

1

Experiments with Virtual Network
Management Based on Ontology

Carlos R. Senna, Daniel M. Batista, Edmundo R. M. Madeira, and Nelson L. S. da Fonseca
Institute of Computing, University of Campinas - UNICAMP

P.O. Box 6196, Campinas, São Paulo, Brazil
{crsenna, batista, edmundo, nfonseca}@ic.unicamp.br

Abstract — This paper presents an agent-based platform to

support the development of a management system for the
network architecture proposed by the Horizon Project. The
platform consists of a substrate network, software for creating
virtual networks and a set of agents that support ontology to
enable the development of a knowledge plan. We also show the
prototype built to evaluate a simple ontology for the exchange of
information between agents.

Index Terms — Network Virtualization, Intelligent agent.

I. INTRODUCTION

O ne of the goals of the Horizon Project is to propose an
automatic pilot with intelligent mechanisms able to

understand the context of the network and provide the
necessary protocol adaptations [1]. Support for this pluralism
is made by an intelligent architecture based on a pilot plan that
allows the network elements to have their own vision and to
take decisions for network optimization. In this context, it is
proposed that the autonomy-oriented architecture should be
based on isolated virtual domains running its own protocol
stack. This paper presents an agent-based platform to support
the development of a management system for network
architecture towards the objectives of the Horizon Project.

II. PLATFORM ARCHITECTURE
The platform consists of a network substrate, a set of

software tools for creating on-demand virtual network and a
set of agent-based tools that support ontology. The following
subsections describe the main components of the platform.

A. Substrate Network and Software Tools for Network
Virtualization
The first step to enable the execution of agents is to

construct an infrastructure that enables the creation and
removal of virtual networks. We decided to adapt a setting
that could be implemented on real machines with no need to
modify the existing configuration. Thus, we created virtual
machines and networks on the operating system Debian GNU
/ Linux version squeeze using the free software qemu [2]
together with the networking tools bridge-utils and
iproute. The qemu uses special kernel modules that enable
that a set of instructions, which can be virtualized and carried
out directly on the real processor. Moreover, unlike other

platforms such as VMWare [3] or VirtualBox [4], the
access to the console of qemu is much lighter, allowing
virtual machines to be managed more flexibly through open
and standardized remote protocols. As the real machines,
virtual machines also have the operating system Debian GNU
/ Linux version squeeze installed. Figure 1 summarizes the
configuration of virtual networks that were created to serve as
a prototype for testing the system agents.

In the prototype created to evaluate the platform, A, B, C,

and D are real computers located in the same local
network. Each of these computers have instantiated a virtual
machine that can play the role of both end node of the network
(as in computers A and C) or network router (as in computers
B and D). Virtual networks are created defining routes and
virtual network interfaces on the virtual machines as well as
on the real machines. Each virtual network has an interface
that allows control by the agents. The creation and removal of
virtual interfaces, routes and instantiation of virtual machines
are made by scripts that have been implemented by the
authors. These scripts allow agents to obtain information
about the network and act in a transparent manner. As noted in
Figure 1, there is a fifth node (Computer E) defined in the
configuration of networks. It is planned that this computer,
which is located remotely to the local network via a dedicated
optical connection, to be integrated on the virtual networks in
the future.

Substrate network

Virtual Network 2

Virtual Network 1A

B
C

DA

CE

Substrate Optical
Network

Virtual Network 4

Virtual Network 3

Substrate network

Virtual Network 2

Virtual Network 1AA

B
C

DA

CE

Substrate Optical
Network

Virtual Network 4

Virtual Network 3

Figure 1. The Virtual Networks Prototype.

B. Agents with Ontology Support
To support the development of network management that

uses the concept of virtual domains with decisions supported
by the vision of each network element, we use agents with
different levels of functionality. Agents are responsible for
obtaining information from the links, and for sharing them

2

with your neighbours in order to implement local actions
necessary for the proper functioning of the network. All
actions taken by agents are based on ontology. There are two
groups of agents: informers and managers. Informer group has
three types of agents, which the main function is to keep the
information updated on the node and notify the local
manager. For each link of a node, a link-informer-agent agent
is instantiated. This kind of agent obtains basic information
from the link, such as capacity and available bandwidth. The
router-inform-agent and the switch-inform-agent monitor the
nodes in compliance with their functionalities. The features
are implemented through appropriate ontology for each
feature. The agent of the type manager (meta-agent) is
responsible for receiving information from informer agents,
for organizing them and taking the necessary actions
according to the QoS requirements for the virtual
networks. The actions taken by staff managers are also
modelled through ontology. To implement the agents, we used
the Java Agent Development Framework (JADE) [5]. JADE is
a software environment to build agent systems for the
management of networked information resources in
compliance with the FIPA specifications for interoperable
multi-agent systems. In addition, JADE provides a good
support to the use of ontology. If agents are to communicate in
a way that makes sense for them, they must share the same
language, vocabulary and protocols. By following FIPA
standards [6], JADE already supports a certain degree of
commonality, this is evident in the use of FIPA
communicative acts and the Coder/Decoder classes for SLn
languages which determine the form of the messages
exchanged between agents. In our prototype, shown in Figure
1, we see one router-informer-agents on nodes B, D and E.
The nodes B, D and E have three link-informer-agents, while
nodes A and C have four link-informer-agents. All nodes have
one meta-agent.

III. A BRIEF CASE
We carried out preliminary experiments with virtual

networks composed of the computers A, B and C of Figure
1. In these experiments, information about the available
bandwidth between virtual machines were obtained by scripts
that executed a modified version of the program pathload
[7]. The pathload is a free software written in C that
estimates the available bandwidth by measuring the variation
of the delay in a route (OWD). The code of the tool was
modified by the authors so that it could run concurrently on
the same computer. Currently, the program is active in all the
virtual machines in virtual networks. Scripts developed by the
authors run every minute in order to obtain information about
the availability of virtual links. This information is then
captured by the agents and used for decision making. It is
important to note that the infrastructure built to the prototype
can be modified without the need to rewrite the code of
agents. This is possible by the existence of scripts that have
been implemented and that provide information to the agents

properly.
It is also important to note that during the experiments, we

observed that the virtual machines show significant
performance degradation when users run heavy I/O bound
processes in the real machines (e.g., experiments simulating
high-speed networks). These facts justify the use of
virtualization solutions that ensure the access of virtual
machines directly to the actual hardware of computers, thus
preventing the scheduler of the host operating system to be
unfair" with the virtual machines.

IV. CONCLUSION AND FUTURE WORK

We show a platform to support the development of network
management within the objectives of the Horizon Project. The
platform consists of a substrate network, tools for creating
virtual networks and software agents, to experience-based
management strategies implemented in virtual domains
described by ontology. Routing changes due to variations in
available bandwidth along the paths, creation of a new route
to account failures in a network link, experiments with
different switches, insertion of delay as an additional attribute
to the virtual links and virtual network routers are examples of
experiments that can be done with the platform. As future
work we intend to offer an alternative to ontology, by using a
Rule Engine as a part of our platform.

ACKNOWLEDGMENT

This work was supported by FINEP, FUNTTEL, CNPq, and
CAPES.

REFERENCES
[1] Horizon Project: A New Horizon to The Internet,

http://www.gta.ufrj.br/horizon/.
[2] Bellard, F., Brook, P., et al. (2010) Qemu: open source processor

emulator. http://wiki.qemu.org/Main_Page (Accessed at 10 Mar 2010).
[3] VMware. (2010) VMware Virtualization Software for Desktops, Servers

& Virtual Machines for a Private Cloud.
http://www.vmware.com/ (Accessed at 10 Mar 2010).

[4] Oracle. (2010) VirtualBox. http://www.virtualbox.org/ (Accessed at 10
Mar 2010)

[5] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, “JADE: A White Paper”
in EXP in search of innovation, Vol. 3, No. 3. (2003), pp. 6-19.

[6] Foundations of Intelligent Physical Agents (FIPA), FIPA Agent
Management Specification, www.fipa.org/.

[7] Jain, M., Dovrolis, C. (2003) End-to-end available bandwidth:
Measurement methodology, dynamics, and relation with TCP
throughput. IEEE/ACM Trans Netw (TON) 11(4):537–549.

http://www.gta.ufrj.br/horizon/
http://wiki.qemu.org/Main_Page
http://www.vmware.com/
http://www.virtualbox.org/

