
AdaEE: Adaptive Early-Exit DNN Inference
Through Multi-Armed Bandits

Roberto G. Pacheco∗, Mark Shifrin†, Rodrigo S. Couto∗, Daniel S. Menasché∗,
Manjesh K. Hanawal‡ and Miguel Elias M. Campista∗

∗ Universidade Federal do Rio de Janeiro (Brazil), † Ben-Gurion University (Israel),
‡ Indian Institute of Technology Bombay (India)

Email: {pacheco, rodrigo, miguel}@gta.ufrj.br, markshi@post.bgu.ac.il, sadoc@dcc.ufrj.br, mhanawal@iitb.ac.in

Abstract—Deep Neural Networks (DNNs) are widely used to
solve a growing number of tasks, such as image classification.
However, their deployment at resource-constrained devices still
poses challenges related to energy consumption and delay over-
heads. Early-Exit DNNs (EE-DNNs) address the challenges by
adding side branches through their architecture. Under an edge-
cloud co-inference, if the confidence at a side branch is larger
than a fixed confidence threshold, the inference is performed
completely at the edge device, saving computation for more
difficult observations. Otherwise, the edge device offloads the
inference task to the cloud, incurring overhead. Despite its
success, EE-DNNs for image classification have to cope with
distorted images. The baseline distortion level depends on the
environmental context, e.g., time of the day, lighting, and weather
conditions. To cope with varying distortion, we propose Adaptive
Early-Exit in Deep Neural Networks (AdaEE), a novel algorithm
to dynamically adjust the confidence threshold based on context,
leveraging the Upper Confidence Bound (UCB) for that matter.
AdaEE provably achieves logarithmic regret under mild condi-
tions. We experimentally verify that 1) convergence occurs after
collecting a few thousand observations for images with different
distortion levels and overhead values, and 2) AdaEE obtains
a lower cumulative regret when compared against alternatives
using the Caltech-256 dataset subject to varying distortion.1

I. INTRODUCTION

Deep Neural Networks (DNNs) have presented significant
advances in their performance [1], [2], especially for computer
vision tasks, such as image classification. However, DNNs
require high processing power, which may prevent their use
for inference on mobile devices. One alternative to overcome
these constraints is offloading inference tasks to a cloud
computing infrastructure equipped with Graphical Processing
Units (GPUs) [3]. In a cloud-only DNN application, the
mobile devices gather data and offload it to the cloud to run
the entire DNN model. However, this scenario may introduce
an overhead due to excessive communication delay between
mobile devices and a cloud server. To circumvent this issue,
edge computing emerges by allocating computing resources
closer to mobile devices [3], motivating DNN model partition-
ing to perform edge-cloud co-inference [4]–[6]. Under DNN

1©2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

partitioning, edge devices run the layers before the partitioning
layer while cloud servers process the remaining layers.

This paper considers a classification task in which the
DNN labels objects present in an image. We consider an
adaptive offloading scenario where early-exit DNNs (EE-
DNNs) are combined with model partitioning under an edge-
cloud co-inference framework [7]–[9]. EE-DNNs are designed
with side branches (i.e., intermediary classifiers) inserted into
intermediary layers (Fig. 1). The idea behind these EE-DNNs
is that the features extracted by the first convolutional layers
can provide sufficiently confident predictions.

When the edge device gathers an image, it is processed
until a side branch. If the classification confidence is greater
than a threshold, inference ends. Otherwise, the edge device
offloads data to the cloud that runs the remaining layers.
Hence, the inference task is conditionally concluded based on
the input classification difficulty, saving network resources,
computation and energy, and reducing inference time for eas-
ier inputs. However, early classification may entail sacrificing
confidence, leading to a latency-confidence tradeoff.

Previous works, such as BranchyNet [7] and SPINN [8], use
a fixed threshold to decide whether to terminate an inference.
These proposals implicitly assume that input images always
are pristine (i.e., undistorted), which may not bode well with
real-world applications. For example, an edge device can
gather images with several distortion types, such as blur [10]
and different distortion levels. Dodge and Karam [11] show
that DNN models are sensitive to image distortion, which
severely reduces their performance in terms of accuracy.
Moreover, Pacheco et al. [12] experimentally demonstrate
that, in EE-DNNs, side branches’ offloading decisions are
significantly impacted by image distortions. Thus, the distor-
tion presented in an image, which we refer to as context,
influences inference outcomes. Indeed, our experiments show
that context significantly impacts the probability of classifying
at the side branches and overall accuracy.

Our key insight consists in noting that the distribution
of confidence estimates changes as a function of context.
Then, the threshold determining if a given confidence is large
enough to cause an early exit should be adapted accordingly.
Our key contribution is Adaptive Early-Exit in Neural Net-
works (AdaEE) based on multi-armed bandits (MABs), an
reinforcement learning algorithm. AdaEE learns the optimal

confidence threshold by employing MABs, accounting for i)
known confidence at side branches, ii) envisioned confidence
gains when using all layers, and iii) the corresponding over-
head. Although MABs have already been considered in EE-
DNNs [13]–[15], our proposal makes the early-exit decision
on-the-fly using the confidence information provided by side
branches. Our evaluation suggests that leveraging confidence
levels at intermediary layers, which are readily available at
decision time, is crucial for adaptively adjusting to context.

This paper is organized as follows. Section II reviews
related work. Section III explains the concepts of EE-DNNs
through MABs, and Section IV presents our problem formu-
lation and the proposed algorithm. Next, Section V analyzes
the impact of context on early-exit decisions and evaluates
AdaEE in choosing the optimal threshold. Finally, Section VI
concludes this paper and indicates future steps.

II. RELATED WORK

Next, we discuss related work on early-exit DNNs and the
use of multi-armed bandits for these DNNs.

A. Early-Exit in Deep Neural Networks

BranchyNet [7] is an early-exit DNN (EE-DNN) that
decides whether a sample can be classified earlier on a
side branch, using the classification entropy. SPINN [8] and
SEE [16] make the decision to exit at a side branch based on
the estimated classification confidence given by the probability
of the most likely class. Besides BranchyNet and SPINN,
other works also employ EE-DNNs to reduce inference time.
FlexDNN [17] and Edgent [18] use EE-DNNs to select the
most appropriate DNN depth.

Some works focus on deploying EE-DNNs in hardware.
Dynexit [9] trains and deploys an EE-DNN on Field-
Programmable Gate Array (FPGA) hardware. Paul et al. [19]
show that implementing an early-exit DNN on the FPGA
board can reduce inference time and energy consumption.

Pacheco et al. [20] combine EE-DNN and DNN partitioning
to offload mobile devices via early-exit DNNs. This offloading
scenario is also considered in [12], which proposes a robust
EE-DNN against image distortion. Similarly, EPNet [21]
learns when to exit early, accounting for the tradeoff between
overhead and accuracy, but the learning occurs offline.

All above works assume a fixed [12], [17]–[20] application-
defined threshold. Instead, we propose an adaptive exit policy
that sets the threshold using reinforcement learning according
to context. In this paper, we consider EE-DNNs where the exit
at a side branch occurs whenever the classification confidence
is above a threshold learned in an online fashion.

B. Multi-Armed Bandits in Early-Exit DNNs

Unlike previous works that employ a fixed threshold,
LEE [13], DEE [14], and UEE-UCB [15] are notable excep-
tions that learn the optimal exit in an EE-DNN using MABs.

Our work differs from [13]–[15] in the following ways:
First, our paper employs MABs to learn optimal thresholds
that, in turn, characterize optimal exits, while previous work

offloadingo offloading

cloud

...

b1

v1 vk ...vk+1 vNinput

edge
device

CI< αt
α1

α2

αN

...

CL

overhead(o)

Fig. 1. Early-exit MobileNetV2 with one side branch under an adaptive
offloading scenario.

sets the optimal exit explicitly as the control. Second, in LEE
and UEE-UCB, early-exit decisions are taken before the image
goes through multiple DNN layers. Instead, in DEE and in our
work, these decisions occur on-the-fly at an intermediary DNN
layer. This distinction allows us to leverage information about
the confidence level at intermediary layers and then decide
whether to continue the inference with additional layers. Since
we have a different set of assumptions about the information
available to make a decision (e.g., when compared against
LEE and UEE-UCB) and on the decision variables (e.g., when
compared against DEE), the threshold tuning proposed in this
work is simpler and significantly differs from the class of poli-
cies considered in previous works. Third, LEE and DEE aim
to enable an efficient DNN inference task for mobile devices,
e.g., during service outages and network disconnections. To
this end, they consider an edge-only scenario, in which the
entire early-exit DNN model is processed at an edge device.
Fourth, LEE and DEE focus on image classification tasks,
and UEE-UCB tackles a natural language processing task
employing a trained Elastic BERT model. Also, UEE-UCB
assumes that the error rates at the exit points are decreasing
and satisfy ‘strong dominance.’ We do not make any such
assumptions. Our work, in contrast, uses convolutional DNNs
for an image classification task adapting to different levels
of image distortion. Image distortion dynamically changes
according to context but, to the best of our knowledge, has
not been analyzed by the aforementioned works.

We conclude this section by noting that as the control
variables (actions) and objective function (regret) in our
proposal are different from previous work, a direct comparison
is infeasible. The works can be indirectly contrasted on real
world deployments, that we leave as subject for future work.

III. EARLY-EXIT DNN THROUGH MULTI-ARMED BANDITS

Fig. 1 shows an EE-DNN model with a threshold αt. This
threshold is used to decide whether an early exit will be taken
and is continuously adjusted by the proposed algorithm. Given
an observation x, EE-DNN processes it layer-by-layer until it
reaches the side branch. Let C denote the set of target classes.
Leveraging information available at the side branch, let pI(c)
denote the estimated probability that x belongs to class c,
c ∈ C. The intermediary confidence refers to the maximum of
those probabilities, CI = maxc∈C pI(c).

TABLE I
TABLE OF NOTATIONS.

Notation Description
o Overhead to use all layers as opposed to intermediary layer
CI Classification confidence at intermediary layer
CL Classification confidence at last layer
∆C Confidence gain from not performing early exit
α Confidence threshold at intermediary layer
αt Confidence threshold at intermediary layer at round t
rt Instantaneous reward after processing observation t

N(α) Number of times action α was chosen
Q(α) Average reward of action α
Rt(π) Instantaneous regret at round t using policy π
R(π, n) Cumulative regret using policy π over n rounds

If confidence CI meets the threshold αt, i.e., CI ≥ αt, the
side branch can provide a prediction assumed to be accurate,
and the input is classified as ŷ = argmaxc∈C(pI(c)). In this
case, the input is not further processed.

Otherwise, i.e., CI < αt, the next layers process the input
until the final output layer. The last layer produces confidence
CL, following a similar approach as the one used to produce
CI at the intermediary layer. This further processing entails an
overhead o, as illustrated in Fig. 1. For instance, the overhead
can be high due to an adaptive offloading scenario with DNN
partitioning. In this case, the overhead is the communication
time to offload data from the edge device to the cloud server,
plus the time needed at the cloud to process the remaining
layers. Alternatively, the overhead can also include the energy
consumption of the edge device or the processing time to run
the subsequent layers at the edge device. This paper considers
an EE-DNN with one side branch, as in Fig. 1.

In this work, we propose models and algorithms to adapt
EE-DNNs to different contexts, e.g., to account for dynamic
image blur levels, using MABs. One of our key insights
consists in learning a conditional threshold to determine
whether to follow an early exit or not. The choice of the
conditional threshold is also referred to as the action to be
taken, and the threshold is conditional as it depends on the
confidence observed at the side branch. The following section
details our solution for the adaptive threshold choice.

IV. ADAPTIVE EARLY-EXIT IN NEURAL NETWORKS

This section presents our problem formulation and AdaEE.2

A. Problem Setup

For each incoming observation (image) to be classified, the
intermediary-layer and last-layer confidences CI and CL are
unknown until the observation passes through the correspond-
ing DNN layers. Let A denote the threshold set containing the
possible thresholds to be chosen (the notation is summarized
in Table I). For each observation x, the learner selects an
action αt ∈ A corresponding to a threshold chosen at round
t based on past observations. Then, the learner checks if
CI ≥ αt. If so, an early exit will be taken. Otherwise, the

2Our code is available at https://github.com/pachecobeto95/AdaEE

Algorithm 1: AdaEE

1 Input: c̃ > 0 (learning rate), o (overhead), A (set of
thresholds), K (number of thresholds)

2 Initialize Try each threshold; set
Q1(α1) = r1(α1), . . . , QK(αK) = rK(αK)

3 for t = K + 1,K + 2, . . . , do
4 Receive a sample

αt ← argmaxα∈A

(
Qt−1(α) + c̃

√
ln(t)

Nt−1(α)

)
;

5 Obtain confidence CI at the intermediary level
6 if CI ≥ αt then
7 Perform early exit and set rt(αt)← 0
8 else
9 Use the last layer and observer CI and CL

10 rt(αt)← max(CL − CI, 0)− o;
11 end
12 Nt(αt) = Nt−1(αt) + 1;
13 Qt(αt) =

∑t
u=1 ru(αu)1{αu = αt}/Nt(αt);

14 end

input is processed until the last layer, which will provide the
last-layer confidence CL.

Let ∆C denote the confidence gain from the intermediary to
the last layer, ∆C = max{CL−CI, 0}. Recall that o denotes
the overhead due to processing up to the last layer. We assume
that o is between [0, 1], e.g., scaling an overhead measured in
units of energy or time by a factor, such that ∆C and o are
commensurable. For any threshold αt ∈ A, let r(αt) denote
its associated instantaneous reward. Then,

r(αt) =

{
0 if CI ≥ αt (early exit),
∆C − o otherwise.

(1)

Without loss of generality, we assume that random variables
CI and CL have the same support: both vary in the range [0, 1].
Then, the mean reward for choosing threshold αt is

E[r(αt)] = E[∆C − o|CI < αt] · P [CI < αt]. (2)

The learner’s goal is to find a threshold that maximizes the
expected reward. The optimal threshold is denoted by α∗,

α∗ = argmax
α∈A

E[r(α)]. (3)

The instantaneous regret Rt(π) is given by

Rt(π) = r(α∗)− r(αt). (4)

We define the performance of the learner that uses policy π
over n ∈ N rounds in terms of expected regret as

R(π, n) = n·E[r(α∗)]−
n∑

t=1

E[r(αt)|π] =
n∑

t=1

E[Rt(π)]. (5)

Our goal is to develop a learning algorithm based on multi-
armed bandits to find a policy π∗ that reaches a sub-linear
cumulative regret R(π∗, n)/n→ 0.

PristineBlur
=0.5

Blur
=0.8

Blur
=1

Blur
=2

Blur
=3

Context

0.0

0.2

0.4

0.6

0.8

1.0
Ov

er
al

l A
cc

ur
ac

y
Accuracy
P[CI]

0.0

0.1

0.2

0.3

0.4

0.5

P[
C I

]

(a) Performance under threshold α=0.8

Pristine Blur
=0.5

Blur
=0.8

Blur
=1

Blur
=2

Blur
=3

Context

0.2

0.4

0.6

0.8

1.0

C I

(b) Intermediary-layer confidence, CI

0.0 0.2 0.4 0.6 0.8
C

0

500

1000

1500

Fr
eq

ue
nc

y

(c) Confidence gain, ∆C

Fig. 2. Using Caltech-256 dataset, the plots show (a) the overall accuracy for different contexts (image distortion levels) using a fixed threshold of α = 0.8;
(b) boxplot of intermediary-layer classification confidence CI, under α = 0.8; and (c) a histogram of confidence gain ∆C.

B. Algorithm

To address the problem of setting confidence thresholds for
an early exit, we develop AdaEE. AdaEE is an online learning
algorithm to find the optimal confidence threshold based on
the Upper Confidence Bound (UCB) algorithm [22]. Algo-
rithm 1 presents the pseudo-code of the AdaEE algorithm.
The inputs to the algorithm are the exploration rate, c̃, and the
set of thresholds A. Let K denote the number of thresholds,
K = |A|. Each threshold is applied once for the first K inputs,
producing one sample for each action (line 2). In the next
rounds, the learner selects a threshold with the highest UCB
index (line 4).

Key idea. If CI ≥ αt, an early exit occurs (lines 6-7).
Otherwise, all subsequent layers are processed. In this case,
the prediction from the layer with the highest confidence is
taken as the final output (lines 8-10). Next, we update the
statistics Nt(αt) and Qt(αt) (lines 12-13). Nt(αt) is the
number of times the action αt is chosen at the round t. Qt(αt)
is the average reward of action αt at the round t.

Logarithmic regret. For c̃ ≥ 2 and any n, the regret of
the proposed algorithm can be upper bounded as follows:

R(AdaEE, n) ≤ 8
∑

α∈A\α∗

log(n)

∆α
+ (π2/3 + 1)

∑
α∈A\α∗

∆α,

(6)
where ∆α = E[r(α∗)]− E[r(α)].

The above bound follows from the analysis of UCB1 [22].
Hence, when using UCB1, our policy can achieve logarithmic
regret [22]. The next section provides experiments motivating
a threshold conditioned on the context. Then, we experi-
mentally evaluate the convergence of AdaEE, illustrating that
logarithmic regret is achievable in realistic settings.

V. EVALUATION

A. Context Matters

Next, we show that the context impacts the performance
of EE-DNNs, by evaluating the classification probability and
accuracy on a side branch. Our analysis considers that the con-
text is the image distortion. However, context can be defined
by other environmental aspects, such as the predominance
of a given class over others in the gathered images. In our

analysis, we train an early-exit MobileNetV2 [23] with one
side branch on the Caltech-256 dataset [24], following the
training procedure described in [7], [13]. The Caltech-256
dataset contains undistorted images of ordinary objects, such
as motorbikes and shoes. This dataset has 257 classes. We
split the dataset into 80% of images for training, 10% for
validation, and 10% for testing. Next, we apply Gaussian blur
as image distortion on each image from the testing dataset.

Gaussian blur occurs when the camera is out of focus or
the image is gathered in a foggy environment [11]. To obtain
a blurred image, we apply a Gaussian kernel with standard
deviation σ to an undistorted image. The standard deviation
σ defines the blur level so that a higher σ corresponds to a
more blurred image. We employ σ ∈ {0.5, 0.8, 1, 2, 3}. For
each blur level, the kernel size is 4σ + 1 [25]. A pristine
(undistorted) image is an image with blur level σ = 0.

Impact of image distortion. To assess the impact of
distortion on model performance, Fig. 2(a) shows the early-
exit probability P [CI ≥ α] and overall accuracy. The early-
exit probability is the fraction of inputs classified on the side
branch, and the overall accuracy is the fraction of inputs
correctly classified. Fig. 2(a) shows that for a fixed threshold
α = 0.8, both metrics decrease as blur increases. The decrease
is steeper when blur increases from 1 to 2, suggesting that
for such high levels of distortion it may be advantageous to
increase the early-exit threshold.

Challenge: high intra-context variance. Fig. 2(b) presents
a boxplot with the observations’ intermediary-layer confi-
dences CI provided for pristine (σ = 0) and blurred images
with different blur levels σ. Recall that we interchangeably
refer to context and image distortion level. First, this figure
corroborates that context impacts EE-DNNs performance,
affecting the intermediary-layer confidence CI. Moreover, this
figure shows the high variance in the observations’ confidence,
even when sampled from the same context, further motivating
the need for adaptive thresholds [22].

Confidence gain analysis. Next, we analyze the confi-
dence gain ∆C obtained by running early-exit inference on
pristine (undistorted) images from the testing set of Caltech-
256. Fig. 2(c) presents a histogram of confidence gain ∆C.
This figure shows that the confidence gain concentrates on

0 20000 40000 60000 80000100000
Time Horizon

0

2000

4000

6000

8000
Cu

m
ul

at
iv

e
Re

gr
et

Random Pristine
Random, = 0.5
Random, = 1

= 0.8 Pristine
= 0.8, = 0.5
= 0.8, = 1

AdaEE Pristine
AdaEE, = 0.5
AdaEE, = 1

(a) Overhead: 0.0

0 20000 40000 60000 80000100000
Time Horizon

0

2000

4000

6000

Cu
m

ul
at

iv
e

Re
gr

et

Random Pristine
Random, = 0.5
Random, = 1

= 0.8 Pristine
= 0.8, = 0.5
= 0.8, = 1

AdaEE Pristine
AdaEE, = 0.5
AdaEE, = 1

(b) Overhead: 0.05

0 20000 40000 60000 80000100000
Time Horizon

0

1000

2000

3000

4000

5000

6000

Cu
m

ul
at

iv
e

Re
gr

et

Random Pristine
Random, = 0.5
Random, = 1

= 0.8 Pristine
= 0.8, = 0.5
= 0.8, = 1

AdaEE Pristine
AdaEE, = 0.5
AdaEE, = 1

(c) Overhead: 0.1

Fig. 3. Cumulative regret obtained by AdaEE, under several overhead values and contexts, compared against two alternative strategies.

small values, around 0 and 0.1. Recall that our model receives
as input normalized overhead values in agreement with con-
fidence gains. In our evaluation, we let o ∈ {0, 0.05, 0.1}.

B. AdaEE Evaluation

Is logarithmic regret feasible? We experimentally demon-
strate the convergence of AdaEE to select the optimal thresh-
old α∗ that adapts to context. To this end, we run the AdaEE
algorithm using test images from the Caltech-256 dataset.
For each round, we randomly draw an image from the test
set with replacement. Then, we perform an adaptive early-
exit inference, using AdaEE to choose the threshold (action)
αt ∈ A, where A denotes the action set. In our evaluation we
let A = {0, 0.1, · · · , 1.0}.

Fig. 3 shows cumulative regret as a function of the time
horizon for a specific overhead value and several contexts,
represented by pristine and blurred images with different blur
levels. Each line corresponds to a particular context, while
each plot shows the results for a specific overhead value. For
example, the curve labeled as “AdaEE, σ = 0.1” represents
the cumulative regret obtained by AdaEE using blurred images
with σ = 0.1. The cumulative regret is computed as the sum
of the instantaneous regret obtained up to round t.

Fig. 3 experimentally confirms that logarithmic regret is
achievable, i.e., convergence typically occurs after collect-
ing a few thousand observations for different contexts and
overhead values [26]. Indeed, for all the considered contexts,
AdaEE reaches sub-linear cumulative regret before 100,000
observations. In Fig. 3(a), when overhead is zero, the optimal
threshold is the maximum allowed threshold, hence never
performing an early exit. Fig. 3 shows that as the overhead
increases from 0 to 0.1, the difficulty of finding the optimal
threshold α∗ also increases, taking more rounds to achieve
logarithmic convergence. Moreover, Fig. 3 compares the cu-
mulative regret of AdaEE against two alternatives, namely
1) a random threshold strategy and 2) a fixed threshold,
α = 0.8. Fig. 3 shows that AdaEE outperforms the considered
alternatives, as it yields a lower cumulative regret and achieves
sub-linear growth of regret earlier than its alternatives.

AdaEE’s Performance: Figs. 4(a) and 4(b) compare the
overall accuracy of AdaEE against 1) a random threshold
strategy and 2) a fixed threshold, α = 0.8. Each plot presents

the results considering a particular overhead value. The results
show that the proposed AdaEE outperforms the overall accu-
racy obtained by the randomly-chosen threshold by about 4%
and that AdaEE matches the overall accuracy obtained with
a fixed threshold value of α = 0.8. Recall from Fig. 3 that
the fixed threshold yields a higher cumulative regret when
compared to AdaEE. Together, Fig. 3 and Figs. 4(a) and 4(b)
indicate that a fixed threshold yields high performance penalty
due to inefficient decision-making and that AdaEE is able to
circumvent such penalty through adaptive thresholds.

Next, we assess the adaptive behavior of AdaEE over time
under dynamic contexts. To this aim, Fig. 4(c) presents the
evolution of the overall accuracy of AdaEE (blue), compared
against a random-threshold strategy (red) and fixed threshold
with α = 0.8 (green). The points of discontinuity in the
lines correspond to context changes that occur at t = 5, 000,
t = 10, 000, and t = 15, 000. Different line styles also
characterize different contexts: solid lines present results for
pristine images, while dashed, dotted, and dashed-dotted lines
correspond to blurred images with σ = 0.5, σ = 0.8,
and σ = 1, respectively. First, this figure demonstrates the
ability of AdaEE to adapt after context transitions. Second,
the results indicate that AdaEE rapidly converges to a stable
accuracy level after switching between different contexts.
Third, they also show that AdaEE outperforms randomly-
chosen thresholds in terms of overall accuracy for the analyzed
contexts. The curve of AdaEE starts with a lower overall
accuracy than α = 0.8 due to its need to converge. However,
as AdaEE converges, we can notice that AdaEE matches the
performance of α = 0.8, as shown in Figs. 4(a) and 4(b).

VI. CONCLUSION

Despite the success of DNNs in addressing an increasingly
large number of tasks, their adoption is still challenging
in resource-constrained devices. EE-DNNs can extend the
applicability of DNNs to an edge-cloud co-inference frame-
work. However, their optimal parameterization is context-
dependent. Indeed, our evaluation found that the fraction of
observations that can be early classified varies widely across
different contexts (Fig. 2). This indicates the need for adaptive
thresholds. We presented AdaEE, an adaptive online scheme
to parameterize the confidence thresholds of EE-DNNs using

0.0 0.5 1.0 1.5 2.0
Blur Level ()

0.0

0.2

0.4

0.6

0.8
Ov

er
al

l A
cc

ur
ac

y

Random
= 0.8

AdaEE

(a) Overhead: 0.0

0.0 0.5 1.0 1.5 2.0
Blur Level ()

0.0

0.2

0.4

0.6

0.8

Ov
er

al
l A

cc
ur

ac
y

Random
= 0.8

AdaEE

(b) Overhead: 0.1

0 20000 40000 60000 80000 100000
Time Horizon

0.5

0.6

0.7

0.8

0.9

Ov
er

al
l A

cc
ur

ac
y

AdaEE
Random

= 0.8

(c) Overhead: 0.1

Fig. 4. The leftmost and middle plots compare AdaEE with randomly-chose threshold and fixed threshold in terms of overall accuracy, using overhead of
(a) 0.0 and (b) 0.1. The rightmost plot show evolution of accuracy over the time horizon by running AdaEE algorithm for different contexts.

MABs. Our key metric of interest is the cumulative regret, that
is derived from the instantaneous reward (Equation (1)), and
acts as a proxy to the impact of wrong early-exit decisions.
In particular, it depends on the overhead to process additional
layers of EE-DNNs. In a setting where overhead captures
communication delay, AdaEE can reduce the inference time,
e.g., by decreasing the offloading frequency to the cloud.

We show that AdaEE can converge towards efficient solu-
tions whose cumulative regret grows sub-linearly. Moreover,
AdaEE shows stable behavior across the considered con-
texts and achieves a sub-linear cumulative regret faster than
randomly-chosen and fixed thresholds (Fig. 3). Also, AdaEE
outperforms, in terms of accuracy, randomly-chosen and fixed
thresholds, rapidly converging after context changes (Fig. 4).

As the next steps, we can consider more complex EE-DNN
models, such as ResNet, also accounting for multiple side
branches. We also plan to establish tighter bounds on the con-
vergence of MABs for the parametrization of early-exit DNNs
and conduct a realistic deployment of AdaEE, accounting for
the sudden and dynamic environmental changes.

ACKNOWLEDGEMENT

This study was financed in part by Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES) – Finance Code 001, CNPq, PR2/UFRJ, FAPERJ
Grants E-26/203.211/2017, E-26/010.002174/2019, and E-
26/201.300/2021, and FAPESP Grant 15/24494-8.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[2] K. Bochie, M. S. Gilbert, L. Gantert, M. S. M. Barbosa, D. S. V.
Medeiros, and M. E. M. Campista, “A survey on deep learning for
challenged networks: Applications and trends,” Journal of Network and
Computer Applications, vol. 194, p. 103213, 2021.

[3] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[4] Y. Kang, J. Hauswald, C. Gao, A. Rovinski et al., “Neurosurgeon:
Collaborative intelligence between the cloud and mobile edge,” in ACM
Computer Architecture News, vol. 45, 2017, pp. 615–629.

[5] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN surgery
for inference acceleration on the edge,” in IEEE Conf. on Computer
Communications (INFOCOM), 2019, pp. 1423–1431.

[6] R. G. Pacheco and R. S. Couto, “Inference time optimization using
branchynet partitioning,” in IEEE Symposium on Computers and Com-
munications (ISCC), 2020, pp. 1–7.

[7] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in IEEE Int.
Conf. on Pattern Recognition (ICPR), 2016, pp. 2464–2469.

[8] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“SPINN: synergistic progressive inference of neural networks over
device and cloud,” in Int. Conf. on Mobile Computing and Networking
(MobiCom), 2020, pp. 1–15.

[9] M. Wang, J. Mo, J. Lin, Z. Wang, and L. Du, “Dynexit: A dynamic
early-exit strategy for deep residual networks,” in IEEE Int. Workshop
on Signal Processing Systems (SiPS), 2019, pp. 178–183.

[10] F. Secci and A. Ceccarelli, “On failures of rgb cameras and their effects
in autonomous driving applications,” in IEEE International Symposium
on Software Reliability Engineering (ISSRE), 2020, pp. 13–24.

[11] S. Dodge and L. Karam, “Understanding how image quality affects
deep neural networks,” in IEEE International Conference on Quality of
Multimedia Experience (QoMEX), 2016, pp. 1–6.

[12] R. Pacheco, F. R. Oliveira, and R. Couto, “Early-exit deep neural
networks for distorted images: providing an efficient edge offloading,”
in IEEE Global Communications Conf. (GLOBECOM), 2021, pp. 1–6.

[13] W. Ju, W. Bao, D. Yuan, L. Ge, and B. B. Zhou, “Learning early exit for
deep neural network inference on mobile devices through multi-armed
bandits,” in IEEE/ACM Int. Symposium on Cluster, Cloud and Internet
Computing (CCGrid), 2021, pp. 11–20.

[14] W. Ju, W. Bao, L. Ge, and D. Yuan, “Dynamic early exit scheduling for
deep neural network inference through contextual bandits,” in ACM Int.
Conf. on Information & Knowledge Management, 2021, pp. 823–832.

[15] H. Narayan, M. K. Hanawal, and A. Bhardwaj, “Unsupervised early
exit in dnns with multiple exits,” in ACM Int. Conf. AI-ML Systems,
2022. [Online]. Available: https://doi.org/10.48550/arXiv.2209.09480

[16] Z. Wang, W. Bao, D. Yuan, L. Ge, N. H. Tran, and A. Y. Zomaya,
“SEE: Scheduling early exit for mobile dnn inference during service
outage,” in ACM Int. Conf. on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, 2019, pp. 279–288.

[17] B. Fang, X. Zeng, F. Zhang, H. Xu, and M. Zhang, “Flexdnn:
Input-adaptive on-device deep learning for efficient mobile vision,” in
IEEE/ACM Symposium on Edge Computing (SEC), 2020, pp. 84–95.

[18] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating
deep neural network inference via edge computing,” IEEE Transactions
on Wireless Communications, vol. 19, no. 1, pp. 447–457, 2019.

[19] G. Kim and J. Park, “Low cost early exit decision unit design for cnn
accelerator,” in IEEE Int. SoC Design Conf., 2020, pp. 127–128.

[20] R. Pacheco, R. Couto, and O. Simeone, “Calibration-aided edge in-
ference offloading via adaptive model partitioning of deep neural
networks,” in IEEE Int. Conf. Communications (ICC), 2021, pp. 1–6.

[21] X. Dai, X. Kong, and T. Guo, “EPNet: Learning to exit with flexible
multi-branch network,” in ACM Int. Conf. on Information & Knowledge
Management, 2020, pp. 235–244.

[22] P. Auer et al., “Finite-time analysis of the multiarmed bandit problem,”
Machine Learning, vol. 47, pp. 235–256, 2002.

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-

lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[24] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” California Institute of Technology, Tech. Rep., 2007.

[25] T. S. Borkar and L. J. Karam, “Deepcorrect: Correcting dnn models
against image distortions,” IEEE Transactions on Image Processing,
vol. 28, no. 12, pp. 6022–6034, 2019.

[26] H. Tibrewal, S. Patchala, M. K. Hanawal, and S. J. Darak, “Dis-
tributed learning and optimal assignment in multiplayer heterogeneous
networks,” in IEEE Conf. on Computer Communications (INFOCOM),
2019, pp. 1693–1701.

