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ANÁLISE DE CONFLITOS NO TRÂNSITO BASEADA EM ESTIMAÇÕES DE
RISCO E COLABORAÇÃO COM PRESERVAÇÃO DA PRIVACIDADE PARA
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A auditoria e o monitoramento veicular são áreas de importância crescente nos
sistemas inteligentes de transportes. Nesse sentido, as seguradoras têm desenvolvido
diferentes estratégias para descrever perfis de condução dos motoristas, através de
sensores embarcados (p. ex., black-boxes, OBD-II dongles, smartfones, entre outros)
que transmitem dados em tempo real. No entanto, com o avanço na implementação
de sistemas inteligentes nos veículos, a tendência é do condutor humano ficar em se-
gundo plano. Portanto, é necessário estabelecer parâmetros que descrevam de forma
eficiente perfis de condução de veículos inteligentes. Esta tese investiga soluções para
propor um modelo de avaliação de risco para veículos inteligentes. Três áreas são
estudadas: sensoriamento, infraestrutura e interações com o veículo de interesse, e
ambientes colaborativos com preservação da privacidade dos dados. Em princípio,
analisam-se sensores exteroceptivos e os dados obtidos destes sensores em veículos
autônomos (AVs) experimentais. Em continuação, são analisadas métricas de segu-
rança substitutas baseadas nas leituras dos sensores, contidas em conjuntos de dados
de AVs. Baseado nos dados de detecção de objetos, esta tese propõe a métrica de
Tempo para Colisão com orientação de movimento, uma medida de estimação de
segurança que permite quantificar o risco baseado na orientação na qual se deslo-
cam os objetos que interagem com o veículo de interesse. Dado que os fluxos de
dados no ambiente veicular mudam dinamicamente, o objetivo final do trabalho é
desenvolver um modelo para avaliar o risco baseado no compartilhamento de dados
entre o fabricante de veículos e a seguradora. Para isso, este trabalho implementa a
técnica de aprendizado federado vertical para garantir a preservação de segurança e
integridade dos dados no ambiente colaborativo.
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Vehicle’s monitoring and audit are areas of growing importance in intelligent
transportation systems. In this sense, insurers have developed different strategies
to describe driving profiles through embedded sensors (e.g., black-boxes, OBD-II
dongles, smartphones, among others) transmitting data in real-time. However, with
the advancement in the implementation of self-driving vehicles, the driver goes to
the background. Therefore, it is necessary to establish parameters that efficiently
describe self-driving vehicle’s driving profiles. Thus, this thesis investigates solutions
to propose a risk assessment model for self-driving vehicles. Three areas are stud-
ied: sensing, infrastructure and interactions with the ego-vehicle, and collaborative
environments with privacy-preserving data. In principle, exteroceptive sensors and
the data obtained from these sensors in experimental Autonomous Vehicles (AVs)
are analyzed. Next, Surrogate Safety Measures (SSMs) based on data from sensor
readings contained in AV datasets are analyzed. Based on object detection data,
this thesis proposes the Time-to-Collision with motion-orientation (TTCmo) met-
ric, a safety estimation measure that allows risk quantification based on the yaw
orientation of detected objects interacting with the ego-vehicle. Given that data
flows in the vehicular environment change dynamically, the last objective of this
thesis is to develop a risk assessment model based on data sharing between the
car manufacturer and the insurer. Thus, this work implements a vertical federated
learning framework to ensure privacy protection and data integrity in a two-party
collaborative environment.
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Chapter 1

Introduction

On-board decisions in the vehicle generally have been associated with the driver.

However, due to high accidents and crashes involving human errors, car manufac-

turers have been implementing several driver support services in order to ensure

the safety of passengers in vehicles. The evolution of these services has allowed the

early adoption of autonomous driving systems. For example, Tesla o�ers automated

driving system features without any expectation that the user will respond to a

request to intervene [9]. Nonetheless, some fatal crash events involving AVs have

been reported [10]. These incidents make it necessary to establish parameters to

monitor the safety of passengers in self-driving vehicles. Nevertheless, self-driving

vehicles generate divergences in the analysis of tra�c risk events and their severity.

This discussion involves numerous questions of technical, ethical, and social nature

since driving will correspond to the arti�cial intelligence system that manages the

vehicle [11]. In this scenario, since the driver is no longer responsible, it is necessary

to monitor systems in vehicles associated with human perception, which are crucial

in the proper functioning of autonomous driving systems. Thus, this work evaluates

three aspects that we consider fundamental to assess the risk in self-driving vehicles:

sensing, which is directly associated with how the environment around the vehicle is

perceived; the infrastructure and interactions with other road users, associated with

the object detection and the recognition of properties inherent to the road users and

infrastructure; and lastly, data sharing, since the risk assessment will require data

from the autonomous driving system in addition to those generated by the insurer,

and therefore, it is necessary to evaluate speci�c moments that can be analyzed more

simply in a collaborative environment between manufacturers and insurers, where

they can share data without compromising data integrity and privacy.
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1.1 Motivation

Mobility safety aims to improve the security of the road users � may they be

drivers, passengers, pedestrians � by providing strategies to reduce the negative

societal impacts from tra�c risk events. Nonetheless, improving road safety is a

challenging scenario since it requires covering diverse topics that converge in tra�c

risk events, for example, driving pro�ling, vehicle's mechanical state, interactions

with other road users, among others. As a matter of fact, tra�c accidents are one of

the major causes of loss of human lives. In 2018, road tra�c crashes represented the

eighth leading cause of death globally, causing up to 1.35 million people died, and

50 million non-fatal injuries that year [12]. The European Road Safety Observatory

(ERSO) states that tra�c injuries produce socio-economic consequences estimated

at ¤ 120 billion annually [13]. The National Highway Tra�c Safety Administration

(NHTSA) reports, in 2016, there were 38,824 people killed in motor vehicle crashes

on the U.S. roadways, and that human errors were the leading cause in 94% to 96%

of all motor vehicle crashes [14].

As a logical consequence, governments and researchers around the globe pursue

innovative services to improve road safety policies through autonomous support and

assistance systems, as an immediate response to risk events. The key idea of under

development technologies consists of monitoring several aspects of driving through

the analysis of tra�c risk events based on data collected from the driver and the ve-

hicle's surrounding environment. Application examples are driver detection, driver

distraction, object detection, among others. These applications are relevant since

driving behavior and vehicle interactions depends on multiple sub-areas to describe

properly the context involving road safety. In fact, each application has di�erent

information requirements from vehicle in-cabin and surroundings. In general, safety

monitoring depends on in-cabin and external sensing capabilities available in the ve-

hicle. Therefore, a myriad of sensors come at play. In addition to the sensors needed

for any vehicle operation, other sensors are needed to allow the vehicle to capture

information about the current situation and informing the driver or, ultimately,

taking actions autonomously.

1.2 Sensors in Intelligent Vehicles

Sensing plays a vital role for vehicle monitoring. Sensing can be described as

the process of perception of di�erent variables involved with the vehicle operation.

Through this process, sensor data readings are organized, identi�ed and interpreted,

in order to represent and understand the situation around the vehicle. In-vehicle

perception methods are closely related to sensors. Nowadays, vehicles are equipped
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with embedded systems that digitally control di�erent vehicle subsystems, resulting

from the stimulation of on-board sensors, providing di�erent functionalities [15], e.g.,

turbo boost, fuel injection, active suspension, vehicle stability, among others. Thus,

vehicle sensors generate massive amounts of data, which are used to analyze behavior

patterns, environmental conditions and to optimize vehicle performance and security.

Therefore, perception systems have to be precise, robust, and frequently processed

in real-time.

In-vehicle sensing enables the integration of di�erent systems to improve, adapt

and automate vehicle safety and the driving experience. These systems assist drivers

by o�ering precautions to reduce risk exposure or by cooperatively automating driv-

ing tasks (e.g., Anti-lock Braking Systems (ABS), Adaptive Cruise Control (ACC),

Electronic Stability Control (ESC), among others) with the aim of minimizing hu-

man errors, or the e�ects of human errors at least [16]. In this scenario, it is not only

possible to obtain internal measurements of the vehicle associated with the engine

and its components. Now the vehicle can acquire information from the surrounding

environment, recognizing other factors and objects which coexist with its environ-

ment, which makes each variable a measurement to be considered in any scenario.

Therefore, the vehicle sensor becomes multi-mode, with the capacity to perceive

both internal and external signals. It also means that the vehicle must operate with

heterogeneous data from multiple sources. Moreover, this is relevant if we consider

that self-driving vehicles will reduce the dependency on the human driver since an

intelligent control system will control the vehicle. In this regard, in-vehicle and

external environment sensing take on greater relevance, since the decisions in the

vehicle will be made from the sensor readings.

Driver assistance and support services are constantly evolved, with function-

alities that have some autonomy level, converging towards Autonomous Vehicles

(AVs). Currently, the Society of Automotive Engineers (SAE) classi�es the vehi-

cles' autonomy level [17]. This classi�cation is linked to speci�c roles involved in

the dynamic driving task: human, vehicle systems, and autonomous systems. A

driver fully responsible for driving represents less complexity related to assistance

systems; in contrast, vehicle sensing is limited. Meanwhile, it is stated that vehicles

with higher complexity in their assistance systems require more advanced sensing

devices. Therefore, full automation has complex computational methods, since ex-

haustive monitoring of the driving environment and full situational awareness are

of paramount importance, once its ultimate goal is being capable of replacing the

human driver [17]. It is worth mentioning that since vehicles with full autonomy

are not yet available, it means the driver must take control and react to situa-

tions in which the autonomous support system does not respond adequately. These

Human-Machine Transitions (HMT) are explored in [11, 18].
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Driving automation requires both �proprioceptive� and �exteroceptive� sensing.

Proprioceptive corresponds to data readings from the internal vehicle sensors. On

the other hand, exteroceptive sensing corresponds to data readings from the exter-

nal vehicle sensors. It is worth noting that proprioceptive sensors are not enough to

provide safety applications that involve the monitoring of other vehicles, since they

do not acquire data from the external environment. Withal, based on readings from

proprioceptive sensors, it is possible to obtain intrinsic variables from the vehicle,

such as speed, fuel consumption, among others. With exteroceptive sensors instead,

vehicles can acquire information on the surrounding environment, recognizing other

factors and objects that coexist in the same space. Vehicle external sensing is gain-

ing importance, especially with the proliferation of cameras which, combined with

improved image processing and analysis, enables a wide range of applications [19].

Data generated by exteroceptive sensors is of primary interest to drivers and

passengers. In fact, environmental sensing is fundamental for Advanced Driving

Assistance System (ADAS). ADAS relies on multiple data sources available in the

vehicle (e.g., external sensing through cameras, radar, LiDAR, in-car networking,

vehicular communications, among others) enabling the implementation of diverse

safety applications in the vehicle, such as ACC, collision avoidance, anti-lock braking

system, among others. Interestingly enough, the same data has value in the context

of smart cities (e.g., sensing the road conditions), and for insurance companies to

establish driving pro�les and calculate insurance premiums. Ubiquitous sensing

methods have allowed monitoring vehicles and driving environments. It is inferred

by the proliferation of wireless communications, as well as devices with processing

and sensing abilities. As a result, data volume generated by both proprioceptive

and exteroceptive sensors can be high depending on the type of sensor, reaching up

between11 TB and 152 TB per day, just for one vehicle [20]. In this way, vehicle data

volume shows an exponential growth over the recent years. According to an estimate

by IBM, 2.5 quintillion bytes of data are created each day, whilst modern cars have

close to 100 sensors that monitor items related to the vehicle [21], generating data

from terabytes (TB) to petabytes (PB) level. It is relevant since vehicular safety

applications require immediacy in data analysis and real-time operations. Therefore,

strategies are required to optimize data analysis to identify risk events, automatic

incident detection, monitoring tra�c behavior, simulation models, among others.

For that, analysis of real vehicular mobility traces is fundamental to extract data

concerns to the driving behavior. Moreover, processing data is crucial to safety

applications in vehicular telematics. Since tra�c data change rapidly, it is necessary

to use historical data to identify patterns, and therefore, it must be compared and

processed in a short time [22].
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1.3 Risk Assessment

In addition to sensing and data analysis, another aspect that must be addressed is

the implementation of methods for understanding and predicting safety performance

to make an etiological diagnosis that validates those events that really represent a

risk for vehicle and passengers. This is a complex task if we consider that the

randomness of the vehicular environment requires monitoring in di�erent segments.

For instance, driving requires continuous monitoring since driver and vehicle can

interact with multiple road users and infrastructure that can become risky at any

time. Therefore, it is also necessary to evaluate the interactions with the environ-

ment outside the vehicle. Currently, driving style assessment models are based on

driving pro�les inherent to human drivers [23]. For this, di�erent driver monitoring

strategies have been developed to study driving habits in practice. Driver behavior

is classi�ed into macro-areas that consider diverse events in driving practice [24],

e.g., safety, driving behavior, road monitoring, navigation, among others. In the

insurance market, the strategies most used to determine the calculation of insur-

ance policies are based on Usage-Based Insurance (UBI) metrics. Pay As You Drive

(PAYD) and Pay How You Drive (PHYD) [23] are techniques that analyze the vehi-

cle displacements, time of use, and driver behavior respectively. Thus, it is possible

to consider the driver behavior in de�ning the value of the insurance policy.

Nowadays, with the advancement in the implementation of self-driving vehicles,

the driver goes to the background. Then, a new question arises, which ishow to

establish a risk assessment plan to ensure a self-driving vehicle?To formulate these

parameters, it is essential to analyze the data collected from sensors, to describe

di�erent pro�les of self-driving vehicles in the presence of risk factors for the vehicle

and its occupants. Nonetheless, the amount of data can introduce noise for the

characterization of these risk factors to establish speci�c insurance services. One

solution can be to �lter this large volume of big data to identify critical charac-

teristics of the self-driving vehicle's behavior. Indeed, self-driving vehicles generate

divergences in the analysis of tra�c risk events and their severity. This discussion

involves numerous questions of technical, ethical, and social nature since driving will

correspond to the arti�cial intelligence system that manages the vehicle [11]. Besides

that, HMT involves various questions associated with privacy preservation and data

security [25], processes are required to guarantee the data integrity, both in handling

and anonymization. Moreover, HMT has to deal with the complexity of decisions

and how these are approached. It constitutes a challenging scenario since, in addi-

tion to technicalities, it is necessary to establish a trade-o� between responsibilities

and ethical standards, to de�ne policies associated with the AVs functionalities and

legislation [18]. It is relevant for insurance companies, given that they must guar-
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antee fairness and explainability to the risk events that may occur with the AV [26]

to the customers. On the other hand, this is also subject to legislative regulations,

which are still lagging when comparing to the AVs' technological advances.

The interpretation of tra�c risk events is correlated with the driver/vehicle and

his/its response to the variability of interactions with various road users. Never-

theless, this depends on observational estimates that allow the risk to be assessed.

Furthermore, these estimates are limited by the absence of crash data or tracking

of sequences of events leading to a high-risk event since crashes are the main focus.

Nonetheless, the use of non-crash tra�c risk events allows us to assume a relation-

ship between the severity and the frequency of di�erent events involving the AV. By

understanding these relationships, it is possible to study road safety risks without

relying on accident data and improve the prediction of other risk events.

It is important to note that any potential risk event occurs between at least

two road infrastructure objects which interact on the road and can be explained by

several factors involved in any event. Therefore, any event in tra�c is associated with

a severity level that can describe or anticipate risk events and their consequences. A

strategy to quantify tra�c risk events with non-crash tra�c data are often evaluated

through Surrogate Safety Measures (SSMs). SSMs allow describing the probability

of a crash, as the frequency of interactions with di�erent objects on the road (e.g.,

time di�erence between vehicles, distance to an object, speed compared with other

road users around, among others). Although SSMs are not designed to carry out

accident prevention actions, these allow observing aspects of the vehicle's behavior,

containing useful information to follow various processes associated with road safety.

1.4 Federated Learning

In addition to SSMs, risk assessment can be done collaboratively. Thus, a goal is

to take advantage of the data generated by the self-driving vehicle and the monitor-

ing carried out on it by third parties to properly capture the causality of tra�c risk

events. Currently, data collection from both car manufacturers and auto insurers is

done individually. These data open a window of opportunity for the use of Machine

Learning (ML) techniques that enable data sharing to create reliable collaborative

ecosystems between manufacturers and policymakers. However, there are privacy

and data security requirements to operate with them [27].

One ML approach that implements data privacy-preservation techniques is Fed-

erated Learning (FL) [28]. This technique allows data to be manipulated in a dis-

tributed way among di�erent users, overlapping datasets with di�erent character-

istics. This overlapping can occur Horizontally (HFL) or Vertically (VFL). HFL is

a sample-based methodology where data from diverse sources (customers) contain
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the same feature space in a distributed manner, but di�erent in samples. On the

other hand, VFL analyzes data and labels with di�erent features, i.e., labels are not

contained in the data, but their signi�cance is relevant in the model analysis.

We aim to use VFL techniques to establish a partner ecosystem to improve

the self-driving model through risk assessment analysis. VFL is applicable in cases

where two organizations share a group of customers, but each organization owns

di�erent data/features. To implement VFL in this ecosystem, we use AV datasets

that contain raw and semantic data from the vehicle while it is in motion. Data

exchange is advantageous for both partners: the car manufacturer bene�ts because

a third party can help improve its self-driving model; meanwhile, on the insurer's

side it can help reduce claims, which is bene�cial for customers. For instance, ex-

ploring the partner's ecosystem allows the e�ective participation of di�erent entities,

from Original Equipment Manufacturer (OEMs), communication providers to gov-

ernment entities. Thus, it is possible to evolve towards new learning models that

allow coexistence and evolution between current driving pro�le monitoring models,

ensuring data privacy and integrity.

1.5 Objectives

The goal of this thesis manuscript is to present the research work and the ob-

tained results achieved so far. Since self-driving vehicles require special attention

to describe risk assessments is scarcely explored up to now, it is the major issue of

our investigation. Under the umbrella of this issue, we organized our work in four

speci�c objectives: sensors in intelligent vehicles, datasets and feature selection,

risk assessment based on SSMs, and risk assessment based on data sharing between

trusted organizations using VFL. Next, we brie�y describe these research topics.

ˆ Sensors in intelligent vehicles: A state-of-art about sensors in intelligent

vehicles review is carried out. This review aims to identify the devices currently

used in vehicular telematics and the sensors they use. Moreover, this work

emphasizes exteroceptive sensors since these allow to detect variables related

to the external environment around the self-driving vehicle.

ˆ Data analysis: We analyzed two datasets, nuScenes AV dataset [1], and

Lyft5 [2]. nuScenes and Lyft5 are public large-scale datasets for autonomous

driving, based on images from camera, point clouds (PC) from LiDAR, and

radar signals detected by the sensors installed in the vehicle, besides cate-

gorized data. The goal is to analyze the dynamics of road users and the

ego-vehicle to evaluate metrics inherent to the objects' motion.
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ˆ Risk assessment based on SSMs: This work uses SSM techniques for road

safety analysis. Through these techniques, one goal of this work is to identify

what type of data from the sensors are most appropriate for the calculation

of road safety metrics. We propose and implement the Time-to-Collision with

motion orientation (TTC mo) technique and introduce the analysis of yaw ori-

entation of each object detected, and position of these w.r.t. the ego-vehicle,

in order to analyze only the detected objects that are on a collision course

with the self-driving vehicle. Using the 3D object detection data annotations

available from the publicly available AV datasets nuScenes and Lyft5 and the

TTC mo metric, we �nd that at least 8% of the interactions with objects de-

tected around the AV present some risk level. This is meaningful, since it is

possible to reduce the proportion of data analyzed by up to 60% when replac-

ing regular TTC by our improved TTC computation.

ˆ Risk assessment based on data sharing between trusted organiza-

tions using ML techniques: The main goal of risk assessment based on

data sharing is to create a distributed environment where car manufacturers

and insurers can improve the self-driving model and reduce claims, respec-

tively. Thus, it is possible that several partners can share samples in similar

time intervals. This messages exchange allows partners to access a part of a

complete model at the same time that they can run a training process for the

segments they want to analyze. For that, we aim to emulate VFL techniques

at the edge using data from self-driving vehicles as data owner, and we de�ne

labels from the insurer as data scientist to learn and detect risk from data

owner with privacy-preserving. Once the VFL environment is established, we

compare its convergence compared to a local model. The results show that the

convergence of the models is close, with the VFL model converging faster than

the local model (fewer epochs to converge to maximum accuracy and minimum

loss), however, with a longer learning time compared to the local model. It

is also possible to observe that the classi�cation of the models identify risk

events.

The subject of this thesis is part of the research collaboration between AXA, a

European insurance company, and Universidade Federal do Rio de Janeiro. Eight

students from UFRJ are engaged in the topic �Safety aspects of transports, connected

and autonomous vehicles�. The project is supported by industrial partner AXA GO

Advanced AI/ML & Research Team.
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1.6 Organization

This thesis manuscript is organized as follows. Chapter 2 reviews the sensors that

can be used in vehicular telematics involved in driving behavior analysis, environ-

mental perception, and object detection in the context of autonomous driving. Also,

various sensors for environment detection will be presented with particular attention

in the exteroceptive sensors. Chapter 3 describes the data collection, preparation

and analysis used to calculate motion properties and dynamics of both AV and

detected objects. Chapter 4 proposes a TTC with motion orientation analysis for

each object detected by the self-driving vehicles described in Chapter 3. Chap-

ter 5 presents a practical implementation emulating a real scenario of collaborative

training of a model. Chapter 6 concludes this work and presents future research

directions.
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Chapter 2

Sensors in Intelligent Vehicles

This chapter provides the required knowledge related to the diverse sensor types

associated with vehicle driving, driving patterns, and safety services, mainly con-

tained in self-driving vehicles. First, basic concepts about exteroceptive and pro-

prioceptive sensors used in telematics are provided. Secondly, O�-the-Shelf (OTS)

devices used for insurance telematics are described. Finally, this section emphasizes

exteroceptive sensors, their advantages and limitations.

2.1 Background

Sensors in vehicle telematics enable monitoring a broad range of functions inher-

ent to the management of diverse driving activities. Electronic sensing systems and

data processing capacity reduce driver's workload and provide innovative services,

e.g., ABS, ACC, and ESC systems. This section presents a classi�cation of sensors

for vehicle telematics purposes, according to the environment in which they operate

(e.g., in-vehicle, cabin, outdoor). Figure 2.1 illustrates a bipartite graph showing

the relationship between sensors and OTS devices, where sensors are placed in the

right column; exteroceptive sensors are nodes on the top, while proprioceptive on

the bottom. Active sensors are represented as gray-colored nodes, passive sensors

as white-colored nodes. On the left-hand side, each sensor is connected to OTS

telematics devices where it is embedded.

2.2 Proprioceptive vs. Exteroceptive Sensors

A wide variety of sensors is used in regular vehicles, the majority of them to

gather information on internal engine mechanisms. Self-driving vehicles on the other

hand incorporate sensors with the ability to measure extrinsic variables, whose func-

tion is critical to analyze the surrounding environment. Therefore, vehicular telem-
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Figure 2.1: Relationship between the most widely used sensors and the most common
OTS devices used in vehicular telematics. In the middle, exteroceptive sensors are
nodes on the top, while proprioceptive on the bottom. Active sensors are represented
as gray colored boxes, passive sensors as white colored boxes.

atics is no longer merely mechanical, leading to the analysis of internal and external

variables. As such, a basic classi�cation of the sensors is according to the sensed

variables, asproprioceptive or exteroceptive[29].

Proprioceptive sensorsmeasure variations in signals generated by the vehicle's

internal systems (engine speed, battery level, etc.). Those measurements allow esti-

mating di�erent metrics that are speci�c to the vehicle, such as speed, �uid levels,

acceleration, among other topics of interest for vehicle telematics. Tachometers, Re-

sistance Temperature Detector (RTD), encoders, and accelerometers are examples

of proprioceptive sensors.

Exteroceptive sensorsallow vehicles to be in contact with stimuli coming from

the environment surrounding the vehicle. Examples of such external variables are

measurements of distance to obstacles, light intensity, sound amplitude, detection of

pedestrians, and surrounding vehicles. Therefore, measurements from exteroceptive

sensors are interpreted by the vehicle to produce meaningful environmental features.

Together, exteroceptive sensors give the AVs a sense of the surrounding environment,

which is imperative for autonomous driving.

Proprioceptive sensors, inseparable from vehicle powertrain and chassis, are

widely present in production vehicles. In contrast, exteroceptive sensors are mostly

available in luxury vehicles, vehicles with some level of autonomy, or experimental ve-

hicles. Conventionally, proprioceptive sensors are designed to measure single-process

systems and are therefore limited in capacity. They are unexposed, protected from

the external environment. On the other hand, exteroceptive sensors are designed
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to analyze and monitor internal (vehicle cabin) and external environments. Thus,

they may be designed for operation in di�erent conditions. As such, in some cases

they may be subject to harsh environmental conditions, like rain, snow, nighttime,

etc. [30].

2.2.1 Active vs. passive sensors

Proprioceptive and exteroceptive sensors are designed to just capture and read

a speci�c metric, or to interact with the environment by observing and recording

changes in it, or reactions from it. This leads to classifying sensors as active or

passive. Passive sensors are able to perform measurements without interacting

with the environment, in other words, the sensor receives energy stimuli from the

environment. Active sensors emit waves outside the vehicle and measure from the

return of the emitted signal. Wave emitters can be lasers or radars, among others.

2.3 OTS Devices

While smartphones include a large number of sensors (e.g., GNSS, camera, mi-

crophone, accelerometer) which make them particularly convenient for insurance

telematics [31], other sensors require dedicated hardware and installation proce-

dures. Next, we present a background of OTS telematics devices that carry propri-

oceptive and exteroceptive sensors. Figure 2.2 shows a diagram of OTS telematics

devices and their interaction in the vehicle.

2.3.1 OBD-II dongles and CAN bus readers

A modern vehicle can contain more than one hundred sensors, generally related

to the mechanics, engine operation, and vehicle systems [32]. Automotive systems

are mainly concentrated on three areas: powertrain, chassis, and body; each one

contains a set of sensors to measure physical quantities, managed by the ECU of

each system and interpreted in a look-up table [33]. Data is stored in pro�les used

to control the vehicle actuators and their performance, e.g., speed control, vehicle

stability, among others. The use of speci�c sensors may also be associated with

other factors such as legislation and safety [32]. Data pro�les from the ECUs are

used to check the vehicle status information through the On-Board Diagnostics

(OBD-II) interface. It provides access to the vehicle sub-systems controlled by the

ECUs via the Controller Area Network (CAN) bus. Besides, OBD-II is widely

used by automotive manufacturers for diagnosis and data analysis. Nevertheless,

the data acquisition through the OBD-II connector is limited to a single port and

data are speci�c to each manufacturer, which de�nes proprietary message codes.
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Figure 2.2: Examples of OTS telematics devices, proprioceptive and exteroceptive
sensors, and interaction between them in the vehicle.

Meanwhile, commercial OBD-II dongles and CAN bus readers are connected to the

vehicle's power source itself, and these can have extra sensors, like a GNSS or an

accelerometer.

2.3.2 Black-box and windshield devices

Usually, black-box and windshield devices are installed within the vehicle. They

are equipped with self-contained sensor systems, or they can acquire information

in a piggyback process via the CAN bus. These devices embed a GNSS and an

accelerometer sensor to de�ne driving pro�les about harsh acceleration, braking, or

impact. In addition, a windshield device may contain a SIM card and a microphone

to establish voice communication with remote assistance.

2.3.3 Dashcams

A dashcam is an on-board camera, usually mounted over the dashboard, that

records the vehicle's front view. Commonly uses include registering collisions, road

hazards, in addition to o�ering video surveillance services [34]. Since the data volume

generated by the video frames is considerable, images are selected beforehand by
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the processing system. Additional dashcam functionalities include gesture and voice

biometry [35]. Nonetheless, the utilization of dashcams is limited in some countries

due to privacy concerns [34].

2.3.4 Smartphones

Smartphones involve diverse technologies that make them sophisticated comput-

ers, with the ability to process data and graphics, not to mention communication and

sensing capabilities [31]. Smartphones possess a large number of built-in sensors,

enabling continuous data collection. Added to mobility, it results in the empow-

erment of various applications with speci�c requirements in terms of complexity,

granularity, and response time. Moreover, smartphones can acquire data from CAN

bus through an OBD-II dongle via Wi-Fi or Bluetooth connection.

2.3.5 Wearable devices

Complementary to smartphones, wearable devices are used to monitor human

physiological and biometric signals. In the intelligent vehicles' context, they are used

for safety and driving behavior applications. Wearable devices include smartwatches,

smart glasses, smart helmets, and electrocardiogram (ECG) sensors [36].

One challenge of built-in sensors in OTS devices is that these have not been

designed for vehicular applications and therefore require algorithms to reduce in-

accuracies due to their characteristics of manufacturing [31]. Hence, the use of

vehicle-�xed sensors is necessary. Exteroceptive sensors used in external and in-

vehicle monitoring tasks are described in the next section.

2.4 Exteroceptive sensors in vehicle applications

This section describes in detail exteroceptive sensors, which are used to comple-

ment in-vehicle sensing with external information. Therefore, exteroceptive sensing

can be used in monitoring systems to audit vehicles during operation, getting ac-

curate information about the vehicle surroundings, relevant in vehicles with some

autonomy level, as described in SAE J3016 [17]. Among the main features, ex-

teroceptive sensors can operate in vehicle cabin, and external environments with

di�erent extreme conditions (e.g., rain, fog, snow, nighttime, etc.). Moreover, in-

formation about the vehicle's surroundings can help to understand better which

aspects are involved in tra�c con�icts, besides improving other parameters related

to the driver/passengers safety.

14



2.4.1 Global Navigation Satellite System (GNSS)

Some OTS devices implement Location-Based Services (LBS) using an embedded

GNSS receiver. GNSS systems enable a quite accurate localization on earth (order

of meters), through trilateration signals from dedicated geostationary arti�cial satel-

lites. GNSS systems are composed of constellations of satellites in the Medium Earth

Orbit (MEO) that provide Positioning, Navigation and Timing (PNT) services. The

size of the constellations may vary depending on the GNSS system. Among the

GNSS systems with global coverage are Global Positioning System (GPS), Global

Navigation Satellite System (GLONASS), BeiDou, and Galileo. GNSS systems op-

erate in frequency bands between1:1 GHz and 1:6 GHz, and varies according to the

transmission channels. In fact, di�erent constellations can coexist on the same chan-

nel. Depending on the platform on which OEM devices operate, di�erent LBS are

o�ered. In smartphones, some location services merge short and long-range wire-

less networks such as Wi-Fi, Bluetooth, and cellular networks, in addition to GNSS

data [37]. Nowadays, Android and iOS-based devices use messages based on the

NMEA 0183 standard [38]. The latest updates to this standard include measure-

ment of the pseudo-range and Doppler shift; this adds simplicity and robustness to

the processing of raw GNSS measurements. Nevertheless, GNSS reception exhibits

outages due to interference, signal propagation, and measurement accuracy in urban

canyons due to multipath e�ects and Non-Line-of-Sight (NLoS) conditions [37].

2.4.2 Magnetometer

The function of the magnetometer is to read the Earth's magnetic �eld strength

to determine its orientation. Microelectromechanical Systems (MEMS) magnetome-

ters are embedded in commodity devices like smartphones, which inform the mag-

netic �eld on the 3-axis (x, y, z) with µT sensibility [39]. Moreover, its miniaturized

form factor and low energy consumption favor its availability in multiple devices.

Thus, it results as a valuable component for providing navigation and LBS services.

2.4.3 Microphone

A microphone transforms sound waves into electrical energy. These sensors are

embedded as MEMS devices or condensed mics that are connected to OTS devices.

Microphones are an a�ordable solution for real-time signal processing. According

to ISO 9613-2 standard, their sensing range reaches up to200 m for high-intensity

sounds in an urban scenario [40]. Moreover, microphones consume low energy, have

a smaller size, and omnidirectional sensing capability. Devices with an array of

microphones are used to estimate the Direction of Arrival (DoA) and localize the
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sound source, calculating the time di�erence of arrival between each microphone

pair. On the other hand, their e�ciency largely depends on their sensitivity, sound

waves amplitude, and environmental noise.

2.4.4 Biometric sensors

Biometric sensors are used to collect measurable biological characteristics (bio-

metric signals) from a human being, which can be used in conjunction with biomet-

ric recognition algorithms to perform automated person identi�cation. ECG devices

are installed in the steering wheel and in the driver's seat to measure heart activity

through touch or photoelectric sensors. To increase driving safety, biometric sensors

monitor the driver's stress condition, drowsiness, and fatigue [41].

2.4.5 Ultrasonic sensor

Ultrasonic refers to acoustic waves, where a transmitter sends sound waves, and

a receiver captures the bounce o� waves from nearby objects. The distance of such

object is determined through the Time-of-Flight (ToF). These waves are propa-

gated in a conical shape at the speed of sound (that depends on the density of the

propagation medium), and use frequencies higher than those audible by the human

ear, between 20 and180 kHz [29]. The ultrasonic sensor is suitable for low speed,

short-range applications (tens or hundreds ofcm) like parking assistance, blind spot

detection and lateral moving. With a low power consumption (up to6 W), it is a

relatively a�ordable object detection sensor.

2.4.6 Radar

Radar (Radio Detection and Ranging) detectors use re�ected Electromagnetic

(EM) waves. The device transmits radio wave pulses that bounce o� the objects

outside the vehicle. The re�ected pulses which arrive some time later at the sensor

allow inferring di�erent information. Radar data is collected in a point cloud and

provides abstract information about the surrounding objects, such as direction, dis-

tance, and estimate the object size [32]. The relative speed of moving targets can

be calculated through frequency changes caused by the Doppler shift. Radar im-

plements various techniques to modulate EM waves. Pulse Continuous Wave (CW)

uses periodic pulse transmissions and silent periods for object detection [42]. How-

ever, pulse CW depends on wave energy and ambient noise, as well as lacks in timing

marks, therefore it is unreliable for estimating range to target. To improve detection

issues due to noise, Frequency-Modulated Continuous Wave (FMCW) emits a con-

tinuous signal, allowing its operating frequency to be changed during measurement.
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Thus, instead of relying on time synchronization, the frequency di�erences between

the transmitted and received signals are measured. FMCW considers both range

and Doppler information to estimate the target's range and speed [42].

Automotive radars also use antenna diversity techniques such as Multiple Input

Multiple Output (MIMO). In MIMO radars, each transmitting antenna can radiate

an arbitrary waveform independently of other antennas, and any receiving antenna

can receive this signal. Thus, a radar withM Rx and M T x elements generates a

virtual antenna array M Rx � M T x . Thus, the Field of View (FoV) is improved

through their angular resolution (higher azimuth and sensor elevation), in addition

to their target detection capabilities [42].

Digital Code Modulation (DCM) radars are also being developed. DCM allows

each transmitter to be identi�ed by unique codes. Digital radars aim to improve

angular resolution, as well as minimize interference through coding, improving the

identi�cation of located targets, detecting their proximity from others through High-

Contrast Resolution (HCR) [43].

Radar sensors are used for short and long-range detection at both vehicle front-

facing and corners. Short-Range Radar (SRR) systems are employed to monitor

environments close to the vehicle that require dealing with complex passive and ac-

tive safety concerning single or multiple targets. SRR works in the24 GHzmmWave

frequency band. Meanwhile, Long-Range Radars (LRR) are widely used in Adaptive

Cruise Control (ACC) systems to monitor the distance to vehicles ahead and control

the ego-vehicle speed. LRR operates in the 70, 77 and79 GHz mmWave frequency

band. Unlike SSRs, FoV in LRR reaches longer distances, but azimuth and eleva-

tion angles are narrower [42]. Generally, with a �xed number of antennas, a radar

with a broad FoV can be obtained at the expense of less angular resolution; on the

other hand, a narrow FoV can provide better angular resolution, with opening an-

gles between9° and 150°, and elevation up to30° respectively. Radar can operate in

distance ranges up to250 m, with power consumption from12 W. Typically, radar

is used for short, mid, and long-range object detection and adaptive cruise control

at high speeds. Figure 2.3 shows the coverage range of an automotive radar sensor

and its typical vehicle location. Radars are robust in adverse climatic conditions

(e.g., fog or rain) and with scarce or no lighting. Nevertheless, signal processing is

harder for classi�cation issues if not combined with other sensor readings.

2.4.7 LiDAR

LiDAR (Light Detection And Ranging) uses laser re�ection instead of radio

waves. The LiDAR sensor transmits light pulses to identify objects around the

vehicle [32]. Typically, LiDARs operating at wavelengths from850 nm to 940 nm
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Figure 2.3: Schematic of a typical radar system based on FoV and scanning.

use ToF techniques based on pulsed and Amplitude-Modulated Continuous Wave

(AMCW). Pulsed ToF calculates the target distance based on the round-trip time

between the transmitted and received photons which bounce o� the objects. Di�er-

ent from pulsed ToF, AMCW encodes an intensity pattern in the transmitted light

beam, forming a linear radio frequency chirp; the target distance is calculated based

on the amplitude of the bounced signal and the phase shift of the chirp sent. Both

Pulsed ToF and AMCW are limited by daylight interference and their closeness to

the visible light spectrum [44, 45].

On the other hand, LiDARs emitting at 1550 nmwavelength use FMCW. Di�er-

ent from AMCW-based LiDARs, FMCW LiDARs split the laser beam transmitted

into a reference signal in a Local Oscillator (LO), and a phase modulated and chirped

to the exterior. The light re�ected from the target is mixed with the emitted light

and compared with the reference signal in the LO. The frequency di�erence between

the emitted and re�ected light enables the target distance calculation, besides its

speed and distance when it is in motion. FMCW LiDARs reach higher range and

resolution in object detection, as well as range of operation in bright environments,

with greater depth in dark scenarios [44].

The LiDAR sweeps in a circular and vertical fashion; the direction and distance

of the re�ected pulses are recorded as a vector of points, where each data point

contains a re�ectance value and the corresponding 3D coordinate related to the

local coordinate system. Moreover, a set of vectors then constitutes a point cloud

with spatial representation, enabling 3D model processing with high accuracy.

There are three types of LiDAR in terms of dimensionality (D). 1D LiDARs

measure distance to a certain target or direction [29]. Meanwhile, 2D and 3D LiDAR

sensors employ electromechanical or MEMS-type scanning methods to go further.

2D LiDAR sensors rotate the light beam in one plane,x or y, and detection occurs

sequentially with equal time intervals between samples. Meanwhile, 3D LiDAR

sensors operate the planesx, y, z, using axes as pivots to extend the dimensionality

of the detected objects [44], i.e., to provide information on the position and distance
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along axes, with a Field of View (FoV) extended for both Vertical (VFoV) and

Horizontal (HFoV). For instance, LiDAR sensors can cover at360° the HFoV around

the vehicle, and up to42° in the VFoV. Figure 2.4 shows the coverage range of an

automotive LiDAR sensor and its typical vehicle location.

Scene

�

�

� = VFoV
� = HFoV

Figure 2.4: Schematic of a typical LiDAR imaging system based on FoV and scan-
ning.

Currently, manufacturers are moving to solid-state LiDARs. Unlike electrome-

chanical LiDARs, these devices use MEMS technology, which uses moving micro-

mirrors to control the laser light beam and focus in a targeted manner. Thus, it

is possible to reduce the physical infrastructure and price, but at the expense of

reduced detection distance. Meanwhile, Optical Phased Array (OPA) is a MEMS-

based LiDAR technique that adjusts the light beam in di�erent directions without

requiring mirror movement. Since OPA-based LiDAR does not use moving parts, it

becomes more durable and cheaper. Finally, Flash LiDARs emit laser light pulses to

detect the entire area around the sensor, similar to the capture imaging process in

cameras. These sensors are much faster by not using moving parts or adjustments

in the light beam; however, Flash LiDARs are sensitive to brightness by re�ection,

in addition to demanding a more powerful light beam to reach greater depth when

covering an entire scene [44, 45].

2.4.8 Camera

Camera is a vision sensor used to record a visual representation of the surround-

ing environment. Thus, the camera can be used to detect objects on the road as

well as to analyze the driver behavior and his environment inside the vehicle [32]. A

frame from the camera is represented in a 2D array, containing the intensity of each

pixel encoded in di�erent forms, like HSV (Hue, Saturation, Value), RGB (Red,

Green, Blue), or gray levels. Cameras can operate in the Visible (VIS) and Near-

Infrared (NIR) spectral region [46]. VIS cameras are largely used because these
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reproduce instantaneous images like those perceived by the human eye. Di�erently,

NIR cameras detect objects based on heat radiation. Additionally, the image quality

depends on the resolution, the Diagonal FoV (DFoV), HFoV and VFoV. Further-

more, vehicular applications use monocular cameras, stereo cameras, in addition to

using so-called �sh-eye lenses, which generate optical e�ects. Besides, Figure 2.5

shows the coverage range of an automotive camera sensor and its typical vehicle

location.
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Figure 2.5: Schematic of a typical camera imaging system based on FoV and reso-
lution.

Some active vision sensors operate synchronously while others, asynchronously.

ToF cameras use infrared light to give depth to the 2D image, as well as allowing

object scanning and measuring the distance to the target. Gated imaging systems

use a laser light source synchronized with the camera shutter, and it is activated

when the transmitted light beam reaches the object of interest. Meanwhile, event

cameras respond to brightness changes in the scene asynchronously and indepen-

dently for each pixel. Thus, event cameras de�ne a sequence of events from the

brightness intensity changes or motion in a scene at random time intervals.

Vehicular applications use CMOS-based cameras, also use monocular cameras,

stereo cameras, in addition to using so-called �sh-eye lenses [47, 48], which generate

optical e�ects to reach sharpness and large depth of �eld. Additionally, the quality

of the images depends on the resolution and FoV. Some drawbacks exist though:

image quality depends on lighting and weather conditions, and scene representation

is limited to the pointing direction and Line-of-Sight (LoS).

Given the limitations and advantages inherent to each sensor, single sensory data

can be insu�cient to make some decisions depending on the task to be executed.

Therefore, it is necessary to implement strategies to fuse sensor data in order to pro-

cess the volume and variety of data generated, in addition to allowing aggregation.

Table 2.1 summarizes the main features of each exteroceptive sensor. It is possi-
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ble to observe that all sensors have limitations that can be minimized as the vehicle

combines di�erent types of sensors. It is worth noting that GNSS, magnetometer,

microphone, and biometric sensors are currently used widely in vehicular telematics

since they are present in widespread OTS devices, such as smartphones.

Table 2.1: Multidimensional comparative among exteroceptive sensors used in vehi-
cle telematics.

Sensor Main usage Precision Range Advantage Limitation

GNSS
Navigation,
positioning

Medium/
High

n/a
High coverage, small

form factor
Signal blocking in

urban canyons

Magnetometer
Navigation,
positioning,
orientation

Medium n/a
Small form factor, low
energy consumption

Magnetic interference

Microphone

Surveillance,
assistant,

environmental
sensing

n/a
150 m,

omnidirectional

Small form factor, low
energy consumption,
direction of arrival

Environmental noise

Biometric
Health

monitoring
High n/a Simple data processing Uncomfortable

Ultrasonic
Environmental

sensing
Low (cm) 150 cm Small form factor Low resolution

Radar
Environmental

sensing
High 250 m

Robust in adverse
climatic conditions
and with scarce or
absent illumination

Energy consumption,
data processing for

classi�cation

LiDAR
Environmental

sensing
High

200 m,
omnidirectional

Low sensitive to light
and to weather
conditions, 3D
representation

Data processing
latency

Camera
Environmental

sensing
Medium/
High

Line-of-Sight
Multiple techniques
for data processing

Sensitive to light and
weather conditions

Some exteroceptive sensors have similar characteristics to each other, generating

data redundancy. For example, both radar and LiDAR have similar features for

object detection, distance estimation, and do not depend on lighting conditions.

Nonetheless, LiDAR data volume is higher than radar. These functionalities ensure

the su�ciency of security-related data. On the other hand, sensor fusion data can

provide solutions in a combined way to reduce computational and operating costs,

besides complementing its functionalities to reduce de�ciencies between sensors.

2.5 Remarks

It was observed that exteroceptive sensors are used both in-cabin and outdoor

environments. Furthermore, these can be used in various safety services and appli-

cations that require immediate response times for both perception and reaction to

some risk events on the road. An example of this is the driver/controller AI analysis

before a vehicle interaction with another road user. It is important to note that mul-

tiple sensor readings measuring a speci�c variable (sensor fusion) can be combined
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to improve the precision and accuracy of vehicle perception tasks [49]. Furthermore,

sensor fusion reduces the limitations of sensors by complementing each other. Fig-

ure 2.6 shows how various exteroceptive sensors built into the vehicle and built into

OTS devices can coexist in order to monitor various areas involved in intelligent ve-

hicles safety. Multiple sensor perception systems can be merged to extract features

or information from objects detected by exteroceptive sensors. Depending on the

application, data from a single sensor may be su�cient to provide both external and

in-vehicle monitoring systems.

Vehicular safety applications can be monitored in di�erent ways. For example,

as described in Section 1.1, driving behavior is one of the areas of greatest interest

since one of the main risk factors on the roads is the human driving. For example,

driving pro�ling can be described through GNSS traces, camera and LiDAR sensors

can recognize driver's facial gestures, in addition to the maneuvers he performs with

his hands. Moreover, facial analysis allows you to determine fatigue, distractions or

drowsiness, and it is also possible to monitor the driver's health with sensors and

devices that may be in contact with parts of the body [24]. Another factor that can

a�ect vehicle maneuverability is the road state, so pothole detection is indispensable

to understand vehicular safety from the point of view of infrastructure and the reli-

ability of vehicle mechanics [24]. Collision detection applications can be performed

through audio recognition by microphones. On the other hand, collision avoidance

warnings can include environment sensing for object detection, trajectory analysis,

lane departure and impact time estimation [46]. Furthermore, object detection can

use data from multiple sensors to identify diverse objects physically, in addition to

detect kinematic measurements (e.g., speed, acceleration, distance, among others)

related to each speci�c object [49]. Sensor fusion enables, in addition to observing,

perceiving and predicting future interactions [50]. In addition to object detection,

vehicle trajectories traceability is important to determine decisions regarding the de-

tection of objects in the vehicle's course, besides to behavior with tra�c regulations

and other road users [24].

2.6 Challenges

In principle, the analysis of risk events in tra�c may bene�t from the sensor

readings embedded in OTS devices. Nevertheless, there are factors enabling the

road safety metrics analysis related to vehicular telematics, in addition to collecting

data for services and applications based on navigation, road monitoring, and vehicle

safety. On the other hand, the data collection of exteroceptive sensors can improve

the risk assessment analysis since it incorporates more characteristics of the objects

detected around the self-driving vehicle, for example, speed, distance and location
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Figure 2.6: Illustration of an intelligent vehicle showing exteroceptive sensors and
their applications.

measures from objects detected with respect to itself. Thus, it is possible to de�ne

policies to make precise and accurate safety estimations through risk assessment in

self-driving vehicles. Some research challenges are open for exteroceptive sensing

systems analysis in the context of risk assessment applications:

ˆ Exteroceptive sensor readings analysis can provide detailed descriptions of

objects in-motion around the vehicle (e.g., ground truth coordinates obtained

from other objects, speed and time intervals related to other objects) with

greater data granularity for risk indicators calculation, which determines the

severity of tra�c events.

ˆ Large-area complex urban environment analysis where the vehicle is traveling

can be extensive since the sensing in the vehicle is constant. It is relevant tak-

ing into account that each pedestrian, static or moving object, vehicle, road

section, among others, can be analyzed as a logical unit of the road infrastruc-

ture. Based on this logic, it is possible to analyze the in�uence of evasive ac-

tions (e.g., braking actions of lane departure, harsh acceleration/deceleration,

among others) on the AV, considering the actions and reactions related to the

road infrastructure and road users.

ˆ The mapping of risky objects, rare tra�c events, or accident patterns in speci�c

periods can be analyzed and standardized from the collection of sensing data.

It depends on factors associated with the immediateness of the processing,

storage, and transfer of data.

ˆ Data volume generated by exteroceptive sensors can be high depending on

the type of sensor. For example, the authors of [51] point out that a camera

generates up to40 MB=s, LiDAR up to 70 MB=s, while radar generates up
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to 100 kB=s. In this context, it is worth mentioning that the estimated total

sensor bandwidth can reach up from1:4 TB=h to around 19 TB=h just for

one AV, reaching up between11 TB and 152 TB per day [20]. In the same

way, the amount of data generated and processed by all types of exteroceptive

sensors in the vehicle can be estimated. These data are relevant for the safety

analysis in AVs, even more, when the data volume to be analyzed demands

a high computational cost. Besides the fact that data redundancy can be

noisy in the road safety analysis, sensor fusion data can optimize processes

associated with perception and cognition, obtaining results according to the

safety services priority. Therefore, it is necessary to assess the feasibility of

using sensors with low data rates or to optimize the data analysis process to

achieve instantaneous results with an appropriate volume of data for real-time

safety services.

The characteristics of the various sensors available for vehicular telematics can

facilitate risk assessment for policymakers. It is worth recognizing the functionality

and sensor limitations since there are bottlenecks related to the sensor characteris-

tics. As could be seen, there is no ideal sensor, and all are sensitive to environmental

variations. Next, we describe datasets containing multi-modal sensors, i.e., propri-

oceptive and exteroceptive sensor readings. Moreover, these datasets contain infor-

mation on di�erent climatic conditions and day periods, tracking, location, mapping

and semantic data related to the detected objects.
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Chapter 3

Self-Driving Vehicle Datasets

In this chapter, we describe AV datasets available on the Internet. These datasets

contain information from multi-modal sensor data readings. Moreover, datasets

provide information about diversity of locations, weather and day period testing,

tracking, localization, mapping and semantic data related to the detected objects.

Some of these datasets include data processing to identify objects through bounding

boxes, annotations, categories and attributes associated to the objects detected. As

described in [24], these datasets contain information that can be analyzed for road

safety analysis, e.g., speed, distance, acceleration, among others, besides of semantic

data related to perception in the self-driving vehicles.

3.1 Datasets overview

Currently, vehicles are equipped with a wide variety of sensors, which integrate

di�erent systems to improve, adapt, and automate vehicle safety and the driving ex-

perience. Technological advances for driver assistance have paved the way for vehicle

autonomy. These vehicles are equipped with exteroceptive sensors, as described in

Chapter 2. The AV has the ability to interpret and identify objects, obstacles, traf-

�c signs, among others. To process this data, it is possible to observe that vehicles

with full automation have complex computational methods, which result in an ex-

haustive monitoring of the driving environment. Nowadays, there are a number of

public datasets available from experimental autonomous vehicles [24], and these are

used to analyze road safety metrics described in Chapter 4. In particular, datasets

with semantic data are selected for analysis.

nuScenes: nuScenes [1] is a project by nuTonomy, a MIT start-up focused on

developing software for self-driving cars and autonomous robots. Acquired by Delphi

Automotive in 2017, the nuScenes project is now part of Motional1, a company

1https://motional.com/
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dedicated to the development of driverless technology. nuScenes is a public large-

scale dataset of autonomous driving traces which includes images from camera, Point

Clouds (PC) from LiDAR, and radar signals detected by the sensors installed on

the vehicle. This dataset also provides data from the vehicle internal sensors (e.g.,

acceleration or speed). As for external sensing, 6 cameras, 1 LiDAR, 5 radars, and a

GPS/IMU are deployed on the vehicle. The LiDAR covers 360� around the vehicle.

Figures 3.1(a) and 3.1(b) illustrate the vehicle and the sensor setup for nuScenes.

In total, the dataset includes almost 6 hours of data gathered by two Renault Zoe

supermini electric cars with an identical sensor layout to drive, one in Boston (US),

the other one in Singapore (SG). The internal sensing data is acquired from the CAN

bus. Data from CAN bus contain navigation data, steering turn, changes in speed,

acceleration, braking, rotation and travel records, associated with the location, as

well as other vehicle-speci�c metrics, such as battery level, among others.

(a) nuScenes AV. (b) nuScenes AV sensors.

Figure 3.1: AVs and sensor setup for nuScenes AV [1].

Lyft5 : Lyft is a carpool company founded in 2012. It started its journey with

AVs in 2019, and is currently part of Toyota's Woven Planet2, a mobility automation

development company. Lyft5 [2] is another public large-scale dataset with AV traces,

which contains images from cameras and LiDAR PCs. In particular, the Lyft5

vehicle is equipped with 7 cameras, 3 LiDARs, and a GPS/IMU sensor. The LiDAR

covers 360� around the vehicle. Figures 3.2(a) and 3.2(b) illustrate the vehicle and

the sensor distribution for Lyft5. The perception dataset consists of 2.5 hours of

data gathered by twelve vehicles Ford Fusion equipped with autonomous controls in

Palo Alto (US) divided into 180 scenes of 25 seconds each. Unlike the nuScenes AV

dataset, Lyft5 does not provide CAN bus data from the vehicle.

The raw data from sensors is stored in point cloud data for LiDAR and Radar

sensors, and image pixels from the camera. Figure 3.3(a) shows the format of the

exteroceptive sensor data available in the dataset. The resolution of the images

captured by the image sensors is 1600� 900 in nuScenes, and 1224� 1024 in Lyft5,

2https://level-5.global/
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(a) Lyft5 AV. (b) Lyft5 AV sensors.

Figure 3.2: AVs and sensor setup for Lyft5 AV [2].

both compressed in JPEG. Figure 3.3(b) shows an example of the images available

in the dataset. On the other hand, the distance and speed calculations from the

detected objects are performed through the LiDAR sensor. It is worth mentioning

that data generated by the radar sensor does not deliver accurate information about

the object shapes, and it has no suitable information regarding the 3D location.

However, radar PCs data are available for analysis in the dataset. Figures 3.3(c)

and 3.3(d) show the point data cloud distributions for the radar sensor and LiDAR,

respectively. As expected, the volume of points generated by LiDAR is higher than

on radar, as discussed in Section 2.4.

LiDAR

Radar

Camera

Point Cloud
Data (.pcd �les)

Images (.jpg �les)

(a) Format data available from exteroceptive
sensors readings.

(b) CAM image example.

(c) Point cloud data from radar sensor. (d) Point cloud data from LiDAR sensor.

Figure 3.3: Representation of images and point cloud data from exteroceptive sen-
sors available in the nuScenes AV Dataset. Lyft5 dataset does not include data from
radar sensor.
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Both nuScenes and Lyft5 datasets include sweep data from each sensor, based

on the sampling frequency of each one. Metadata of all samples are available in

JSON nested dictionaries. Moreover, the datasets provide semantic data, that is,

data with sample annotations used to describe diverse characteristics of the object

itself around the ego-vehicle, based on LiDAR PCs and JPEG images from the

cameras. Figure 3.4 shows the data collection features available in nuScenes and

Lyft5 datasets3. Data is based on images from camera, LiDAR PCs, and radar

signals detected by the sensors installed in the vehicles. Table 3.1 describes the

meaning of each subset available in the datasets nuScenes and Lyft5.
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Figure 3.4: Schema for nuScenes and Lyft5 datasets.

Table 3.2 summarizes the main characteristics of nuScenes and Lyft5 datasets.

Another advantage of the nuScenes and Lyft5 AV datasets is semantic segmentation,

a process used for perception systems to associate LiDAR PCs and pixels from the

camera images with prede�ned classes. Since autonomous systems do not discern

the meaning of any detected object by exteroceptive sensors, semantic data anal-

ysis enables the recognition of detected objects as they are perceived by human.

Semantic data facilitates the explainability processes required for policymakers and

stakeholders. Moreover, semantic data is de�ned by raw data processing percep-

tion systems that use sensory systems, expert annotators and software on-board
3https://nuscenes.org/nuscenes#data-format
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Table 3.1: Characteristics of the nuScenes and Lyft5 AV subsets.
Subset Description

sensor A speci�c sensor type.

calibrated_sensor
De�nition of speci�c sensor and calibration data (extrinsic and intrinsic
parameters).

map Data of binary semantic layers.

log Information about the log from which the data was extracted.

scene
Description of the scenes (e.g., identi�er, number of samples, �rst and
last sample in the scene).

sample An annotated keyframe at2 Hz (nuScenes) and5 Hz (Lyft5).

sample_data A sensor data registration and its characteristics.

ego_pose Description of vehicle's pose used for localization analysis.

instance An object and all its interactions across scenes.

sample_annotation
Description of an instance seen in a sample through bounding boxes
speci�cations (e.g., localization, size, orientation, among others).

category Taxonomy of object categories and subcategories.

attribute
A property of an instance that can change while the category remains
the same.

visibility The visibility of an instance.

to perform multiple behavioral observations and interactions from di�erent objects

around the ego-vehicle, i.e., infrastructure and road users [52]. Each detected object

is described as an instance, and each object can have multiple interactions with the

AV in a sample. Each instance is marked with a 3D bounding box, category and

attribute labels; each interaction of that instance with the AV is recorded as an an-

notation. Examples of categories are vehicle types, two-wheelers, pedestrians, road

infrastructure, among others, and examples of attributes are vehicles or pedestrians

stopped, in motion, among others. Figure 3.5 shows the categories available in the

dataset. 23 categories and 8 attributes are de�ned in the nuScenes dataset, as shown

in Figure 3.5(a). On the other hand, Lyft5 contains fewer scenes, but the proportion

of 3D bounding boxes annotations is similar to that of nuScenes AV dataset. Thus,

Lyft5 de�nes 9 categories and 18 attributes, as shown in Figure 3.5(b).

Table 3.2: Characteristics of the nuScenes and Lyft5 AV datasets.

Scenes Vehicles Images
LiDAR

PCs
Radar
PCs

Bounding
Boxes

Day/
Night

Weather
Categories/
Attributes

nuScenes 850 2 1:4 M 400 k 1:3 M 1:4 M Yes Yes 23/8

Lyft5 180 12 323 k 46 k 0 1:3 M No No 9/18

For both object detection and tracking tasks, nuScenes and Lyft5 datasets pro-

vide LiDAR point cloud (PC) data as global reference coordinate system. PC data

related to all detected objects was collected using the LiDAR sensor as reference
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Categories
(Foreground)

animal

human_pedestrian

movable_object

static_object

vehicle

� adult
� child

� construction_worker
� personal_mobility

� police_o�cer
� stroller

� wheelchair

� barrier
� debris

� pushable_pullable
� tra�ccone

� bicycle_rack

� bicycle
� motorcycle

� bus_bendy
� bus_rigid

� car
� construction

� emergency_ambulance
� emergency_police

� trailer
� truck

� moving
� sitting

� standing

� with_rider
� without_rider

� moving
� parked
� stopped

(a) nuScenes AV dataset.

Categories

animal

pedestrian

vehicle

� bicycle
� motorcycle

� bus
� car

� emergency_vehicle
� other_vehicle

� truck

� standing
� walking

� gliding_on_wheels
� other_motion

� running
� sitting

� parked
� stopped

� lane_change_left
� lane_change_right

� driving_straight_forward
� left_turn

� right_turn

� abnormal_or_tra�c_violation
� loss_of_control

� reversing
� u_turn

� is_stationary

(b) Lyft5 AV dataset.

Figure 3.5: Categories and attributes available in nuScenes and Lyft5 datasets.
Categories are represented as yellow boxes, attributes as gray boxes.

system, and therefore, the vehicle's reference coordinate. It is worth noting that

individual sensors, calibration and how the orientation and position of the sensors

is de�ned, can greatly a�ect the motion analysis results. Nonetheless, data labeling

depends on sensor fusion of camera images and LiDAR PC data. It provides visual

context for labeling, enabling to identify road users and infrastructure, and adjust-

ing 3D point cloud data detection and 2D images projections. Therefore, sensor

fusion allows the motion analysis for each detected object, enabling the calculation

of vehicle dynamics as distance and speed variables from each sample annotation,

among others.

Figure 3.6 illustrates the process of object annotation in the datasets: data an-
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