be more time consuming.

.2. Route selection methods comparison

This section compares the performance of R2V and HVT with
espect to single criterion approaches. The initial tolerance used
6

Fig. 6. Percent deviation from a known standard in relation to the best
classification for each feature.

for the HVT method is 0.2, with a decrement step of 0.01. We
consider three different examples of features order having various
driving scenarios in mind:

• HVT(safety). Features are in the following order: 1. crime,
2. accident, 3. duration, 4. traffic, 5. nature, 6. attractions, 7.
length. This is the order preferred by drivers who want to
minimize safety risks when driving in unsafe or unknown
places.

• HVT(tourist). The following order privileges paths for well-
being and tourism, regardless time constraints: 1. attrac-
tions, 2. nature, 3. crime, 4. traffic, 5. duration, 6. accident,
7. length.

• HVT(worker). This order takes into account time constraints
above all: 1. duration, 2. traffic, 3. crime, 4. nature, 5. attrac-
tions, 6. length, 7. accident. It is intended for users who drive
back and forth to work every day and they want primarily
to avoid traffic to arrive home as fast as possible.

The Fastest (HERE) row shows the route selected by HERE,
while the Fastest (Google) row represents the route selected by
Google Maps, but with the duration calculated by the HERE Maps
API.

We show the comparison between the proposed methods and
the single-criterion ones in Fig. 6. The rows of the matrix M
represent the different route selection and classification methods
(m), while the columns represent the features (f ) to be evaluated.
As metric, we use the Percent Deviation From a Known Standard
(PDFKS), with the best average value for each feature as the
known standard (std[f ]), due to the different value ranges of the
features. The PDFKS is calculated as follows:

Mmf =
m[f ] − std[f ]

std[f ]
× 100%; (8)

where m is the classification method, m[f ] is the average value
from feature f for m, and std[f ] is the best average value for fea-
ture f among all classification methods. For instance, the first cell
shows that the R2V method finds routes that have, on average, a
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