Time of Arrival Prediction with Dynamic Route
Tracking for Public Transportation Systems

Vitor Borges C. da Silva, Tatiana Sciammarella, Miguel Elias M. Campista, add Henrique M. K. Costa
Federal University of Rio de Janeiro - PEE/COPPE/GTA - DEL/POLI
E-mailf borges,tatiana,miguel,luigl@gta. ufrj.br

AbstracBA great challenge in developing countries is the many solutions use GPS, due to its greater accuracy. Neverthe-
constant traf®c jams in urban areas, which are a consequence |ess, the GPS utilization requires an additional communication
of exlcess"’el dusg of p”‘t’)"l’?te vehicles. In these Cg””t”es_’f ”r‘]orelink to inform the vehicle position. As an alternative, there
people would adopt public transportation, e.g., buses, If the R . "
time of arrival for the next vehicle to each bus stop could arq |0C8.|I2at.I0n techniques Fhat use network te?*_‘”o'og'es [3]'
be predicted. In this direction, we propose WiBus, which is Which can simultaneously discover the bus position, signalize

a system to estimate buses arrival time, based on information it and provide communication services. This type of solution
from opportunistic IEEE 802.11 contacts. These estimates are js used in this paper.

provided to users via a website and a graphical interface for Network | lization h been explored even in simpl
mobile devices. Unlike previous systems, WiBus explicitly takes etwork localizatio as been explored eve simple

into account bus route changes, which occasionally happens in prO)_(imity-bgsed location sy;'_tems, where the position of_a
developing countries , adjusting the routes with an algorithm for vehicle is given by the position of the node the vehicle is

dynamic route creation and maintenance. WiBus is implemented connected to. Although the precision is smaller than using
and analyzed via emulation of a real scenario. Experimental 5pg techniques to improve the performance of these systems
results show that WiBus is scalable and meets the needs of large . -
cities with accumulated error of at most a few minutes. are evolving, F’r_OV'd'”Q mean square errqr of.only a few me-
ters [4]. Regarding estimates of buses arrival time, some works
|. INTRODUCTION use long term historical series collected even for months [5].
With such data, estimates are calculated based on averages
Today, big cities in developing countries suffer from confrom the same period of time in the past. This method does not
stant traf®c jams. In Brazil, in just one year, from Decembgghave well in case of atypical situations, such as accidents or
2013 to 2014, more than 4 million new vehicles starteglentual congestion. To better model these situations, another
circulating on the streets, causing a signi®cant deterioratigigtorical-based solution exists, the real-time approach. In
of the traf®c system [1]. In these countries, the preferengfs approach, only short-term information is used, e.g. the
for private transportation is a consequence of the lack pfformation from the last four hours. This method models
con®dence on the public alternative, be it for safety, comfqlforeseen situations more ef®ciently, but assumes that the
or commitment with timetables. To change this trend, thgme spent by previous vehicles in a given route is equivalent
idea of the Advanced Public Transportation Systems (APT&) the time spent by next vehicles [6]. There are also works
has emerged using, among other technologies, communicatiggt use arti®cial neural networks to predict buses arrival
networks to provide more information to users [2]. time [7]. Finally, there are some methods that use Kalman
This work aims at improving the quality of the servicepiters, which do not perform well when location data are
provided by public transportation systems at developing cougmporally sparse [8].
tries. The idea is to offer fresh information regarding the next 1p;g paper proposes WiBus, a system to estimate the arrival
bus arrival time of every bus line to each possible bus stofe of buses using IEEE 802.11 networks. The design goals
Nevertheless, even considering the Vehicle-to-Infrastructyse \wigus are low cost and low complexity, combining the
(V21) architecture, estimating the arrival time of a bus at ggvantages of previous proposals. To this end, WiBus tracks
given bus stop is a challenge, because traf®c and passenggr$,osition of buses based on their proximity to IEEE 802.11
can in uence the time a bus takes on its route (e.g., when g-ess points installed alongside streets. This approach allows
acmdem results in a traf®c jam). Moreover, S|tuat|ons such@s utilization of only one type of device to track and com-
an accident, a large event (e.g., World Cup, Olympic Gam&gjcate, reducing the system cost and complexity. In this
etc.) or a roadwork may result in temporary changes in\gok we use a real-time method to estimate arrival times
bus route. If these changes are ignored, the estimates becffge |ocalization information is not obtained at the same rate
useless. Therefore, two requirements to calculate the arrival \vith GPS and because we do not assume the existence of
times without s_lgn|®ca_nt errors are to track buses positignyatabase with long-term historical information. Then, based
whenever possible, which most systems do; and to be awgfe short-term past information, WiBus computes the arrival
of buses route changes in a dynamic fashion, which is(ife of buses and dynamically adapts these times to route
contribution of our work. To deal with the ®rst requiremenghanges, This yields that even if a bus deviates from its route,
978-1-4673-7306-7/15/$31.00 2015 IEEE the system can adapt, keeping users informed. Experiments

with real datasets show that WiBus is capable of meeting thre developing countries roadwork and construction sites can
demands of a big city such as Rio de Janeiro, incurring frappen more often.

errors on the order of a few minutes. In addition, to promote
public access to the system, an application for Android smart-
phones, calledBuZzoom and a web pageBuZoom Webh are

developed in this work. Our experimental results demonstraheW'BLr_S "z |rk;1|cilemented asda:c se(tj of six pr)]rograms. F_ou(; ?f
the applicability of WiBus in real environments. them, listed below, are used for data exchange required for

This paper is organized as follows. Section Il and ”puses arrival time estimation. Their names indicate their role

present, respectively, the architecture and the implementath fhe localization process. The remaining two programs are

n--. .
structure of WiBus. Section IV further details the algorithm§€nt interfaces, which are presented later:
used to predict arrival times and track route changes, while WiBus - Localization Client This program
Section V shows the user interface developed. In Section VI, runs every time the bus connects to an RSU, sending
the evaluation setup is described and the corresponding results @ localization request and receiving its answer. The mes-
are shown. Finally, Section VII concludes this work and sage sent by the bus contains the bus and bus line IDs
presents future directions. and allows RSUs to log buses passing by. This message

can be seen in Listing 1.

Il. WIBUS IMPLEMENTATION

II. WIBUS ARCHITECTURE

WiBus (Figure 1) is composed of four entities: Central, S WIBUSLocRequest

X)) <BusLinelD>
Roadside Unit (RSU), Bus, and Client. The Central plays the |Bus line ID, e.g. 455.
most important role in the system. It stores the information :‘/BESISD';'”e'D
needed to compute arrival time estimates of buses, their route, | gs Ip, e.g. BUS125.

</BusID>
</WIBUSLocRequest

location, and the time spent between consecutive stops. The
Central also answers to customers' arrival time requests. Road-
side Units (RSUs) are ordinary IEEE 802.11 access points
installed at bus stops. They provide wireless access to each
router within each bus and run the developed programs for
bus tracking. These developed programs locate the bus along continuously runs in RSUs waiting messages from buses.
its route and send the localization information to the Central Upon a bus message arrival, the RSU sends its geo-
through the RSU. A Client is any person requesting estimates graphical position to the corresponding bus. This message
to the system. These requests can be made either through the allows the bus to localize itself. This message can be seen
Android BuZoom application or through the website. in Listing 2.

Listing 1. Localization request message.

WiBus - Localization Server This program

<WIBUSLoCcRSW
<RSUPositior
Latitude ;Longitude
</RSUPositiom

< /WIBUSLocRSW&

Road Side Unit
(RSU)

Listing 2. RSU localization message.

WiBus - Communication Client : This program

is used by buses to communicate their current and pre-
vious localization to the Central. It runs after the end
of WiBus - Localization Client and can also
receive replies from the Central. The message produced
can be seen in Listing 3.

Figure 1.

Entities of the WiBus system architecture.

WiBus services: WiBus offers complementary services of

localization and arrival time of buses at all stops along their
routes. Both services are based on proximity to connected
RSUs. Therefore, upon arriving at a bus stop, the router
within the bus connects to the network provided by the RSU.

<WIBUSLocBus
<BusLinelD>

Bus line ID, e.g. 455.
Messages are then exchanged between the bus router and the</BusLinelD>
RSU for mutual identi®cation. Then, the bus router sends |<Bus!D>
o X o Bus ID, e.g. BUS125.
a message to the Central entity informing the RSU it is |<,gusip>

connected to. This allows the system to track the bus position.
Although this information is fundamental, it is not enough
for arrival time computation. The bus route and a short-term
history of the times spent by buses between consecutive stops
are still needed to estimate arrival times. Although the trivial
approach to have the bus route would be to assume that they

<PrevRSUPosition
Latitude ;Longitude
</PrevRSUPosition
<CurrRSUPositiorn
Latitude ;Longitude
</CurrRSUPositior
< /WIBUSLocBus

do not change, we consider the possibility of changes, since

Listing 3. Bus localization message.

WiBus - Communication Server . This program A bus line route is modeled as a sequence of RSUs, where
communicates with buses receiving their localizatioreach RSU has directed edges to the next and previous RSUs
From messages received, the Central can dynamicatlfthe route. To prevent premature changes to bus line routes,
update the bus line route, be aware of buses location, amndveighted strategy is employed: non-negative weights are
estimate times of arrival at every bus stop. This prograassigned to edges and also to RSUs. Weights assigned to
also responds to clients' requests for bus information. edges govern the bus line route dynamics, capturing how fast a
The localization process is illustrated in Figure 2. Wheghange in the route will be considered permanent. On the other
a bus connects to an RSU, it sends a localization requbsnd, weights assigned to RSUs indicate if they are still used
message with th@/iBus - Localization Client pro- inthe bus line route. In Figure 3 we model a ®ctitious bus line
gram (Figure 2(a)). In the following, the RSU replies th&oute from RSU-1 to RSU-5 to show these concepts. Circles
message received from the bus with its own position uggpresent RSUs and rectangles represent RSU weights. Arrows

ing theWiBus - Localization Server program (Fig- represent the directed edges linking one RSU to its successor
ure 2(b)). Finally, the bus sends its localization message @b predecessor in the bus line route, where the number near
the Central with th&ViBus - Communication Client the edge is its corresponding weight.

program (Figure 2(c)). The bus localization message contains
information about the RSU where the bus is connected, the

previous RSU it has been connected, and the bus and bus o, Bt
line identi®ers. Upon receiving this message, Widus - = @ w%ﬂ”
Communication Server program handles the informa- = N
tion. Besides the four programs, there are also two others TP :
operating as Client interfaces: &

BuZoont An interface for Clients with Android smart- = ¥ Busline:

phones request buses arrival times to the Central entity. i 5}"52'1'53"54"55

pracaEdson

BuZoom WebA platform-independent web interface for
Clients to also request buses arrival times.

¢
E é = =
P &
<> W C <> S t
Roadside Unit Cenlrnl Roadside Unit Sedment 1

Cenlrul
(RSU) (RSU)

@

(b)

Figure 3. (a) Fictitious bus line route. (b) Bus line route model.

‘ nmu,.'.."w B. Arrival Time Computation

Central
(RSU)

The notion of segment is important since at the end of each
one, the bus must inform the Central its position with a bus
Figure 2. Localization process: (a) Bus requests RSU position. (b) R$bcalization message. This information is used to compute the
gpllteslthe bus with its position. (c) Bus sends localization message to ihﬁ]e spent between consecutive RSUs, which is calculated by

e the Central subtracting the time of delivery of the current

In the next section, we detail the Central operation. position and previous position messages. Then, when the
Central receives a message from a bus, it updates the current
) and previous bus positions. Also, it updates the average time
A. Bus Line Route Model needed to traverse that segment. With the average value of

In WiBus, a bus line is de®ned by its number and directidhe next segments and the bus departure time, the system can
(e.g., 913 South). As a consequence, bus routes are not circelstimate the time required for a bus to reach the following
for the system. Additionally, each bus route consists of a list 8fSUs on its line. This is done by summing up the average
segments, where each segment starts in an RSU and termintites needed by buses to traverse each of the segments from
in the consecutive one. Since we consider that each bus stiog current RSU until the target RSU. The problem, therefore,
has an RSU installed, a segment also starts in a bus stgm be reduced to a problem of estimating the time required
and ends in the consecutive bus stop of a bus line. Note tfat a bus to traverse a given segment. This can be calculated
consecutive RSUs or bus stops can be known accordingat® the average time spent by tKe previous buses at the
the movement of the buses. It is worth noting that the bgsme segment, i.e. a moving average with window Kizas
departure from its initial bus stop is considered known, asaintained by the Central. The use of a simple moving average
announced by bus companies. provides reduced complexity in arrival time estimation.

(c)

IV. CENTRAL ENTITY OPERATION

Upon receiving a message from a bus, the Central entityust travel over a route without a given RSU at least twice,
re-estimates the time needed for every bus on the same linént@rder to delete this RSU.
reach all the next RSUs in their route. This is done by getting For instance, consider a bus doing the route in Figure 3(a)
the buses current RSU and summing up the estimates of lbaves S1 and goes to S2. When arriving at S2, its router
segments from the current RSU to the last one in the bus limxchanges messages with the RSU-2 at S2. After this, the bus
To show only the estimate to the next bus arrival time at eagiforms the Central its position. On receiving the bus position,
RSU, only the lowest estimate time is stored. This proceige Central updates the weights of the RSUs decrementing
is formally described in Algorithm 1, whermstimate,, stores all of them and incrementing the weight of RSU-2, where
the estimated time needed for a lisom a given bus liné to the bus is. In addition, the Central checks that the bus is
reach an RSU from its initial position. Note that this algorithnaoming from the RSU-1 and is at RSU-2, exactly following
is used to possibly update the time needed to reach all tihe bus line route expected by the Central. The updated route
RSUs of the same bus line. In addition, Algorithm 1 uses tla the Central can be seen in Figure 4. Next, we describe
function segmentEstimate . This function implements the the route maintenance algorithm, responsible for dealing with
aforementioned moving average to estimate the time neededte changes.
for a bus to traverse one segment. Next, we detail the update
and maintenance algorithms of the bus lines routes.

Algorithm 1: Estimated arrival time for the next bus to

reach each RSU in the bus line.
Input: list of segmentsS of the bus linel.
Output: time estimate for the next bus to reach each RSU in the bus
line.

Figure 4. Node weight updates after a bus movement to the following RSU.

1 forall the b of bus linel do _ D. Route Maintenance Algorithm

2 estimate , = 0; segment = currentsegment from S whereb is;

3 while segment existsdo ' The need for dynamic representation of bus routes comes

4 estimate , += segmentEstimate(segment) ; from situations where unforeseen events change the sequence
5 if estimate , < current RSU estimatthen

o | current RSU estimate estimate 1, of segments usually followed by buses. Such changes can be
7 end _ permanent or temporary. One way of checking if the bus route

S| g coment = nextsegment in S; has really changed is by observing other buses from the same
10 end line. The change can be con®rmed if they continuously repeat

the same new route. The number of times a change must be
repeated until it is considered valid is captured by the WiBus
. route maintenance algorithm. The algorithm aims at avoiding
C. Route Update Algorithm errors on arrival time estimates either because of premature
The route update algorithm is responsible for updatingbnclusions or lack of responsiveness to bus route changes.
RSUs weights. The basic idea is to increment the weight of Whereas the weights of the RSUs are updated every time a
RSUs currently used by buses along a bus line. In oppositiotew message arrives to the Central, the weights of the edges
RSUs currently not used have their weight decremented. T modi®ed only when a bus line route changes. During a
update process of RSU weights consists of decrementing floyite change, an RSU may be connected to more than one
one the weight of all RSUs in the bus line. Next, the weightext or previous RSU. In such cases, an RSU has a list of
of the current RSU, the one informed in the message receivedges indicating the next or previous RSU, rather than just
from the bus, is incremented by an integer (speci®ed laterh single edge. Thus, the update of the edges to the previous
The update algorithm can culminate on RSU creation or next RSU is performed as follows: the weight of all edges
deletion. RSUs are deleted if their weights reach zero, meaniingm the list of previous and next RSUs is decremented by
that the RSU is no longer part of the bus line. In case of RSthe, and two units are added to the weight of the edges used,
creation, the assigned weight must be large enough so thet, previous and next.
the RSU will not be mistakenly removed. So, the initial value During the route maintenance, edges can be created or
assigned to an RSU is considered equal to twice the proddefeted. Edges are deleted if their weights reach zero, and are
of the number of RSUs in the bus line by the amount of buseated if buses inform a new segment in a bus line route. In
circulating on that bus line. This value is also the maximuithe case of edge creation, the initial value of the edge weights
value allowed to the RSU weight. The initial value of the RSldan be adjusted, taking into account that its value must be at
weight depends on the number of RSUs in the bus line, evenost two times the number of buses in the same bus line, thus
time an RSU is added, to be fair, the weights of all RSUsis possible to de®ne how fast a change in the route will be
in the line are set to the new maximum value. Similarly, theonsidered permanent. The initial value chosen for the edge
increment given when an RSU is used is equal to twice theeight is also the maximum value allowed.
number of RSUs in the bus line. Hence, the initial weight For ease of understanding we present an example of a route
assigned to an RSU guarantees that all buses of a given laiange. Suppose there is a bus line in which buses normally

current and previous position. After updating the weights of
the RSUs, the Central compares the current and the previous
bus positions to the registered bus route. According to the
registered route, a bus arriving at RSU-5 must come from
RSU-4. Nevertheless, as informed by the bus, the previous
stop was at RSU-2. Thereby, the Central registers this new
- " Newbus ine: possibility adding an edge from RSU-2 to RSU-5 and vice
i - /i versa. After the edges creation, the old edges that represent
the next RSU of RSU-2 (RSU-2, RSU-3) and previous RSU
of RSU-5 (RSU-5, RSU-4) have their weight decremented.
Now, from the route registered a bus coming from RSU-2, has
two possible next RSUs, as well as RSU-5 has two possible
previous RSUs. In addition, one can infer by the weight of the
outgoing edges of RSU-2 that the most recent route avoids
RSU-3 and RSU-4. This is indicated by the highest weight
of the edge connecting RSU-2 to RSU-5. Then, the route
registered at the Central is illustrated in Figure 5(b).

Consider another bus leaving S1 to S2. After messages
exchange, the Central updates the weights of the RSUs. The
weight changes can be seen in Figure 5(c). Note that the
weights of RSU-3 and RSU-4 are almost half the initial weight
because buses have stopped passing by.

When the bus approaches RSU-5, the weight update process
is triggered again. Afterwards, the Central veri®es again that
the previous RSU as informed by the bus is RSU-2, instead
of RSU-4. As a consequence, the next RSU is again RSU-5
instead of RSU-3. Then, the weights of the edges maintaining
such information are incremented, becoming equal to the
initial and maximum value allowed. On the other hand, the
weights of the other edges representing the next RSU of
RSU-2 and the previous RSU of RSU-5 are decreased. Upon
reaching zero, these edges are removed from the bus line route
representation in the Central, as observed in Figure 5(d). The
removal of the edges con®rms the route change. This can be
seen by checking Figure 5(d) that despite RSU-3 and RSU-4
still exist in the route representation, they are not reachable
by following any edges on the route beginning at RSU-1. We
can note that because the maximum and initial weight of the
Figure 5. (a) Bus line route with changes due to roadwork. (b) The ®%gges is equal to two in the example, two buses a_re needed, to
bus going from RSU-2 directly to RSU-5 signs a route change. Hence, edg&N®rm the route change. Nevertheless, as mentioned earlier,

connecting RSU-2 and RSU-5 are created. (c) Nodes weight update afigie can change this parameter to determine how responsive
another bus from the same line moves to RSU-2. (d) Route after Ed%%/\/

removal. RSU-3 and RSU-4 are no longer reachable from RSU-1, con®rm glgorlthm Is to ro_Ute changes.
the bus route change. (e) Final bus line route, after unused RSUs removal. With the con®rmation of the route, no other change happens

on the edges between RSUs in the route. Yet, with buses
continuing to follow the route, RSU-3 and RSU-4 are removed
goes from the bus stop S1 to the bus stop S5 passing by 8@m the bus route and the maximum weight allowed to the
S3, and S4, as illustrated in Figure 3(a). Due to a roadwoiRSUs decreases. The new route is depicted in Figure 5(e).
the streets connecting S2 to S3 or S4 are now blocked, forcingSince the main purpose of WiBus is to provide estimates
all the buses to change their route as shown in Figure 5(a). Téfebuses arrival times at bus stops, it is worth mentioning that
new route skips the bus stops S3 and S4 because they becduarag a route change process, when many routes are possible,
unreachable. Since the Central uses information from bust#® estimates are calculated using the old route until the new
the route is initially outdated before receiving any updates.route is con®rmed. Therefore, even if a bus driver follows
Consider the ®rst bus to do the route after the road blockifie wrong route, estimates will be calculated correctly. On the
already at RSU-2 as in Figure 4. In the original route, the neather hand, if a route change is really in progress, the estimates
bus position would be RSU-3. However, the Central will heawill only take the new route into account after it has been
again from the bus only at RSU-5, when the bus informs iton®rmed. Hence, one must consider the tradeoff between

@

Number of RSUs per bus line

Measured values (ms)

are shown in Figure 8(a). Note that the HT values obtained
in this test are greater than the obtained in the Rio de Janeiro
scenario because in this scenario all the buses were registered

g 7 £ o in the same bus line, which does not happen in the real world.
= g . g s <" Again, we model the HT per message, resulting in a linear
é 431 - S ‘3‘ xS regression. This shows that WiBus scales in respect to the
5 2 L g 2 number of buses per bus line. The linear regression model
E (1) ' % (1) * achieve_st_ value of 0.999, together yvith the residual plot

0 20 40 60 80 100 01 2 3 45 6 shown in Figure 8(b) almost overlapping the reference slope

suggest that the experimental HT per message is well ®tted

with a linear function. Thus, we can infer that WiBus scales
with respect to the number of buses per bus line, even with
unrealistic numbers of buses in the same bus line. The next

From Figure 7(a), we can observe that WiBus would be abﬁ:é(penment evaluates the quality of the arrival time estimates.

to monitor and estimate the entire city of Rio de Janeiro witB. Experiments in a University Scenario

just one server similar to the one used in the experiment. Thisgyr this test, we measured nine times the time spent on
inference is made by observing that the HT of a single message segments of the UFRJ's internal bus lines 2<COPPEADP
is less than 6.5ms and assuming that buses take, in average; agsiado UFRJ, as in Figure 9. These data are used
more than a minute to reach the next RSU on its route. Wif§ eyajuate the quality of WiBus estimates, which calculate
this assumption, the system has at least 60 seconds to hapdiga| times using moving averages of ske In our tests, the
8,000 messages. Nevertheless, dividing the 60 seconds by Jhgsmetek is varied from 1 to 8. Figure 10 plots the average
worst case 6.5ms, we obtain a rate of over 9,000 messaggsoute error for each segment concerning buses arrival time

per minute. This amount is higher than the number of busesimates for both lines. We show results forequal to 1, 4,
meaning that the Central entity is able to meet these demangls,\q 8 for the sake of clarity.

To assess WiBus scalability with respect to the number of
RSUs per bus line, we modeled the HT per message obtained
in the Rio de Janeiro scenario through a linear regression. To
evaluate the accuracy of this model we use a residual plot
along with theR? metric [10]. In the residual plot, measured
and estimated values are plotted and a unit slope is also shown
indicating a perfect model. The linear regression model, which
achieves &R? value of 0.969, together with the residual plot
shown in Figure 7(b) are very close to the reference slope,
suggesting that the experimental HT per message ®ts well a
linear function. Hence, we can conclude that WiBus scales
with respect to the number of RSUs per bus line.

(a) Handling time (HT) per message(b) Linear regression residual plot.

Figure 7. Rio de Janeiro emulated scenario.

i 0
E 50 E 50
(4] %]
g, 40 I 5 40
g 30 F S 30
E 20 : € 20
9] - 9]
S 10 E 10
= + 2
T 0 i} 0
0 2000 4000 6000 8000 0 10 20 30 40 50

Number of buses per bus line Measured values (ms)

(a) Handling time (HT) per message(b) Linear regression residual plot.

Figure 8. Number of buses per bus line scalability test.

To show that WiBus scales with respect to the number .7
buses per bus line, we create a new scenario where we varec
the number of buses in the system from 1000 to 8000. All
the buses were registered in a single bus line with a rouic
with 5 RSUs. Then, one of the buses follows the route 1G
times and, as a consequence, the HT per message is calculatedi.
The whole process is repeated three times for each differen:
number of buses in a bus line. The HT per message resufis

—<FLNCO
mimnn
NN

<000 |
ey
avavan

EEOO

| 1"l

s)

nj

sqe

1 23 456 78

1234567 8

K

K

