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Abstract—The multi-resource allocation problem arises in
different scenarios, from cloud computing systems to shared
clusters. Users often have heterogeneous demands and dynamic
workloads. Different mechanisms were proposed to fairly divide
multiple resources, most notably, Dominant Resource Fairness
(DRF). Even though DRF satisfies several desirable properties,
it considers fairness only in the static setting. We propose
Stateful DRF (SDRF), an extension of DRF that looks at past
allocations and enforces fairness in the long run while keeping
the fundamental properties of DRF. We prove that SDRF is
strategyproof, since users cannot manipulate the system by
misreporting their demands; incentivizes sharing, because no user
is better off if resources are equally partitioned; and is efficient,
as no allocation can be improved without decreasing another. In
SDRF, user priorities change over time. To avoid recalculating
priorities at every task scheduling decision, we also propose Live
Tree, a general-purpose data structure that keeps elements with
predictable time-varying priorities ordered. We conduct large-
scale simulations based on Google cluster traces of 30 million
tasks over one month. Results show that SDRF reduces users’
waiting time on average. This improves fairness, by increasing
the number of completed tasks for users with lower demands,
with negligible impact on high-demand users.

I. INTRODUCTION

Resource allocation is a fundamental problem in any shared
computing system. Cloud computing centers and modern
clusters are usually shared by users with different resource
constraints [1]–[3]. The amount of resources given to each user
directly impacts the system performance from both fairness
and efficiency standpoints [4]. In single-resource systems,
max-min fairness is the most widely used and studied al-
location policy [5], [6]. The main idea is to maximize the
minimum allocation a user receives. It was originally proposed
to ensure an equal share of link capacity for every flow in
a network [7]. Since then, max-min has been applied to a
variety of individual resource types, including CPU, memory
and I/O [6]. Nevertheless, when it comes to multi-resource
allocation, max-min is unable to ensure fairness [6], [8].

In a multi-resource setting, users often have heterogeneous
demands and dynamic workloads [3], [6]. Some mechanisms
have been proposed to address the multi-resource alloca-
tion problem [6], [8], [9], most notably, Dominant Resource
Fairness (DRF) [6]. DRF generalizes max-min to the multi-
resource setting, by giving users an equal share of their mostly
demanded resource — their dominant resource. Using this

approach, DRF achieves several desirable properties. Despite
the extensive literature on fair allocation, most allocation
policies focus only on instantaneous or short term fairness,
ensuring that users receive an equal share of the resources
regardless of their past behaviors. DRF is no exception, it guar-
antees fairness only when users’ demands remain constant. In
practice, however, users’ workloads are quite dynamic [3], [10]
and ignoring this fact leads to unfairness in the long run.

This paper proposes Stateful Dominant Resource Fairness
(SDRF), an extension of DRF that accounts for the past be-
havior of users and improves fairness in the long run. The key
idea is to make users with lower average usage have priority
over users with higher average usage. When scheduling tasks,
SDRF ensures that users that only sporadically use the system
have their tasks scheduled faster than users with continuous
high usage. The intuition for SDRF is that when users use
more resources than their rightful share of the system, they
commit to use less in the future if another user needs. SDRF
tracks users commitments and ensures that whenever system
resources are insufficient, commitments are honored.

We conduct a thorough evaluation of SDRF and show
that it satisfies the fundamental properties of DRF. SDRF is
strategyproof as users cannot improve their allocation by lying
to the mechanism. SDRF provides sharing incentives as no
user is better off if resources are equally partitioned. Moreover,
SDRF is Pareto efficient as no user can have her allocation
improved without decreasing another. DRF can be efficiently
implemented using a priority queue that determines which
user has the highest allocation priority. When we consider
the past, allocation priorities may change at any instant and
the implementation cannot benefit from a priority queue. We
mitigate this problem — being able to implement SDRF
efficiently — introducing live tree, a data structure that keeps
elements with predictable time-varying priorities sorted.

Besides the theoretical evaluation, we analyze SDRF using
large-scale simulations based on Google cluster traces contain-
ing 30 million tasks over a one-month period, and compare it
to regular DRF. Results show that SDRF reduces the average
time users wait for their tasks to be scheduled. Moreover, it
increases the number of completed tasks for users with lower
demands, with negligible impact on high-demand users. We
also use Google cluster traces to evaluate the performance of
live tree, concluding that SDRF can be used in practice.

This paper is organized as follows. We review related workISBN 978-3-903176-08-9 c© 2018 IFIP



in Sec. II and introduce the system model in Sec. III. In
Sec. IV we present DRF and its allocation properties. We then
introduce SDRF and show its properties in Sec. V. Sec. VI
focus on the implementation of SDRF. We test SDRF and
our implementation under trace-driven simulations in Sec. VII.
Finally, we conclude the paper in Sec. VIII.

II. RELATED WORK

Fair resource allocation is a prevalent research topic, both in
the computer science and economics fields. Nonetheless, focus
is often given to the single resource setting. Ghodsi et al. [6]
are the first to investigate the multi-resource setting under a
shared computing perspective, proposing DRF. Dolev et al. [8]
propose an alternative based on “bottleneck fairness”. Never-
theless, the alternative is not strategyproof and is computation-
ally expensive [11]. Gutman et al. [12] develop polynomial-
time algorithms to compute both DRF and “bottleneck fair-
ness” for non-discrete allocations. Joe-Wang et al. [4] extend
the notion of fairness introduced by DRF to develop a frame-
work that captures the fairness-efficiency tradeoff. However,
they assume a cooperative environment and as such do not
evaluate strategyproofness. Wang et al. [13] generalize DRF
for a scenario with multiple heterogeneous servers, relaxing
the sharing incentives restriction. Friedman et al. [14] also look
at the allocation on multiple servers but provide a randomized
solution that achieves sharing incentives. Another extension
of DRF is proposed by Parkes et al. [15] to account for users
with different weights and zero demands. Zarchy et al. [16]
also investigate multi-resource allocation, but their focus is
when the same application may be developed differently to
use different proportions of resource types. They propose a
framework that allows users to submit multiple demands for
the same application. Even though the aforementioned works
consider the multi-resource setting, they ignore the dynamic
nature of users’ demands.

Bonald and Roberts [9] suggest Bottleneck Max Fairness
(BMF), which also does not enforce strategyproofness, but
improves resource utilization as compared to DRF. They
consider dynamic demands in their analysis, arguing that for
highly dynamic environments, such as networks, it is hard for
users to manipulate the system. BMF convergence is proved in
a later work [17]. Even though the analysis of BMF considers
dynamic demands, the allocation itself considers only short
term usage, ignoring fairness in the long run. Kash et al. [18]
investigate a dynamic setting where users arrive and never
leave, however, they also assume that demands remain con-
stant. Friedman et al. [19] evaluate the scenario where multiple
users arrive and leave the system. The focus, however, is on the
fair division of resources as soon as the user arrives, limiting
the number of task disruptions. There are also works that adapt
DRF to packet processing [11], [20] and consider a recent
past. Nevertheless, this is done to prevent limitations that arise
when scheduling packets — in which resources must be shared
in time — and not to ensure fairness and efficiency in the
long run. Finally, other authors have focused on improving
efficiency in the long run but not fairness [21], [22]. While

some of these works consider users’ dynamicity, they do not
address fairness in the long run, our focus in this paper.

III. SYSTEM MODEL

In this section, we model the multi-resource allocation
problem in a multi-user system. We first formalize users and
resource demands, and then define the general structure of an
allocation mechanism. From this structure we formalize users’
sequential interactions as a repeated game.

A. Multi-Resource Setting and Allocation Mechanism

The system consists of a set of users N = {1, . . . , n} that
share a pool of different hardware resources R = {1, . . . ,m}.
Without loss of generality, we normalize the total amount of
every resource in the system to 1, i.e., if a system has a total of
100 CPU cores and 10 TB of memory, 0.1 CPU equals 10 cores
while 0.1 memory equals 1 TB. For simplicity, we assume that
the set of users and the amount of resources remain fixed.
Every user i has a demand vector θ(t)

i = 〈θ(t)
i1 , . . . , θ

(t)
im〉

representing the user demand for every resource at instant
t. We consider positive demands for every resource type,
therefore at every instant t, θ(t)

ir > 0,∀i ∈ N , r ∈ R.
The allocation mechanism should produce as output a

resource allocation based on users’ declared demands. We
represent the declared demands vector for a user i at instant t
analogously to the demands vector, θ̂(t)

i = 〈θ̂(t)
i1 , . . . , θ̂

(t)
im〉.

When users declare demands truthfully, θ̂(t)
i = θ

(t)
i . We also

define the allocation vector for user i at instant t for every re-
source type as o(t)

i = 〈o(t)
i1 , . . . , o

(t)
im〉. The allocation returned

by the mechanism at instant t is represented by a matrix of all
the individual allocation vectors: o(t) = 〈o(t)

1 , . . . ,o
(t)
n 〉. We

impose a feasibility restriction to the allocations so that they
may never be greater than the total amount of resources in the
system, i.e., at every instant t,

∑
i∈N o

(t)
ir ≤ 1,∀r ∈ R.

We represent user’s preferences using a utility function.
Given an arbitrary allocation o(t)

i , for every user i and time t,
the utility function is

u
(t)
i (o

(t)
i ) = min

{
min
r∈R
{o(t)
ir /θ

(t)
ir }, 1

}
. (1)

Intuitively, users prefer allocations that maximize their number
of tasks, being indifferent between different allocations that
result in the same number of tasks (when the utility is 1,
the user is able to allocate all the tasks she desires). This
assumes tasks are arbitrarily divisible [6], [13], [15]. This
assumption does not hold in practice and we evaluate its
impact in Sec. VI-B. Note that we do not rely on the utility
function for interpersonal comparison, we only use it to induce
ordinal preferences [15], [18]. This means that, even though
the utility function can be used to determine which allocation
is better for a user, it cannot be used to determine if one user
is doing better than another.

B. Repeated Game

In the previous sub-section we referred to an instant t when
defining most notations, however we omitted the influence



time has in the allocation and in the user’s preferences. In
game theory, we typically say that at every instant t there is a
stage game where users declare their demands (θ̂(t)

i ,∀i ∈ N )
and the allocation mechanism decides an allocation (o(t)

i ,∀i ∈
N ). The sequence of stage games defines the repeated game.
To evaluate user’s expected long-term utility, we consider that
they discount future utilities using a discount factor δi ∈ [0, 1),
i.e., user i’s expected long-term utility in the repeated game
for the instant t is

u
[t,∞)
i = Eui

[
(1− δi)

∞∑
k=t

δk−ti u
(k)
i (o

(k)
i )

]
. (2)

The normalization factor (1 − δi) adjusts the units so that
we can compare the stage-game and repeated-game utilities.1

The discount factor δi is often called the “user patience”; the
closer it is to 1, the more users care about future outcomes.
Conversely, the closer it is to 0, the more users care about
recent future and the stage-game outcomes.

IV. DRF AND ALLOCATION PROPERTIES

In this section, we quickly review the DRF mechanism and
the static allocation properties DRF and DRF-based schedulers
usually satisfy. We show that these properties alone are not
enough to enforce fairness in the long run, requiring an
alternative for the dynamic setting.

A. DRF Mechanism

Dominant Resource Fairness (DRF) [6] extends Max-Min
Fairness (MMF) to the multi-resource setting. DRF calculates
an allocation based on users’ dominant resources (the most
demanded resource for each user, relative to the total amount
in the system). As we have normalized all the different kinds
of resources to 1, we say r̃(t)

i is a dominant resource for user i
at instant t, if

r̃
(t)
i ∈ arg max

r∈R
θ

(t)
ir . (3)

Given the dominant resource, we define the normalized
demand vector for each user, in which the dominant resources
become 1. The normalized demand vector for user i at instant t
is denoted by θ̃(t)

i = 〈θ̃(t)
i1 , . . . , θ̃

(t)
im〉, where

θ̃
(t)
ir =

θ̂
(t)
ir

θ̂
(t)

ir̃
(t)
i

, ∀i ∈ N , r ∈ R . (4)

When users request an infinite number of tasks, DRF
computes an allocation where each user receives an equal share
of their dominant resource. For this particular case, DRF can
be described using a simple linear program whose solution (x)
is the share of dominant resource each user receives [15]:

max
x

x

s.t.
∑
i∈N

o
(t)
ir ≤ 1, ∀r ∈ R ,

o
(t)
ir = x · θ̃(t)

ir .

(5)

1This is easy to verify by calculating
∑∞
t=0 δ

t
i =

1
1−δi

.

Intuitively, we increase x — and consequently the share
of dominant resource for every user — until we achieve a
bottleneck and no task can be allocated. Given x, the allocation
for every user and resource can be calculated as o(t)

ir = x · θ̃(t)
ir .

B. Static Allocation Properties

Ghodsi et al. [6] established that the DRF allocation satisfies
the following properties. These properties have also been used
in a variety of works [13], [15], [18] to measure both fairness
and efficiency for a static resource allocation. For the following
definitions we consider a stage game happening at time t.

1) Sharing Incentives (SI). Users should be better off
participating in the system than having a proportional
and exclusive share of all the resources. Formally, we say
that an allocation mechanism satisfies sharing incentives
if for every user i ∈ N , it outputs an allocation
o

(t)
i such that, u(t)

i (o
(t)
i ) ≥ u

(t)
i (〈1/n, . . . , 1/n〉). This

assumes users have the right to an equal share of all the
resources.2

2) Strategyproofness (SP). Users should not benefit by
misreporting their demands to the mechanism. Formally,
if we denote the allocation returned by the mechanism
when the user i reports her demands truthfully (θ̂(t)

i =

θ
(t)
i ) as o(t)

i and when the user lies (θ̂(t)
i 6= θ

(t)
i ) as

o
′(t)
i , then u(t)

i (o
(t)
i ) ≥ u(t)

i (o
′(t)
i ).

3) Pareto Optimality (PO). The allocation should be opti-
mal in the sense that if it can be changed to make a
user better, it must make at least another user worse (in
other words the allocation cannot be Pareto dominated
by another). Formally, an allocation mechanism is Pareto
optimal if it returns an allocation o(t) such that for any
other feasible allocation o′(t), if there is a user i ∈ N
such that u(t)

i (o
′(t)
i ) > u

(t)
i (o

(t)
i ) then there must be a

user j ∈ N such that u(t)
j (o

′(t)
j ) < u

(t)
j (o

(t)
j ).

In addition to the above properties, DRF also satisfies envy-
freeness, which ensures that users never prefer other user’s
allocation to their own. Unfortunately satisfying both Pareto
optimality and envy-freeness is impractical under indivisibil-
ities [15]. Moreover, as we will see in the next subsection,
while envy-freeness is usually desirable for static allocations,
it does not ensure fairness in the dynamic setting.

C. Fairness in the Dynamic Setting

We now design an allocation policy that is fair in the
long run. Previous work [6], [13] modeled users as having
an infinite number of tasks with the same demand for each
resource type. When this happens, only the share of resources
each task needs is considered — time becomes irrelevant and
the allocation is equivalent to a static one. In practice, however,
while some users have workloads with repeated jobs, most
users have quite dynamic workloads [3], [10].

To illustrate the importance of considering the past in an
allocation, we present an example with users A, B and C

2It is also possible to consider a weighted version, where users have a lower
or higher share depending on their weights.
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Fig. 1. Unfairness in the long run. User B hardly uses the system but receives
the same shares as user A.

sharing a system with a DRF scheduler (see Fig. 1). There
are two resources in the system, CPU and memory. User A’s
dominant resource is CPU and her normalized demand is
〈1, 0.5〉. User A is eager for resources and submits a huge
amount of tasks. Nevertheless, the other users only use the
system sporadically, with usage spikes. After user A is using
the entire system for a while, user B has a spike with
normalized demand 〈1, 0.5〉 as well. Even though user B never
used her rightful share, the share she receives is the same as
user A, i.e., equal to 1/2. This demonstrates that the properties
of fairness defined for a static allocation are not enough to
enforce fairness in the long run. Satisfying sharing incentives
guarantees that users will receive their rightful share but does
not reward users for their lower usage. Envy-freeness assumes
users are only aware of the present allocation and do not envy
other users based on their past allocations.

D. Users’ Commitments

To distinguish between users who constantly require more
resources than their proportional share from users who only
use the system sporadically, we introduce the concept of
commitment. Commitment is a measure of users propensity
to overuse their shares. The key intuition is that users who
use more resources than their share, commit to use less if
other users need. Users who overuse their shares for a short
period of time should have lower commitment than users who
constantly overuse. Also, users who overuse less resources
should get lower commitment than users who overuse more
resources. Every user i ∈ N has a separate commitment
for each resource r ∈ R. We define commitment using
an exponential moving average of overused resources. The
user i’s commitment for resource r at time t is given by:

c
(t)
ir = (1− δ)

t∑
k=−∞

δt−kō
(k)
ir , (6)

where

ō
(k)
ir = max

{(
o

(k)
ir −

1

n(k)

)
, 0

}
. (7)

The term n(k) is the number of users in the system at instant k.
Therefore, the term ō

(k)
ir represents how much user i overused

her share for resource r on instant k. When this term is zero,
the user did not overused her share. The more in the past users
overused their share the less it influences their commitments.

V. STATEFUL DOMINANT RESOURCE FAIRNESS

In this section, we introduce Stateful Dominant Resource
Fairness (SDRF), a generalization of DRF that improves
fairness in the long run by enforcing users’ commitments. First
we develop a simpler version of SDRF for a single resource
type. Then, we extend this version and obtain an optimization
problem that yields an SDRF allocation. From this problem
we proceed to prove that it satisfies the desired properties
introduced in Sec. IV.

A. Stateful Max-Min Fairness

The intuition for SDRF is better understood if we first look
at the single resource setting. Suppose we have a finite amount
of a particular resource, e.g., CPU cores, and we want to
equally divide it among the users. The fairest way to divide it
is to give an equal share of the resource for every user, e.g.,
same number of CPU cores. Nonetheless, some users may not
need their entire share, in that case it can be redistributed
among the other users. This is the main principle behind
Max-Min Fairness (MMF). One way to achieve MMF is to
use a water-filling algorithm [5]. Water-filling progressively
gives resources for every user until their demands are met.
When a user demand is met, she stops receiving resources
and the algorithm continues to give resources for the other
users. Fig. 2a shows the water-filling diagram for the MMF
allocation. Each column (or tank) represents the total amount
of resource each user demands. The resource is finite and
progressively fills the tanks, until there is no more resource
left. In the example, users 2 and 3 have their demands fulfilled
while users 1 and 4 only have it partially fulfilled.

Even though MMF is fair for a static allocation, directly ap-
plying MMF to the dynamic setting causes the same problem
as DRF — it does not consider the past and therefore cannot
enforce fairness in the long run. To modify MMF to account
for commitments, we introduce Stateful Max-Min Fairness
(SMMF). The intuition behind SMMF is better illustrated by
an example. “If the equal share for the resource is 3 CPUs
and the user has a commitment of 1 CPU, then the user should
have the right to receive at least 2 CPUs”. This notion can be
directly implemented using the water-filling algorithm just by
adding commitments as a “base for the tanks”. Fig. 2b shows
the water-filling diagram for the SMMF allocation. Demands
are the same as in Fig. 2a, but now there is a base layer of
arbitrary commitments c (black layer). Note how user 2 has a
lower allocation than she would have without commitments,
on the other hand, the demand for user 4 is now met.

Formally, the SMMF allocation can be defined using an
optimization problem. Since SMMF allocates a single re-
source, the resources set becomes a singleton R = {1} and
each user i ∈ N has a single allocation o

(t)
i1 at time t. The
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Fig. 2. Water-filling diagram for (a) MMF and (b) SMMF.

optimization problem maximizes x, the water level in Fig. 2b,
as long as there are resources left in the system:

max
x

x

s.t.
∑
i∈N

o
(t)
i1 ≤ 1,

o
(t)
i1 = max

{
0,min

{
θ̂

(t)
i1 , (x− c

(t)
i1 )
}}

.

(8)

Given x, each user receives an allocation o
(t)
i1 =

max{0,min{θ̂(t)
i1 , (x − c

(t)
i1 )}} which ensures that allocations

are never above demands and remain nonnegative. When
commitments are zero, SMMF is equivalent to MMF.

Having defined SMMF, we now generalize it to the multiple
resources setting to finally obtain the SDRF mechanism.

B. SDRF Mechanism

SDRF generalizes SMMF similarly to the way DRF gener-
alizes MMF to multiple resources. We use the same concept
of dominant resource as DRF, defined in (3). Differently from
DRF, though, we must deal with different commitments for
different resources. We define the dominant commitment for a
user i at time t as the user’s largest commitment relative to
the system total. As we have normalized all the resources to 1,
the dominant commitment is simply the largest commitment
for the user, i.e.,

c̃
(t)
i = max

r∈R
{c(t)ir } . (9)

Having defined the dominant commitment, we define SDRF
using ideas from both DRF (5) and SMMF (8). Like DRF,
SDRF increases the share of dominant resource for every
user until a bottleneck is achieved. Like SMMF, users only
start receiving resources when x is above their (dominant)
commitment. SDRF is formally defined as:

max
x

x

s.t.
∑
i∈N

o
(t)
ir ≤ 1, ∀r ∈ R ,

o
(t)
ir = max

{
0,min

{
θ̂

(t)
ir , (x− c̃

(t)
i ) · θ̃(t)

ir

}}
.

(10)

Recall θ̃(t)
ir is the normalized demand for user i and resource r,

defined in (4). From x, we may calculate the allocation for
every user and resource by o(t)

ir = max{0,min{θ̂(t)
ir , (x− c̃

(t)
i )·

θ̃
(t)
ir }}. In the next subsection we analyze the properties of

SDRF that prove it behaves well in both the stage game and
in the long run.

C. Analysis of SDRF Allocation Properties

We start our analysis of SDRF proving that it satisfies
the desirable properties introduced in Sec. IV-B, namely:
strategyproofness, Pareto optimality and sharing incentives.
The proof of all propositions is provided in the technical
report [23].

First, we show that SDRF increases the share of dominant
resource for every user until a resource runs out (the bottleneck
resource). This is indicated in the following proposition.

Proposition 1 (Bottleneck). The SDRF allocation obtained by
solving (10) is such that all users have their demands fulfilled
or there is a bottleneck resource. Formally, o(t)

i = θ̂
(t)
i ,∀i ∈

N or ∃r ∈ R such that
∑
i∈N o

(t)
ir = 1.

Although simple, Proposition 1 is useful to demonstrate
the following properties. One of the fundamental properties
of DRF is strategyproofness. Without it, users may try to
manipulate the system by, e.g., faking their usage, which
results in inefficiencies [6], [11]. Propositions 2 and 3 show
SDRF is also strategyproof.

Proposition 2 (Strategyproofness in the Stage Game). When
users consider only the stage game utility (1), the SDRF
allocation obtained by solving (10) is strategyproof.

Proposition 2 shows that when users consider only stage
game utilities, SDRF is strategyproof. However, the fact that
we consider past allocations may create new incentives for
users to manipulate their declared demands. It may be possible
that some users would not use the system when they actually
need, hoping that this would improve their future allocations
— this would also bring inefficiencies to the system. Fortu-
nately, Proposition 3 shows that this is not possible.

Proposition 3 (Strategyproofness in the Repeated Game).
When users evaluate their utilities using the expected-long-
term utility (2), the SDRF allocation obtained by solving (10)
is strategyproof, regardless of users’ discount factors.

The following two propositions demonstrate that SDRF
is efficient. Proposition 4 shows that SDRF do not waste
resources while Proposition 5 shows that the allocation is
Pareto optimal, ensuring that it is not possible to increase a
user’s allocation without decreasing another.

Proposition 4 (Non-wastefulness). The SDRF allocation o(t)

is such that, if there is a different allocation o′(t) where o′(t)ir ≤
o

(t)
ir ,∀i ∈ N , r ∈ R and for a user i∗ ∈ N and resource r∗ ∈
R, o′(t)i∗r∗ < o

(t)
i∗r∗ , then it must be that u(t)

i∗ (o
(t)
i∗ ) > u

(t)
i∗ (o

′(t)
i∗ ).

In other words, SDRF is non-wasteful.

Proposition 5 (Pareto optimality). The SDRF allocation
obtained by solving (10) is Pareto optimal.

The last property indicates that users are better off if they
participate in the system. More specifically, it shows that users
receive a utility at least as good as if they had access to 1/n
of resources in the system.



Proposition 6 (Sharing incentives). The SDRF allocation
obtained by solving (10) satisfies sharing incentives.

VI. IMPLEMENTATION USING A LIVE TREE

In this section, we study how SDRF can be implemented
in practice. We first consider the effect continuous time and
indivisible tasks have in the model defined in Sec. III. We then
develop a water-filling algorithm to schedule tasks. Neverthe-
less, the algorithm requires users’ priorities to be recalculated
and sorted at every execution. To mitigate this problem we
introduce live tree — a data structure that keeps elements
sorted even with time changing priorities — and show how
it can be used to improve the SDRF scheduling algorithm.

A. Continuous Time

In the model defined in Sec. III we assume time progresses
as a sequence of repeated games, suggesting a discrete time.
The definition for commitment in (6) is compatible with this
notion. In an actual system, however, tasks may arrive and
finish at any instant, therefore we need an expression that
allows us to compute commitment at continuous time. First
we redefine (6) recursively using a difference equation [24],

c
(t)
ir = (1− δ)ō(t)

ir + δc
(t−∆t)
ir (11)

where the commitment at time t can be calculated from
commitment at time t−∆t. This assumes ō(t)

ir remains constant
within the interval (t−∆t, t]. It turns out that (11) can be seen
as an exponential smoothing and can be closely approximated
in the continuous time [24], leading to the expression

c
(t)
ir = (1− δ̊)ō(t)

ir + δ̊c
(t0)
ir

δ̊ = e−(t−t0)/τ , τ = − ∆t

ln(δ)

(12)

where we may calculate c(t)ir from any previous c(t0)
ir as long

as o(t)
ir remains constant from t0 to t. Fortunately, oir only

changes when a task for user i requiring resource r starts or
finishes. In any other instant, oir remains constant, making
(12) useful in practice. This expression is analogous to the
discrete version, using δ̊ instead of δ. When t− t0 = ∆t, (12)
becomes (11).

B. Indivisible Tasks

So far, we have assumed that tasks are arbitrarily divisible.
This allowed us to give arbitrarily small amounts of resources
to users. In practice, however, tasks are often not divisible [1],
[2]. To schedule indivisible tasks we use the same approach
as previous works [6], [13] — applying water-filling to tasks.

Algorithm 1 summarizes the task scheduling procedure. We
define a set A of active users (users with at least one task
waiting to be scheduled), and keep track of the total amount
of resources allocated for every user. If the system is not full
and if there is at least one user with a pending task, i.e., A 6= ∅,
we schedule the next task for the user with the lowest share
of dominant resource compensated for commitments.

Algorithm 1 SDRF task scheduling
A = {1, . . . , k} . set of active users
oi = 〈oi1, . . . , oim〉,∀i ∈ A . resources given to user i
ci = 〈ci1, . . . , cim〉, ∀i ∈ A . commitments for user i
while A 6= ∅ do

i← argmin
i∈A

{
max
r∈R
{oir + cir}

}
. pick user

∀r, θir ← demand for r in user i’s next task
if ∀r,

(
θir +

∑
j∈N ojr

)
≤ 1 then

∀r, oir ← oir + θir
if no more pending tasks for user i then

remove i from A
else

return . the system is full

Whenever a task arrives or finishes, we rerun Algorithm 1
with updated set A, and vectors oi, ci, ∀i ∈ A. The smaller
tasks are, the closer Algorithm 1 approximates (10).

Performance is a major concern in the design of a task
scheduler. In peak hours, a scheduler may need to make
hundreds of task placement decisions per second [3]. The most
expensive part of Algorithm 1 is picking a user. While plain
DRF can be implemented using a priority queue that stores the
dominant resource share for every user3, this is not possible for
SDRF. In DRF, users’ priorities only change when oi changes,
in SDRF users’ commitments change at any instant and so
do users’ priorities. Recomputing priorities for every user and
resource at every task scheduling decision would be too costly.
The next subsection shows how to solve this problem.

C. Live Tree

When scheduling tasks, we are not really interested in
the specific value of commitments, but in which user has
the highest priority. Live tree is a data structure that keeps
elements with predictable time-varying priorities ordered. The
key idea is to focus on position-change events, instead of ele-
ment priorities. When priorities follow a continuous function,
elements change position whenever their priorities intersect. A
live tree always has a current time associated with it — for
this current time, it guarantees that elements are sorted. When
the current time is updated, instead of updating every element
priority, we see if any position-change event happened from
the last update to the current time.

Live tree can be seen as a combination of two red-black
trees [25], [26] and an array (see Fig. 3). We call one red-black
tree elements tree, as it keeps elements sorted by priority, while
the other is the events tree, as it tracks position-change events
sorted by their time. The array is used for element lookups.
For simplicity, we assume that each of the input elements has
a distinct integer id that can be an index for the array4. Each
position in the array has a pointer to an element in the elements
tree (or NIL if there is no element for the given index). This
allows us to retrieve elements by id in the tree in O(1) time.
If two neighboring elements in the elements tree are to change

3The DRF implementation on Mesos [1] uses an std::set from the C++
Standard Library, which is usually implemented as a binary tree.

4When elements do not have integer ids, or they are too sparse, the array
may be replaced by a hash table and still present amortized O(1) lookups.
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Fig. 3. Illustration of a live tree with its data structures. Positions in the array
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position in the future, the left element will have a pointer to
a position-change event in the events tree.

We assume that priorities for all elements can be calculated
using the same continuous function p(t, κ) based on time t
and in the element attribute κ. Every element has a different
attribute that dictates how its priority changes over time. It
may be a number, a vector or even a tuple. Our description
does not depend on the definition of κ, in the next subsection
we better define κ for our setting. It also helps to introduce
an order notation, we say that element i precedes element j
for an instant t, i ≺t j, if p(t, κi) < p(t, κj). The elements
tree compares elements using [≺t]. This is useful since,
whenever we insert a new element, it is compared to the others
consistently with the time t. Live tree also needs a function to
calculate priority intersections. We denote by tint(t, κi, κj) the
function that calculates the priority intersection time based on
two element attributes (κi, κj) and the time t.

We now briefly describe the basic operations of a live tree5:
INSERT(i, κi). To insert an element i in the live tree, we

first insert i in the elements tree. Since the elements tree
compares elements using [≺t], i will be placed in the correct
position relative to time t. Once inserted, we set a pointer from
position i in the array to the element in the tree. Then, we call
UPDATEEVENT for i and for its predecessor in the tree. When
i is the minimum element, we only call UPDATEEVENT for i.
INSERT can be accomplished in O(log n) time.

UPDATEEVENT(i). If an element i will change position
with its successor in the future, it must have a position-change
event associated with it. To update an event we first check if
the element i has an event in the events tree and remove it if so.
Then, we check if i and its successor j will switch places in the
future by calculating their priorities intersection tint(t, κi, κj).
If tint exists and is positive, we add an event for element i
and time tint + t in the events tree. Then we add a pointer
from element i in the elements tree to the event in the events
tree. When i is the maximum element, it has no successor and
thus cannot have a position-change event (note this does not
imply it cannot change position, as its predecessor can have
an event). UPDATEEVENT can be done in O(log n) time.

UPDATE(t). Whenever the current time changes, we must
update the tree. We assume that time progresses forward and
live tree can only be updated to the future. To update the tree
to a new time t, we look at all events that happen before t. If
there is no event, i.e., the first event in the events tree has time
greater than t, then no element should change position and the

5Our implementation of SDRF and Live Tree is open source and is available
at https://github.com/hugombarreto/sdrf

tree is already updated, otherwise we must consider the events.
We remove events from the events tree in order until the next
event has time greater than t or the events tree becomes empty.
For every removed event, we remove its correspondent element
as well as its successor from the elements tree calling DELETE.
Once we finish removing events we reinsert each removed
element calling INSERT. Since elements are compared using
[≺t], the reinsertion places elements in their correct position
relative to time t. UPDATE can be accomplished in O(n log n)
time. The worst case happens when every element must change
position and therefore must be reinserted in the tree. In
Sec. VII we show that, for SDRF, the actual time is much
smaller than the worst case.

DELETE(i). To delete an element i, we first check posi-
tion i in the array. From position i we get a pointer to the
elements tree. If the element has an event, we get a pointer
to its event as well. We then remove the event from the
events tree, the element from the elements tree and set NIL
at position i in the array. If i was the minimum element,
we are done, otherwise we must call UPDATEEVENT to
the predecessor of i in the elements tree. DELETE can be
accomplished in O(log n) time.

MINIMUM/MAXIMUM. The minimum (maximum) in the
live tree is the minimum (maximum) in the elements tree.
MINIMUM/MAXIMUM can be accomplished in O(1) time.

We omitted from our description corner cases, such as if an
element being deleted does not exist, or if the element being
inserted is already in the tree.

Live tree performance depends heavily on the priority func-
tion used and the frequency of UPDATE calls. When elements
change position often, UPDATE has to process more events.
Nevertheless, the higher the frequency of UPDATE calls, the
less events each call has to process. In Sec. VII we evaluate
how live tree performs when used to implement SDRF.

D. Live Tree Applied to SDRF
We now apply live tree to Algorithm 1. In Algorithm 1,

we pick the user with the minimum value of maxr∈R{oir +
cir}, therefore we use a live tree to sort users by this value.
Using (12), we define the priority function p as

p(t, κi) = max
r∈R

{
oir + (1− δ̊)ōir + δ̊c

(ti)
ir

}
δ̊ = e−(t−ti)/τ

(13)

κi = (ti, τ, oi1, . . . , oim, ōi1, . . . , ōim, c
(ti)
i1 , . . . , c

(ti)
im ), τ is

defined as in (12) and is the same for all users. ti is the time
user i is inserted in the live tree. Obtaining the intersection
function is a bit more involved (further details are in the
technical report [23]). We define it using a set Iij of all
intersections between resources from users i and j:

Iij =

{
τ ln

(
ōir1 − ōjr2 + c

(t0)
jr2
− c(t0)

ir1

ōir1 − ōjr2 + oir1 − ojr2

)∣∣∣∣∣(r1, r2) ∈ R2

}
,

where t0 = max{ti, tj}. We define the intersection function
getting the minimum intersection after the current time t,

tint(t, κi, κj) = min {k + t0 − t|k ∈ Iij ∧ k + t0 > t} (14)
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Fig. 4. Same example as Fig. 1 but using SDRF (δ = 1− 10−6). Note how
user B receives more resources and is able to complete her workload faster.

When there is no intersection after the time t, tint does not
exist and live tree will add no event. Note this intersection
function may indicate intersections between resources that
do not cause an intersection in priorities, i.e., commitments
may intersect without changing the dominant commitment.
Although non-optimal it performs correctly, as false events
do not change the order in the tree. In the next section, we
show how SDRF and live tree perform when scheduling tasks.

VII. SIMULATION RESULTS

In this section, we evaluate SDRF and live tree using
trace-driven simulations based on Google cluster traces [3].
The traces contain information from workloads (from either
Google services or engineers) running in a cluster over a
month-long period. Workloads are submitted in the form of
jobs, and each job may have multiple tasks. The traces contain
events for every time a task is submitted, is scheduled or
finishes. From these events we extract the CPU and memory
demands as well as task submission and running times using
them as input for our simulation. We remove tasks with 0
demand, as well as tasks that were evicted by the Google
system, but leave tasks that failed due to user errors. After
that, we are left with around 32 million tasks from 627 users.

We run simulations for different values of δ and system
overload. The values of δ are relative to a ∆t of 1 second (see
(12)). We vary δ by making it exponentially closer to 1, i.e.,
δ = 1−10−1, . . . , 1−10−7. This is equivalent to exponentially
increasing τ from (12). To verify how SDRF performs under
different levels of system load we also perform simulations
for multiple values of total resources (i.e., CPU and memory).
We use the average system usage in the original trace, called
hereinafter as R, as a baseline for our results. We then run
simulations with the total amount of resources in the system
varying from 50% to 100% of R, in steps of 10%.

First, we run SDRF for the same example presented in
Sec. IV (Fig. 1). Fig. 4 shows how user B receives more
resources (both CPU and memory) than user A and is able to
complete her workload faster than using DRF. Since user A
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values of discount factor and system
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top to bottom).

is constantly using the system, receiving less resources for a
short period will have a low impact in her overall workload.

We now evaluate the simulation results. Fig. 5 presents the
mean waiting time reduction for every user under different
values of δ and system load when compared to DRF. When
δ is small enough, SDRF performs close to DRF. Also, for δ
sufficiently close to 1, SDRF approaches DRF. This is justified
inspecting (12): when δ is sufficiently close to 1, commitments
never accumulate, alternatively, when δ is sufficiently close to
0, commitments are simply the last allocation, and therefore
tasks are scheduled just like in DRF. The best waiting time
reduction was observed for the discount factor δ = 1−10−6 for
all levels of system load evaluated. Even though the advantage
of SDRF is more evident when the system is overloaded, for
δ = 1− 10−6, SDRF consistently outperforms DRF by more
than 10%. Since the intermediate cases (60% to 90% of R)
perform in between the two extreme cases (50% and 100% of
R), we defer those plots to the technical report [23].

We also investigate how the waiting time reduction affects
the number of tasks each user is able to complete. We compute
the task completion ratio for every user (i.e., the number
of tasks completed divided by the number submitted) and
compare it when running DRF and SDRF. Fig. 6 shows the
results for the simulation with δ = 1−10−6 and total resources
50% of R. Each bubble represents a different user: when above
the black y = x line, the user is able to complete more tasks
under SDRF than under DRF. Most users perform better under
SDRF, in fact, only 9 out of 627 users completed less tasks
under SDRF. Also note that, even though these users com-



pleted less tasks, their task completion ratio had low impact.
This happens because users that use the system in small bursts
complete their workloads earlier and, consequently, have the
opportunity to complete more tasks. On the other hand, users
that use the system continually experience a low impact.

Next we evaluate how live tree performs under the same
simulations. The theoretical worst case complexity for the
update operation is O(n log n). This is driven by the maximum
number of events an update may trigger, when there is no
event, updates are performed in O(1). In practice, however,
the average number of events is much shorter. Fig. 7 shows
the number of live tree events that happened during the entire
simulation period for every simulation. Each curve represents
a different value of system load, 50% of R to 100% of R,
from top to bottom. The number of events increases when
the amount of resources in the system decreases. Also, the
closer δ is to 1, the less events we observe. This makes sense,
since commitments vary slower the closer δ is to 1. When
δ = 1 − 10−6 and the total resources 50% of R, there is a
total of 22,718 events, which is about 7 events for every 1,000
scheduled tasks. Since every task scheduling triggers one
update, this indicates that updates happen fast for this scenario.
Even for the worst scenario (δ = 1 − 10−1, 50% of R), the
total number of events is 5,094,167, which is approximately
2 events for every 10 tasks. If live tree performed close to its
theoretical worst case complexity, it would offer low advantage
compared to sorting elements on every update. But with the
number of updates observed, live tree operations will perform
close to the ones of a red-black tree where weights are static.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced SDRF, an extension of DRF
that enforces fairness in the long run. SDRF looks at past
allocations and benefits users with lower average usage. We
show that SDRF satisfies the fundamental properties of DRF
while enforcing fairness in the long run. To efficiently imple-
ment SDRF, we introduced live tree, a general-purpose data
structure that keeps elements with predictable time-varying
priorities ordered. We simulated SDRF using Google cluster
traces for a month-long period. Results have shown that under
SDRF, users with low utilization can complete their workloads
faster. Meanwhile, users with high utilization suffer a low
impact in their overall workload. We also used the simulations
to evaluate the live tree performance concluding that SDRF
can be implemented efficiently.

There are different future investigation directions. First, we
believe live tree may benefit other applications, e.g., Dijk-
stra’s algorithm applied to graphs with time-variable weights.
Second, SDRF can be extended to cover other applications.
Although we mentioned the possibility of using weights for
users, we did not evaluate it formally. Another possibility is
the use of a different function to measure commitments.
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