
Time of Arrival Prediction with Dynamic Route
Tracking for Public Transportation Systems

Vitor Borges C. da Silva, Tatiana Sciammarella, Miguel Elias M. Campista, and LuÂõs Henrique M. K. Costa
Federal University of Rio de Janeiro - PEE/COPPE/GTA - DEL/POLI

E-mail:f borges,tatiana,miguel,luishg@gta.ufrj.br

AbstractÐA great challenge in developing countries is the
constant traf®c jams in urban areas, which are a consequence
of excessive use of private vehicles. In these countries, more
people would adopt public transportation, e.g., buses, if the
time of arrival for the next vehicle to each bus stop could
be predicted. In this direction, we propose WiBus, which is
a system to estimate buses arrival time, based on information
from opportunistic IEEE 802.11 contacts. These estimates are
provided to users via a website and a graphical interface for
mobile devices. Unlike previous systems, WiBus explicitly takes
into account bus route changes, which occasionally happens in
developing countries , adjusting the routes with an algorithm for
dynamic route creation and maintenance. WiBus is implemented
and analyzed via emulation of a real scenario. Experimental
results show that WiBus is scalable and meets the needs of large
cities with accumulated error of at most a few minutes.

I. I NTRODUCTION

Today, big cities in developing countries suffer from con-
stant traf®c jams. In Brazil, in just one year, from December
2013 to 2014, more than 4 million new vehicles started
circulating on the streets, causing a signi®cant deterioration
of the traf®c system [1]. In these countries, the preference
for private transportation is a consequence of the lack of
con®dence on the public alternative, be it for safety, comfort
or commitment with timetables. To change this trend, the
idea of the Advanced Public Transportation Systems (APTS)
has emerged using, among other technologies, communication
networks to provide more information to users [2].

This work aims at improving the quality of the service
provided by public transportation systems at developing coun-
tries. The idea is to offer fresh information regarding the next
bus arrival time of every bus line to each possible bus stop.
Nevertheless, even considering the Vehicle-to-Infrastructure
(V2I) architecture, estimating the arrival time of a bus at a
given bus stop is a challenge, because traf®c and passengers
can in¯uence the time a bus takes on its route (e.g., when an
accident results in a traf®c jam). Moreover, situations such as
an accident, a large event (e.g., World Cup, Olympic Games,
etc.) or a roadwork may result in temporary changes in a
bus route. If these changes are ignored, the estimates become
useless. Therefore, two requirements to calculate the arrival
times without signi®cant errors are to track buses position
whenever possible, which most systems do; and to be aware
of buses route changes in a dynamic fashion, which is a
contribution of our work. To deal with the ®rst requirement,

many solutions use GPS, due to its greater accuracy. Neverthe-
less, the GPS utilization requires an additional communication
link to inform the vehicle position. As an alternative, there
are localization techniques that use network technologies [3],
which can simultaneously discover the bus position, signalize
it and provide communication services. This type of solution
is used in this paper.

Network localization has been explored even in simple
proximity-based location systems, where the position of a
vehicle is given by the position of the node the vehicle is
connected to. Although the precision is smaller than using
GPS, techniques to improve the performance of these systems
are evolving, providing mean square error of only a few me-
ters [4]. Regarding estimates of buses arrival time, some works
use long term historical series collected even for months [5].
With such data, estimates are calculated based on averages
from the same period of time in the past. This method does not
behave well in case of atypical situations, such as accidents or
eventual congestion. To better model these situations, another
historical-based solution exists, the real-time approach. In
this approach, only short-term information is used, e.g. the
information from the last four hours. This method models
unforeseen situations more ef®ciently, but assumes that the
time spent by previous vehicles in a given route is equivalent
to the time spent by next vehicles [6]. There are also works
that use arti®cial neural networks to predict buses arrival
time [7]. Finally, there are some methods that use Kalman
®lters, which do not perform well when location data are
temporally sparse [8].

This paper proposes WiBus, a system to estimate the arrival
time of buses using IEEE 802.11 networks. The design goals
of WiBus are low cost and low complexity, combining the
advantages of previous proposals. To this end, WiBus tracks
the position of buses based on their proximity to IEEE 802.11
access points installed alongside streets. This approach allows
the utilization of only one type of device to track and com-
municate, reducing the system cost and complexity. In this
work, we use a real-time method to estimate arrival times
since localization information is not obtained at the same rate
as with GPS and because we do not assume the existence of
a database with long-term historical information. Then, based
on short-term past information, WiBus computes the arrival
time of buses and dynamically adapts these times to route
changes. This yields that even if a bus deviates from its route,
the system can adapt, keeping users informed. Experiments978-1-4673-7306-7/15/$31.00c
 2015 IEEE

with real datasets show that WiBus is capable of meeting the
demands of a big city such as Rio de Janeiro, incurring in
errors on the order of a few minutes. In addition, to promote
public access to the system, an application for Android smart-
phones, calledBuZoom, and a web page,BuZoom Web, are
developed in this work. Our experimental results demonstrate
the applicability of WiBus in real environments.

This paper is organized as follows. Section II and III
present, respectively, the architecture and the implementation
structure of WiBus. Section IV further details the algorithms
used to predict arrival times and track route changes, while
Section V shows the user interface developed. In Section VI,
the evaluation setup is described and the corresponding results
are shown. Finally, Section VII concludes this work and
presents future directions.

II. W IBUS ARCHITECTURE

WiBus (Figure 1) is composed of four entities: Central,
Roadside Unit (RSU), Bus, and Client. The Central plays the
most important role in the system. It stores the information
needed to compute arrival time estimates of buses, their route,
location, and the time spent between consecutive stops. The
Central also answers to customers' arrival time requests. Road-
side Units (RSUs) are ordinary IEEE 802.11 access points
installed at bus stops. They provide wireless access to each
router within each bus and run the developed programs for
bus tracking. These developed programs locate the bus along
its route and send the localization information to the Central
through the RSU. A Client is any person requesting estimates
to the system. These requests can be made either through the
Android BuZoom application or through the website.

Internet

Central Road Side Unit
(RSU)

Client

BusBusBusBusBusBusBus

Figure 1. Entities of the WiBus system architecture.

WiBus services: WiBus offers complementary services of
localization and arrival time of buses at all stops along their
routes. Both services are based on proximity to connected
RSUs. Therefore, upon arriving at a bus stop, the router
within the bus connects to the network provided by the RSU.
Messages are then exchanged between the bus router and the
RSU for mutual identi®cation. Then, the bus router sends
a message to the Central entity informing the RSU it is
connected to. This allows the system to track the bus position.
Although this information is fundamental, it is not enough
for arrival time computation. The bus route and a short-term
history of the times spent by buses between consecutive stops
are still needed to estimate arrival times. Although the trivial
approach to have the bus route would be to assume that they
do not change, we consider the possibility of changes, since

in developing countries roadwork and construction sites can
happen more often.

III. W IBUS IMPLEMENTATION

WiBus is implemented as a set of six programs. Four of
them, listed below, are used for data exchange required for
buses arrival time estimation. Their names indicate their role
in the localization process. The remaining two programs are
client interfaces, which are presented later:

� WiBus - Localization Client : This program
runs every time the bus connects to an RSU, sending
a localization request and receiving its answer. The mes-
sage sent by the bus contains the bus and bus line IDs
and allows RSUs to log buses passing by. This message
can be seen in Listing 1.

< WIBUSLocRequest>
< BusLineID>
Bus l i n e ID , e . g . 455 .
< / BusLineID>
< BusID>
Bus ID , e . g . BUS125 .
< / BusID>
< / WIBUSLocRequest>

Listing 1. Localization request message.

� WiBus - Localization Server : This program
continuously runs in RSUs waiting messages from buses.
Upon a bus message arrival, the RSU sends its geo-
graphical position to the corresponding bus. This message
allows the bus to localize itself. This message can be seen
in Listing 2.

< WIBUSLocRSU>
< RSUPosi t ion>
L a t i t u d e ; Long i tude

< / RSUPosi t ion>
< / WIBUSLocRSU>

Listing 2. RSU localization message.

� WiBus - Communication Client : This program
is used by buses to communicate their current and pre-
vious localization to the Central. It runs after the end
of WiBus - Localization Client and can also
receive replies from the Central. The message produced
can be seen in Listing 3.

< WIBUSLocBus>
< BusLineID>
Bus l i n e ID , e . g . 455 .
< / BusLineID>
< BusID>
Bus ID , e . g . BUS125 .
< / BusID>
< PrevRSUPos i t ion>
L a t i t u d e ; Long i tude

< / PrevRSUPos i t ion>
< Cur rRSUPos i t ion>
L a t i t u d e ; Long i tude

< / Cur rRSUPos i t ion>
< / WIBUSLocBus>

Listing 3. Bus localization message.

� WiBus - Communication Server : This program
communicates with buses receiving their localization.
From messages received, the Central can dynamically
update the bus line route, be aware of buses location, and
estimate times of arrival at every bus stop. This program
also responds to clients' requests for bus information.

The localization process is illustrated in Figure 2. When
a bus connects to an RSU, it sends a localization request
message with theWiBus - Localization Client pro-
gram (Figure 2(a)). In the following, the RSU replies the
message received from the bus with its own position us-
ing theWiBus - Localization Server program (Fig-
ure 2(b)). Finally, the bus sends its localization message to
the Central with theWiBus - Communication Client
program (Figure 2(c)). The bus localization message contains
information about the RSU where the bus is connected, the
previous RSU it has been connected, and the bus and bus
line identi®ers. Upon receiving this message, theWiBus -
Communication Server program handles the informa-
tion. Besides the four programs, there are also two others
operating as Client interfaces:

� BuZoom: An interface for Clients with Android smart-
phones request buses arrival times to the Central entity.

� BuZoom Web: A platform-independent web interface for
Clients to also request buses arrival times.

(a) (b)

(c)

Figure 2. Localization process: (a) Bus requests RSU position. (b) RSU
replies the bus with its position. (c) Bus sends localization message to the
Central.

In the next section, we detail the Central operation.

IV. CENTRAL ENTITY OPERATION

A. Bus Line Route Model

In WiBus, a bus line is de®ned by its number and direction
(e.g., 913 South). As a consequence, bus routes are not circular
for the system. Additionally, each bus route consists of a list of
segments, where each segment starts in an RSU and terminates
in the consecutive one. Since we consider that each bus stop
has an RSU installed, a segment also starts in a bus stop
and ends in the consecutive bus stop of a bus line. Note that
consecutive RSUs or bus stops can be known according to
the movement of the buses. It is worth noting that the bus
departure from its initial bus stop is considered known, as
announced by bus companies.

A bus line route is modeled as a sequence of RSUs, where
each RSU has directed edges to the next and previous RSUs
of the route. To prevent premature changes to bus line routes,
a weighted strategy is employed: non-negative weights are
assigned to edges and also to RSUs. Weights assigned to
edges govern the bus line route dynamics, capturing how fast a
change in the route will be considered permanent. On the other
hand, weights assigned to RSUs indicate if they are still used
in the bus line route. In Figure 3 we model a ®ctitious bus line
route from RSU-1 to RSU-5 to show these concepts. Circles
represent RSUs and rectangles represent RSU weights. Arrows
represent the directed edges linking one RSU to its successor
or predecessor in the bus line route, where the number near
the edge is its corresponding weight.

(a)

RSU-1 RSU-2

2

2

RSU-3

2

2

RSU-4

2

2

RSU-5

2

2
10 9999{Segment 1

(b)

Figure 3. (a) Fictitious bus line route. (b) Bus line route model.

B. Arrival Time Computation

The notion of segment is important since at the end of each
one, the bus must inform the Central its position with a bus
localization message. This information is used to compute the
time spent between consecutive RSUs, which is calculated by
the Central subtracting the time of delivery of the current
position and previous position messages. Then, when the
Central receives a message from a bus, it updates the current
and previous bus positions. Also, it updates the average time
needed to traverse that segment. With the average value of
the next segments and the bus departure time, the system can
estimate the time required for a bus to reach the following
RSUs on its line. This is done by summing up the average
time needed by buses to traverse each of the segments from
the current RSU until the target RSU. The problem, therefore,
can be reduced to a problem of estimating the time required
for a bus to traverse a given segment. This can be calculated
as the average time spent by theK previous buses at the
same segment, i.e. a moving average with window sizeK as
maintained by the Central. The use of a simple moving average
provides reduced complexity in arrival time estimation.

Upon receiving a message from a bus, the Central entity
re-estimates the time needed for every bus on the same line to
reach all the next RSUs in their route. This is done by getting
the buses current RSU and summing up the estimates of the
segments from the current RSU to the last one in the bus line.
To show only the estimate to the next bus arrival time at each
RSU, only the lowest estimate time is stored. This process
is formally described in Algorithm 1, whereestimateb stores
the estimated time needed for a busb from a given bus linel to
reach an RSU from its initial position. Note that this algorithm
is used to possibly update the time needed to reach all the
RSUs of the same bus line. In addition, Algorithm 1 uses the
function segmentEstimate . This function implements the
aforementioned moving average to estimate the time needed
for a bus to traverse one segment. Next, we detail the update
and maintenance algorithms of the bus lines routes.

Algorithm 1: Estimated arrival time for the next bus to
reach each RSU in the bus line.

Input : list of segmentsS of the bus linel .
Output : time estimate for the next bus to reach each RSU in the bus

line.
1 forall the b of bus linel do
2 estimate b = 0; segment = currentsegment from S whereb is;
3 while segment existsdo
4 estimate b += segmentEstimate(segment) ;
5 if estimate b < current RSU estimatethen
6 current RSU estimate =estimate b
7 end
8 segment = next segment in S;
9 end

10 end

C. Route Update Algorithm

The route update algorithm is responsible for updating
RSUs weights. The basic idea is to increment the weight of
RSUs currently used by buses along a bus line. In opposition,
RSUs currently not used have their weight decremented. The
update process of RSU weights consists of decrementing by
one the weight of all RSUs in the bus line. Next, the weight
of the current RSU, the one informed in the message received
from the bus, is incremented by an integer (speci®ed later).

The update algorithm can culminate on RSU creation or
deletion. RSUs are deleted if their weights reach zero, meaning
that the RSU is no longer part of the bus line. In case of RSU
creation, the assigned weight must be large enough so that
the RSU will not be mistakenly removed. So, the initial value
assigned to an RSU is considered equal to twice the product
of the number of RSUs in the bus line by the amount of bus
circulating on that bus line. This value is also the maximum
value allowed to the RSU weight. The initial value of the RSU
weight depends on the number of RSUs in the bus line, every
time an RSU is added, to be fair, the weights of all RSUs
in the line are set to the new maximum value. Similarly, the
increment given when an RSU is used is equal to twice the
number of RSUs in the bus line. Hence, the initial weight
assigned to an RSU guarantees that all buses of a given line

must travel over a route without a given RSU at least twice,
in order to delete this RSU.

For instance, consider a bus doing the route in Figure 3(a)
leaves S1 and goes to S2. When arriving at S2, its router
exchanges messages with the RSU-2 at S2. After this, the bus
informs the Central its position. On receiving the bus position,
the Central updates the weights of the RSUs decrementing
all of them and incrementing the weight of RSU-2, where
the bus is. In addition, the Central checks that the bus is
coming from the RSU-1 and is at RSU-2, exactly following
the bus line route expected by the Central. The updated route
at the Central can be seen in Figure 4. Next, we describe
the route maintenance algorithm, responsible for dealing with
route changes.

RSU-1 RSU-2

2

2

RSU-3

2

2

RSU-4

2

2

RSU-5

2

2
8 88109

Figure 4. Node weight updates after a bus movement to the following RSU.

D. Route Maintenance Algorithm

The need for dynamic representation of bus routes comes
from situations where unforeseen events change the sequence
of segments usually followed by buses. Such changes can be
permanent or temporary. One way of checking if the bus route
has really changed is by observing other buses from the same
line. The change can be con®rmed if they continuously repeat
the same new route. The number of times a change must be
repeated until it is considered valid is captured by the WiBus
route maintenance algorithm. The algorithm aims at avoiding
errors on arrival time estimates either because of premature
conclusions or lack of responsiveness to bus route changes.

Whereas the weights of the RSUs are updated every time a
new message arrives to the Central, the weights of the edges
are modi®ed only when a bus line route changes. During a
route change, an RSU may be connected to more than one
next or previous RSU. In such cases, an RSU has a list of
edges indicating the next or previous RSU, rather than just
a single edge. Thus, the update of the edges to the previous
or next RSU is performed as follows: the weight of all edges
from the list of previous and next RSUs is decremented by
one, and two units are added to the weight of the edges used,
i.e., previous and next.

During the route maintenance, edges can be created or
deleted. Edges are deleted if their weights reach zero, and are
created if buses inform a new segment in a bus line route. In
the case of edge creation, the initial value of the edge weights
can be adjusted, taking into account that its value must be at
most two times the number of buses in the same bus line, thus
it is possible to de®ne how fast a change in the route will be
considered permanent. The initial value chosen for the edge
weight is also the maximum value allowed.

For ease of understanding we present an example of a route
change. Suppose there is a bus line in which buses normally

(a)

RSU-1 RSU-2

2

2

RSU-3

1

2

RSU-4

2

2

RSU-5

2

1

2

2

107798

(b)

RSU-1 RSU-2

2

2

RSU-3

1

2

RSU-4

2

2

RSU-5

2

1

2

2

855109

(c)

RSU-1 RSU-2

2

2

RSU-3

2

RSU-4

2

2

RSU-5

2

2

2

3 93810

(d)

RSU-1 RSU-2

2

2

RSU-5

2

2
6 54

(e)

Figure 5. (a) Bus line route with changes due to roadwork. (b) The ®rst
bus going from RSU-2 directly to RSU-5 signs a route change. Hence, edges
connecting RSU-2 and RSU-5 are created. (c) Nodes weight update after
another bus from the same line moves to RSU-2. (d) Route after edges
removal. RSU-3 and RSU-4 are no longer reachable from RSU-1, con®rming
the bus route change. (e) Final bus line route, after unused RSUs removal.

goes from the bus stop S1 to the bus stop S5 passing by S2,
S3, and S4, as illustrated in Figure 3(a). Due to a roadwork,
the streets connecting S2 to S3 or S4 are now blocked, forcing
all the buses to change their route as shown in Figure 5(a). The
new route skips the bus stops S3 and S4 because they became
unreachable. Since the Central uses information from buses,
the route is initially outdated before receiving any updates.

Consider the ®rst bus to do the route after the road block is
already at RSU-2 as in Figure 4. In the original route, the next
bus position would be RSU-3. However, the Central will hear
again from the bus only at RSU-5, when the bus informs its

current and previous position. After updating the weights of
the RSUs, the Central compares the current and the previous
bus positions to the registered bus route. According to the
registered route, a bus arriving at RSU-5 must come from
RSU-4. Nevertheless, as informed by the bus, the previous
stop was at RSU-2. Thereby, the Central registers this new
possibility adding an edge from RSU-2 to RSU-5 and vice
versa. After the edges creation, the old edges that represent
the next RSU of RSU-2 (RSU-2, RSU-3) and previous RSU
of RSU-5 (RSU-5, RSU-4) have their weight decremented.
Now, from the route registered a bus coming from RSU-2, has
two possible next RSUs, as well as RSU-5 has two possible
previous RSUs. In addition, one can infer by the weight of the
outgoing edges of RSU-2 that the most recent route avoids
RSU-3 and RSU-4. This is indicated by the highest weight
of the edge connecting RSU-2 to RSU-5. Then, the route
registered at the Central is illustrated in Figure 5(b).

Consider another bus leaving S1 to S2. After messages
exchange, the Central updates the weights of the RSUs. The
weight changes can be seen in Figure 5(c). Note that the
weights of RSU-3 and RSU-4 are almost half the initial weight
because buses have stopped passing by.

When the bus approaches RSU-5, the weight update process
is triggered again. Afterwards, the Central veri®es again that
the previous RSU as informed by the bus is RSU-2, instead
of RSU-4. As a consequence, the next RSU is again RSU-5
instead of RSU-3. Then, the weights of the edges maintaining
such information are incremented, becoming equal to the
initial and maximum value allowed. On the other hand, the
weights of the other edges representing the next RSU of
RSU-2 and the previous RSU of RSU-5 are decreased. Upon
reaching zero, these edges are removed from the bus line route
representation in the Central, as observed in Figure 5(d). The
removal of the edges con®rms the route change. This can be
seen by checking Figure 5(d) that despite RSU-3 and RSU-4
still exist in the route representation, they are not reachable
by following any edges on the route beginning at RSU-1. We
can note that because the maximum and initial weight of the
edges is equal to two in the example, two buses are needed to
con®rm the route change. Nevertheless, as mentioned earlier,
one can change this parameter to determine how responsive
the algorithm is to route changes.

With the con®rmation of the route, no other change happens
on the edges between RSUs in the route. Yet, with buses
continuing to follow the route, RSU-3 and RSU-4 are removed
from the bus route and the maximum weight allowed to the
RSUs decreases. The new route is depicted in Figure 5(e).

Since the main purpose of WiBus is to provide estimates
of buses arrival times at bus stops, it is worth mentioning that
during a route change process, when many routes are possible,
the estimates are calculated using the old route until the new
route is con®rmed. Therefore, even if a bus driver follows
the wrong route, estimates will be calculated correctly. On the
other hand, if a route change is really in progress, the estimates
will only take the new route into account after it has been
con®rmed. Hence, one must consider the tradeoff between

avoiding errors on arrival time estimates either because of
premature conclusions (weight values too low) or excessive
delay for bus route adaptation (weight values too high) when
choosing the edges maximum and initial weight values.

Algorithm 2 details the combination of the route update and
maintenance algorithms implemented at the Central.

Algorithm 2: Bus line route update and maintenance
algorithms.

Input : messagem received from busb of bus linel .
Output : updated bus line route

1 if ®rst message or previous message receivedthen
2 searchl described inm;
3 if found l then
4 obtainRSUcurrent from m and search it inl ;
5 if foundRSUcurrent then
6 Update edges to previous RSUs ofRSUcurrent ;
7 Update weight of RSUs inl ;
8 Update edges to next RSUs ofRSUprevious ;
9 Exclude RSUs no longer inl ;

10 else
11 CreateRSUcurrent from m and insert it inl ;
12 RSUs weight inl = weight maximum ;
13 Create edges forRSUprevious andRSUcurrent ;
14 end
15 else
16 CreateRSUcurrent from m;
17 Createl from m with RSUcurrent ;
18 end
19 if b bus line changed compared with the message beforem then
20 Add 1 bus tol and subtract 1 from previous bus line;
21 end
22 if b seen by the ®rst timethen
23 Add 1 to number of buses in bus linel ;
24 end
25 end

V. GRAPHICAL INTERFACE

Users make requests to WiBus using a graphical user
interface. The ®rst interface created was a web page,BuZoom
Web. Nevertheless, assuming that most users would like to
access the system via a customized interface for smartphones,
we have also implemented theBuZoomapplication, shown in
Figure 6. This interface is available for devices with Android
2.2 operating system or above. The tools used in theBuZoom
development are the Android SDK and JDK. A QR code
recognition is also implemented.

The use of QR code gives an alternative for users to obtain
information about a given bus stop. Using a QR code, a user
can read the code available at the bus stop to identify his/her
location and to obtain buses arrival times. This is useful, in
case users do not know exactly where they are. Besides the
utilization of the QR code, the user can also use theBuZoom
interface using a typical application menu. In this case, the user
must choose the bus stop from a dropdown list and inform the
bus line of interest through another list. The ®rst alternative,
using QR code, is more suitable for mobile users who are
already at the bus stop, whereas the second alternative can be
preferable for users who are not yet at the bus stop. To send
the request to the Central and to receive information back, the

Figure 6. Screenshots ofBuZoom for Android.

user needs an Internet connection. Then, the response from
the Central is displayed on the device screen.

VI. EXPERIMENTAL SETUP AND EVALUATION

WiBus is evaluated using a prototype assembled in our lab.
We have emulated the elements of the architecture using PCs
and Wi-Fi routers. The Central entity is a PC con®gured with
Debian operating system, 8 GB of RAM, and Intel Core i7 860
processor. The RSUs and the buses are represented by D-Link
DIR-320 Wi-Fi routers. We connect the Central to the RSUs
via an Ethernet switch. The D-Link DIR-320 is equipped with
a 240 MHz ARM processor and 32 MB of RAM. It also has
a USB port, which is used to increase the storage capacity,
originally limited to 4 MB ¯ash. The operating system used
in routers is OpenWRT Back®re 10.03.1, a Linux distribution
for embedded devices.

In our experiments, the initial weight of edges is set to twice
the number of buses in the bus line (Section IV-C). The ®rst
experiment evaluates the capacity of WiBus, i.e., measures the
maximum number of buses the system is able to track, and
also tests its scalability with respect to the number of buses
and number of RSUs per bus line. The second experiment,
which is performed with real data of a university scenario,
aims at evaluating WiBus estimation errors.

A. WiBus Service Capacity

The capacity test emulates the conditions of the city of Rio
de Janeiro, which currently has around 8,000 buses [9]. We
assume, for evaluation purposes, that these buses are evenly
distributed over 800 ®ctitious bus lines. In our test, we evaluate
the performance of a single Central upon message reception
from a bus. We have written a script to emulate the buses
connecting to RSUs and sending messages to the Central. As
the number of bus stops can be different for each bus line,
we have also varied the number of RSUs from 10 to 100.
After the creation of the routes of the ®ctitious bus lines,
one of all the registered buses runs through its bus line 10
times, sending messages to the Central whenever it changes of
RSU. The Central treats these messages and measures the time
spent during the process, the message Handling Time (HT).
The same procedure is repeated three times for each different

number of RSUs in a bus line. The HT per message results
are shown in Figure 7(a) with 95% con®dence intervals.

 0
 1
 2
 3
 4
 5
 6
 7

 0 20 40 60 80 100

H
T

 p
er

 m
es

sa
ge

 (
m

s)

Number of RSUs per bus line

(a) Handling time (HT) per message.

 0
 1
 2
 3
 4
 5
 6

 0 1 2 3 4 5 6

E
st

im
at

ed
 v

al
ue

s
(m

s)

Measured values (ms)

(b) Linear regression residual plot.

Figure 7. Rio de Janeiro emulated scenario.

From Figure 7(a), we can observe that WiBus would be able
to monitor and estimate the entire city of Rio de Janeiro with
just one server similar to the one used in the experiment. This
inference is made by observing that the HT of a single message
is less than 6.5 ms and assuming that buses take, in average,
more than a minute to reach the next RSU on its route. With
this assumption, the system has at least 60 seconds to handle
8,000 messages. Nevertheless, dividing the 60 seconds by the
worst case 6.5 ms, we obtain a rate of over 9,000 messages
per minute. This amount is higher than the number of buses,
meaning that the Central entity is able to meet these demands.

To assess WiBus scalability with respect to the number of
RSUs per bus line, we modeled the HT per message obtained
in the Rio de Janeiro scenario through a linear regression. To
evaluate the accuracy of this model we use a residual plot
along with theR2 metric [10]. In the residual plot, measured
and estimated values are plotted and a unit slope is also shown
indicating a perfect model. The linear regression model, which
achieves aR2 value of 0.969, together with the residual plot
shown in Figure 7(b) are very close to the reference slope,
suggesting that the experimental HT per message ®ts well a
linear function. Hence, we can conclude that WiBus scales
with respect to the number of RSUs per bus line.

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000

H
T

 p
er

 m
es

sa
ge

 (
m

s)

Number of buses per bus line

(a) Handling time (HT) per message.

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

E
st

im
at

ed
 v

al
ue

s
(m

s)

Measured values (ms)

(b) Linear regression residual plot.

Figure 8. Number of buses per bus line scalability test.

To show that WiBus scales with respect to the number of
buses per bus line, we create a new scenario where we varied
the number of buses in the system from 1000 to 8000. All
the buses were registered in a single bus line with a route
with 5 RSUs. Then, one of the buses follows the route 10
times and, as a consequence, the HT per message is calculated.
The whole process is repeated three times for each different
number of buses in a bus line. The HT per message results

are shown in Figure 8(a). Note that the HT values obtained
in this test are greater than the obtained in the Rio de Janeiro
scenario because in this scenario all the buses were registered
in the same bus line, which does not happen in the real world.
Again, we model the HT per message, resulting in a linear
regression. This shows that WiBus scales in respect to the
number of buses per bus line. The linear regression model
achievesR2 value of 0.999, together with the residual plot
shown in Figure 8(b) almost overlapping the reference slope
suggest that the experimental HT per message is well ®tted
with a linear function. Thus, we can infer that WiBus scales
with respect to the number of buses per bus line, even with
unrealistic numbers of buses in the same bus line. The next
experiment evaluates the quality of the arrival time estimates.

B. Experiments in a University Scenario

For this test, we measured nine times the time spent on
all segments of the UFRJ's internal bus lines ªCOPPEADº
and ªEstacËÄao UFRJº, as in Figure 9. These data are used
to evaluate the quality of WiBus estimates, which calculate
arrival times using moving averages of sizeK . In our tests, the
parameterK is varied from 1 to 8. Figure 10 plots the average
absolute error for each segment concerning buses arrival time
estimates for both lines. We show results forK equal to 1, 4,
5 and 8, for the sake of clarity.

(a) ªCOPPEADº Bus Line. (b) ªEstacËÄao UFRJº Bus Line.

Figure 9. University bus line routes.

The value ofK is chosen to minimize the average error of
the obtained estimates from the ®rst until the last bus stop of
the evaluated lines. The values ofK are those that produce
the lowest absolute error according to Figure 11, which are
K = 4 for ªCOPPEADº andK = 3 for ªEstacËÄao UFRJº.

Picking different values ofK for each bus line is justi®ed by
the fact that different lines have different behaviors. The char-
acteristics per segment of the two bus lines are summarized
in Tables I and II. We can observe that some segments have
a high coef®cient of variation (CV), de®ned as the standard
deviation (�) divided by the mean. The high coef®cient of
variation of these segments is a consequence of traf®c lights
or pedestrian crossings, which can produce time variation.
Also, from the Tables I and II, one could calculate the average
coef®cient of variation for the two lines. The line ªCOPPEADº

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 9

A
bs

ol
ut

e
er

ro
r

by
 s

eg
m

en
t (

s)

Segment

 K = 1
 K = 4
 K = 5
 K = 8

(a) ªCOPPEADº Bus Line.

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10 11

A
bs

ol
ut

e
er

ro
r

by
 s

eg
m

en
t (

s)

Segment

 K = 1
 K = 4
 K = 5
 K = 8

(b) ªEstacËÄao UFRJº Bus Line.

Figure 10. Average absolute errors for different values ofK .

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8

T
ot

al
 a

bs
ol

ut
e

er
ro

r
(s

)

K

(a) ªCOPPEADº Bus Line.

 0
 10
 20
 30
 40
 50
 60
 70
 80

1 2 3 4 5 6 7 8

T
ot

al
 a

bs
ol

ut
e

er
ro

r
(s

)

K

(b) ªEstacËÄao UFRJº Bus Line.

Figure 11. Average estimate error from the ®rst bus stop to the last one for
different values ofK .

has an average coef®cient of 0.21, whereas the line ªEstacËÄao
UFRJº has 0.18. These values help understanding the plots
in Figure 11. Bus lines with larger variations, such as ªCOP-
PEADº, tend to show a greater tradeoff between recent and
long-term information. In opposition, for bus lines with minor
variations, like ªEstacËÄao UFRJº, this behavior is less clear.

Finally, from Figure 11, we verify that even for the entire
bus route, the average absolute error of the estimates remains
below 80s.

VII. C ONCLUSIONS ANDFUTURE WORK

This paper proposed a system to estimate the time of arrival
of buses at bus stops. WiBus uses information obtained from
an IEEE 802.11 network with devices installed inside buses
and on infrastructure along their routes. The idea is to track
buses positions in order to estimate their arrival times. To
avoid system failures in case of unforeseen route changes,

Mean (s) � (s) CV

1 116.44 52.04 0.45
2 42.67 12.43 0.29
3 44.33 9.90 0.22
4 107.56 11.75 0.11
5 79.67 17.26 0.22
6 140 14.73 0.11
7 85.33 10.83 0.13
8 63.67 16.59 0.26
9 61.22 9.00 0.15

Table I
ªCOPPEADºBUS LINE.

Mean (s) � (s) CV

1 58.56 13.62 0.23
2 42.11 15.31 0.36
3 85.44 24.69 0.29
4 122.11 15.14 0.12
5 173.89 5.92 0.03
6 128 9.75 0.08
7 127.56 10.88 0.09
8 80.44 11.64 0.14
9 27.33 8.94 0.33
10 97.11 13.56 0.14
11 61.56 7.63 0.12

Table II
ªESTACËÄAO UFRJº BUS LINE .

an algorithm for dynamic creation and maintenance of digital
routes was proposed. The arrival time estimate is based on a
simple moving average of sizeK , where examples ofK were
calculated with real data for two university bus lines. Results
have shown that the estimates made by WiBus present errors
on the order of a few minutes, for the entire route followed by
the bus lines. Also, we have shown that WiBus is scalable and
is able to meet the demands of a big city like Rio de Janeiro,
being able to handle more than 9,000 messages per minute,
in the worst case. WiBus implementation provides two user
interfaces, a web page and an Android app calledBuZoom.

As future work, we plan to extend our measurements with
more real data regarding the time spent to traverse route
segments. With more information, it would be possible to
evaluate more precisely the choice of the parameterK , and
possibly allowing the creation of a dynamic algorithm forK
adjustment as a function of the estimate error.

ACKNOWLEDGEMENT

This work was funded by CNPq, CAPES, and FAPERJ.

REFERENCES

[1] DENATRAN, www.denatran.gov.br/frota.htm (in Portuguese), 2014.
[2] R. F. Casey, L. N. Labell, S. P. Prensky, and C. L. Schweiger, ªAdvanced

public transportation systems: the state of the art,º U.S. DOT, Tech. Rep.,
1991.

[3] J. Ribeiro Junior, M. Mitre Campista, and L. Costa, ªCOTraMS: A
collaborative and opportunistic traf®c monitoring system,ºIEEE Trans-
actions on ITS, vol. 15, no. 3, pp. 949±958, June 2014.

[4] M. Caceres, F. Sottile, and M. Spirito, ªWLAN-based real time vehicle
locating system,º inIEEE VTC, Apr. 2009, pp. 1±5.

[5] K. Manolis and D. Kwstis, ªIntelligent transportation systems - travelers'
information systems the case of a medium size city,º inIEEE ICM, Jun.
2004, pp. 200±204.

[6] W.-H. Lin and J. Zeng, ªExperimental study of real-time bus arrival time
prediction with GPS data,ºTransportation Research Record, vol. 1666,
no. 1, pp. 101±109, 1999.

[7] S. Chien, Y. Ding, and C. Wei, ªDynamic bus arrival time prediction
with arti®cial neural networks,ºJ. Transp. Eng., vol. 128, no. 5, pp.
429±438, 2002.

[8] A. Karbassi and M. Barth, ªVehicle route prediction and time of arrival
estimation techniques for improved transportation system management,º
in IEEE Intelligent Vehicles Symposium, Jun. 2003, pp. 511±516.

[9] Instituto Municipal de Urbanismo Pereira Passos, http://www.
armazemdedados.rio.rj.gov.br/ (in Portuguese), 2011.

[10] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury,Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

