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1 Introduction
Middleboxes are an essential part of today’s net-
works [8]. Although middleboxes have been tradition-
ally deployed using purpose-built hardware, there is an
increasing trend towards the move to software running
on commodity servers [7]. This offers several advantages
such as reduced costs and simpler deployment. However,
these benefits also come with significant performance
overhead [9].

As a way of improving performance, software middle-
boxes often leverage multiple CPU cores [7, 9]. These
middleboxes generally choose between two different
models: run-to-completion and pipeline [9]. In the
run-to-completion model, we process every individual
packet using a single core, whereas in the pipeline model
we process the same packet sequentially using multiple
cores, one for each step of the pipeline. Comparing both
models, run-to-completion performs better, presenting
higher throughput and lower latency [9]. To use multi-
ple cores in the run-to-completion model, packets must
be distributed across different cores before they are pro-
cessed. This is often achieved using Receive-Side Scal-
ing (RSS) [7].

RSS is a feature of multi-queue NICs [3, 4] that dis-
tributes packets to different cores based on a hash of the
“five-tuple”. Ideally, with RSS, packets should be pro-
cessed in all cores, with those from the same flow go-
ing to the same core. However, RSS’s decisions are of-
ten unfair and inefficient. Since RSS randomly hashes
flows to cores, hash collision can cause significant im-
balance. The arguments against RSS are similar to those
against per-flow ECMP on datacenters. In fact, per-
packet ECMP has been shown to outperform per-flow
ECMP, even though it causes packet reordering [6].

In this work, we show that middleboxes can benefit
from per-packet load balancing and provide a design and
implementation that can run in existing hardware.
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Figure 1: Architecture for packet processing.

2 Design and Implementation Overview

We now present the design of a multi-core middlebox
with per-packet load balancing. Figure 1 depicts the ar-
chitecture of packet processing in a 4-core CPU. Each
packet that enters the NIC (Rx) is assigned to a queue.
Each queue has a correspondent ring buffer that lives
mostly in the CPU L3 cache. In the run-to-completion
model, each ring buffer is designated to a different core.
This way, when the NIC chooses a queue, it is also
choosing a core. After processing the packet, a core
sends it to a transmit ring buffer. Just like in the receive
part, each ring buffer is associated with a different queue
in the NIC (Tx). The NIC’s queue arbiter then transmits
packets from queues in a round-robin fashion.

To achieve per-packet load balancing, the NIC (Rx)
should be able to send packets to different queues uni-
formly, regardless of which flow they belong to. Un-
fortunately, this is not directly supported by current
NICs [3, 4]. However, there is a feature called Flow
Director that was originally conceived to associate spe-
cific flows to queues. Flow Director is usually not con-
sidered for middleboxes as it limits the total number of
flows that are allowed in the system. We use Flow Di-
rector in an unconventional manner, instead of matching
flows, we configure it such that packets are assigned to
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Figure 2: Processing rate for 64B packets with increasing num-
ber of processing cycles using PPLB and RSS.

queues based on the checksum field of the TCP header1.
Using this approach, TCP packets are homogeneously
distributed across queues regardless of their flows, while
non-TCP packets continue to be distributed using RSS.

Note that distributing packets uniformly across cores
may not be enough. Packet reordering may degrade per-
formance in some TCP implementations and legacy mid-
dleboxes may rely on receiving all packets of a flow (e.g.,
SYN packets to identify new TCP connections). We are
currently evaluating a strategy that reorders packets be-
fore they are transmitted. Unlike traditional reordering,
we benefit from the knowledge of which packets arrived
in the middlebox, avoiding the wait for packets that got
lost. We have implemented an initial prototype using
DPDK [1].

3 Preliminary Results
We show preliminary results using only per-packet load
balancing without reordering. We run experiments on a
testbed with two servers, one is used as the packet gen-
erator while the other functions as a middlebox. The
middlebox server is equipped with two Intel Xeon E5-
2650 CPUs, each of which has 8 cores, and 256GB
of RAM (divided equally among all memory channels).
The packet-generator server is equipped with a single In-
tel Core i7-7700 CPU and 32GB of RAM. Each server
is also equipped with an Intel 82599ES 10Gb NIC [3]
and runs Linux kernel 4.9.0-5. To simulate middleboxes
with different complexities, we developed a simple mid-
dlebox that busy loops for a given number of cycles for
every packet it receives. In all experiments we use 8 CPU
cores for the middlebox.

Our first experiment measures the maximum improve-
ment in packet processing rate that can be achieved us-
ing per-packet load balancing (PPLB). We use Moon-
Gen [5] to generate 64B TCP packets with fixed five-

1We actually use only a certain number of LSBs of this field, de-
pending on the number of cores. This let us circumvent the limited
number of flows, defining rules that exhaust all possible matches.
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Figure 3: Throughput for a single TCP flow with increasing
number of processing cycles using PPLB and RSS.

tuple but variable payload – and therefore variable check-
sum. Since the five-tuple remains constant, RSS identi-
fies all packets as being part of the same TCP flow and
redirects them to the same CPU. This contrasts with per-
packet load balancing, that distributes packets uniformly.
Figure 2 shows the processing rate as a function of pro-
cessing cycles per packet. Note that PPLB is limited
to 10.6Mpps and, as consequence, achieves a process-
ing rate lower than that of RSS for middleboxes with few
processing cycles. This, however, is not fundamental and
is in fact a hardware limitation of the 82599 when using
Flow Director. For less trivial middleboxes PPLB is able
to process significantly more packets than RSS.

Since packets may arrive out of order, a better pro-
cessing rate may not translate into better performance for
TCP. To measure the impact on a real TCP flow we con-
duct a second experiment using iperf3 [2] with a single
flow. Figure 3 shows the throughput as a function of pro-
cessing cycles per packet. Note that, even for 10,000
processing cycles per packet, PPLB is able to sustain a
throughput of 8.8Gbps while RSS only achieves 2Gbps.
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