
Evaluating Virtual Router Performance for the Future Internet

Diogo Menezes Ferrazani Mattos, Carlo Fragni,
Marcelo Duffles Donato Moreira, Lyno Henrique Gonçalves Ferraz,

Luı́s Henrique Maciel Kosmalski Costa, Otto Carlos Muniz BandeiraDuarte
Grupo de Teleinforḿatica e Automaç̃ao - PEE/COPPE - DEL/POLI

Universidade Federal do Rio de Janeiro - Rio de Janeiro, Brazil
Email:{menezes,carlo,marcelo,lyno,luish,otto}@gta.ufrj.br

Abstract

The Internet is ossified. It is difficult to create new ser-
vices or innovate in the core of the network. In order to
address this issue, we need a new Internet model to coun-
cil the existing protocols with new ones. Virtualization isa
technique that provides this capability to the Future Inter-
net elements. In this paper, we evaluate the performance
of three representative virtualization tools, Xen, VMware,
and OpenVZ, for router virtualization. We conduct exper-
iments with benchmarking tools to measure the overhead
introduced by virtualization in memory, processor, network,
and disk performance of virtual routers running on com-
modity hardware. Our results show that Xen is the tool that
best fits a virtual router needs, because it introduces less
overhead on network performance. We also evaluate effect
of the increasing number of virtual machines on Xen net-
work virtualization mechanism, which is proved to be fair,
but needs further enhancement when multiple virtual ma-
chines forward traffic simultaneously.

1 Introduction

The Internet has currently more than 1 billion users. The
Internet success is mainly based on two pillars, the end-to-
end data transfer service and the TCP/IP stack [9]. The
intelligence of the network is placed at the end systems,
while the network core is simple and transparent. Even
if those are reasons for the Internet being a huge success,
they also ossify the current Internet. The TCP/IP model has
some structural issues, like scalability, mobility, manage-
ment, and security [4], that are difficult to solve. Today,
there is a thought that a new Internet architecture must pro-
vide the flexibility and the support for innovation in the net-
work core. The Future Internet [2, 4, 9] models are divided
into two types of approach, monist and pluralist. The monist
approach proposes a monolithic network capable of dealing

with the requirements for providing a flexible network. On
the other hand, the pluralist approach models the Internet as
a network that has multiple stacks running simultaneously.
A way to provide a pluralist network is virtualizing the net-
work resources, like routers. Hence, router virtualization is
a key concept for the pluralist Future Internet architecture.

A virtual router is a logical router that shares its under-
lying substrate with other routers. One of the advantages of
virtualizing is the isolation of virtual environments. When
we virtualize routers, we can have multiple network stacks
over the same physical router [5]. The virtual router con-
cept brings the flexibility needed by the new Future Internet
architecture and keeps the new model compatible with the
old one, as one of the virtual routers can run the TCP/IP
stack while the other virtual routers run other layer 3 proto-
cols. One powerful virtualizing technique is hardware vir-
tualization, because it allows multiple router operating sys-
tems over the same hardware. Nevertheless, it introduces
processing overhead because it must control the access of
the different OSes to the hardware. In this paper, we devise
the overhead and isolation properties of different hardware
virtualization techniques. For that matter, we introduce a
methodology to compare the different tools.

The main difficult to evaluate a virtualization tool is that
common benchmarking tools are distorted by the time rela-
tion in the virtual environment [3]. Within a virtualized en-
vironment, guest operation system does not have access to
physical time sources and timer interrupts. Virtualized time
system is commonly implemented through software emula-
tion of the real time devices. Thus, a difference between
virtualized time and real world time often exists. Common
benchmark tools believe on guest OS time and get affected
by the virtualized time distortion.

In this paper, we study three representative virtualiza-
tion tools, VMware ESX [13], Xen [1], and OpenVZ [11].
Each one implements a different virtualization technique.
We propose a methodology to evaluate virtualized systems
that is independent of virtual environment time distortion.

We use the proposed methodology to evaluate some virtu-
alization tools, and we conclude that Xen is the tool that
best fits a virtual router needs. Thus, we also analyze the
performance of a Xen virtualized router.

This paper is organized as follows. Section II analyzes
representative virtualization tools and their main character-
istics. Section III presents our proposed methodology and
experimental setup. Section IV discusses the virtualization
tool evaluation results, and Section V investigates our Xen
virtual router evaluation results. We conclude and introduce
our future works in Section VI.

2 Virtualization Tools

Virtualization is the technology that allows sharing a
physical hardware among multiple systems. Each virtu-
alized system is isolated from others, and is not aware of
the existence of other systems sharing the same hardware.
In order to achieve it, it is necessary to introduce a soft-
ware layer called hypervisor. We present some of the most
important hypervisors available today: VMware, Xen, and
OpenVZ.

2.1 VMware

Hereafter, we consider the VMware ESX Server prod-
uct, which is a datacenter virtualization platform that im-
plements the full virtualization technique, i.e., the guest op-
erating system does not need to have anything changed to
run in a virtual environment [13]. VMware guarantees vir-
tual machine isolation and resource sharing fairness based
on resource-allocation policies set by the system adminis-
trator. Resources are allocated and re-allocated to virtual
machines on demand. CPU virtualization is done by set-
ting a virtual CPU for each virtual machine. The virtual
machine does not realize that it is running over a virtual
CPU, because virtual CPUs provide their own registers and
control structures. VMware combines two CPU virtualiza-
tion modes: direct execution and CPU emulation. In the
direct execution mode, instructions from the user-space of
virtual machine are executed directly on the physical CPU.
On the other hand, guest operating system instructions, like
system calls, traps, interrupts, and other events, are trapped
to VMM that emulates the instruction execution, adding a
varying amount of virtualization costs. VMware memory
virtualization approach is to create a new level of memory
address translation. It is done by providing each guest op-
erating system a virtual page table that is not visible to the
memory-management unit (MMU) [1]. Within a VMware
virtualization environment, the guest operating system ac-
cesses a virtual memory space that is internal of the virtual
machine. In order to accomplish network I/O virtualization,
VMware implements thevmxnet[13] device driver, which

is an abstraction of the underlying physical device. When an
application wants to send data over the network, thevmxnet
device driver is called and the I/O request is intercepted
by the VMM, which calls the specific device driver on the
physical machine.

2.2 Xen

Xen is an open-source hypervisor proposed to run on
commodity hardware platforms [1]. Xen implements the
paravirtualization technique, which enhances guest system
performance by changing its behavior to call the hypervi-
sor when necessary, obviating the need of binary translation
of system instructions. Xen virtualizes the processor by as-
signing virtual CPUs (VCPUs) to the virtual machines. Xen
hypervisor implements a CPU scheduler that dynamically
maps a physical CPU to each VCPU under a certain period,
based on a scheduling algorithm. Memory virtualization in
Xen is currently done statically. The RAM memory is di-
vided among virtual machines, with each machine receiving
a fixed amount of memory space, specified at the time of its
creation. In addition, device drivers are kept in an isolated
virtual machine, called Domain 0, which access I/O devices
directly by using its native device drivers and also performs
I/O operations on behalf of virtual machines. By their turn,
virtual machines employ virtual I/O devices controlled by
virtual drivers to request Domain 0 for device access [10].

2.3 OpenVZ

OpenVZ is an open-source operating system-level virtu-
alization tool [8]. OpenVZ allows to have multiple isolated
execution environments over a single operating system ker-
nel. Each execution environment is called aVirtual Private
Server(VPS). A VPS looks like a physical server; it has its
own processes, users, files, IP addresses, system configu-
ration, and provides full root shell access. OpenVZ claims
to be the virtualization tool which introduces less overhead,
because each VPS shares the same operating system kernel.
On the other hand, OpenVZ is less flexible than other virtu-
alization tools, like VMware or Xen, because OpenVZ exe-
cution environments have to be a Linux distribution, based
on the same operating system kernel of the physical server.
For processor virtualization, OpenVZ implements a two-
level CPU scheduler. On the first level, the OpenVZ vir-
tualization layer decides which VPS will execute for each
time slice, taking into account the VPS CPU priority. On
the level-2 scheduler, which runs inside the VPS, the stan-
dard Linux scheduler defines which process will execute for
each time slice, taking into account the standard process pri-
ority parameters. OpenVZ allows VPSs to directly access
the memory and the memory amount dedicated for each
VPS can be dynamically changed by modifying the virtual

memory space of each VPS. OpenVZ kernel manages VPSs
memory space to keep in physical memory a block of the
virtual memory corresponding to the running VPS. OpenVZ
default network virtualization mechanism creates a virtual
network interface for a VPS and assigns an IP address to it
in the host system. When a packet arrives to the host sys-
tem with an IP address assigned to a VPS, the host system
routes the packet to the corresponding VPS. This approach
of network virtualization allows VPS packets to be received
and sent using the host system routing module. This sim-
plifies network virtualization, but introduces a new hop in
packets path.

3 Hypervisors Evaluation

A router purpose is to forward packetsIt receives a
packet, check checks its forwarding table for the packet’s
destination, and forwards it to the correct network interface.
Routers main resources are networking, memory, and pro-
cessing. A router must be able to quickly access its net-
working interface, get its packets, and store them in mem-
ory. After that, the router has to access memory, get the
packets, look for their destinations on a routing table, and
then send the packets to the correct networking interface.
Taking these actions into account, this paper evaluates some
well known hypervisors. It evaluates networking, memory
access, and processing capabilities, in order to find which
hypervisor has the most satisfactory performance for router
virtualization. Although hard disk access performance is
not critical for router virtualization, we also analyze the
hard disk virtualization performance. We analyze three hy-
pervisors: Xen, OpenVZ, and a proprietary virtualization
solution (PS)1. In an effort to show a reference value, we
present the tests results for a native Linux environment.
Hence, the virtualized scenarios results should be equal or
worse than the reference values.

3.1 Evaluation Methodology

Evaluating the virtualization overhead is not a trivial
task. Whitepapers from VMware [12] and XenSource [14]
compare these two hypervisors performance reaching dif-
ferent conclusions. Their approach is to run standard bench-
marking tools within a virtual environment and compare
the results with those obtained in running the benchmark-
ing tool in the native operating system. One disadvantage
of this approach is that it relies on the time measurement
taken inside the virtual environment. The accuracy of the
virtualized operating system time is not assured by the hy-
pervisors [3].

1We do not mention the proprietary virtualization tool name because of
its License Agreement Limitations. From now, we refer it as Proprietary
Solution or PS.

In this work, we use a different virtualization bench-
marking methodology based on an external time measur-
ing mechanism, in order to evaluate the hypervisors per-
formance. The methodology consists of running standard
benchmarking tools within the virtualized system, but in-
stead of relying on benchmark time information, the time
information is provided by an external mechanism. This
mechanism is implemented over a point-to-point network
link between the target machine and the external time-
measuring machine. Over this link, the target machine
sends an ICMP Echo request to the time-measuring ma-
chine. At this moment, it starts a timer. After the target ma-
chine completes its job, another ICMP Echo request packet
is sent, and the time-measuring machine stops the timer. As
a result, the responsibility of reporting the time difference
relies on a non-virtualized system.

Based on the proposed methodology, we evaluate the
overhead of the different hypervisors in terms of processor
usage, disk access performance and memory access perfor-
mance. Nevertheless, this methodology is not applicable
to identify the overhead on networking I/O, an important
router resource. Networking I/O performance measures are
not just based on time. A traffic generator sends packets
from the tested system to a real machine. In the real ma-
chine, we measure the bit rate achieved by the tested system.
In this manner, as the amount of bits and the time difference
are measured by the real machine, there is no time deviation
caused by virtualization.

3.2 Scenario

A physical server, a traffic generator machine and a time
measuring machine form our testbed. The physical server
supports the virtualized environments. It is a HP Proliant
DL380 Generation 5 server equipped with two quad core In-
tel Xeon processors (2.83 GHz each), 10 GB system mem-
ory, and integrated 2-port Broadcom Nextreme II Gigabit
network interface. The traffic generator machine is respon-
sible for sending packets to the system under test. The traf-
fic generator machine is a desktop equipped with an Intel
motherboard, Intel 2.4GHz Core 2 Quad processor, 4GB of
system memory, and an integrated Intel PCI-Express gigabit
network interface. The role of the Time Measuring Machine
is to measure the time taken by a system under test to each
benchmark. It is a desktop computer equipped with an In-
tel motherboard, an Intel 2.66GHz Core 2 Duo processor, 2
GB of system memory, and an integrated Intel PCI-Express
gigabit network interface.

3.3 Evaluation

3.3.1 Processor Performance

In order to evaluate CPU virtualization overhead, we per-
form CPU-intensive workloads using theSuper Pibench-
mark. It is based on the Gauss-Legendre algorithm to com-
pute the Pi value. The Gauss-Legendre algorithm is itera-
tive and does many arithmetic operations. The arithmetic
operations are mainly sum, division, square root, potentiat-
ing, subtraction and multiplication. We execute the Super
Pi benchmark to compute the Pi value with2

22 digits.
Fig. 1(a) indicates that all virtualization tool introduce

an overhead in processor usage. The smallest overhead is
introduced by Xen Hypervisor, which implements the par-
avirtualization technique. The proprietary solution (PS)is
the virtualization tool that introduces the bigger overhead in
processor usage. It is because PS implements full virtualiza-
tion technique, where each instruction that generates a fault
is redirected to the hypervisor. The hypervisor simulates
its execution and returns the result to the application on the
virtual machine. This process causes a bigger overhead than
paravirtualization, where an instruction that would generate
a fault is modified to execute over the hypervisor. OpenVZ
performs similar to Xen. A process of a virtual machine,
however, is subject to a two level scheduler before being
executed. Because of the two level scheduler, in OpenVZ, a
process of a virtual machine takes more time to be executed
than in native Linux.

3.3.2 Memory Performance

Memory access performance has significant influence in the
whole router performance [6]. In order to evaluate the over-
head caused by the virtualization layer on virtual router
memory access, we developed a benchmarking tool, called
MASR(Memory Allocation, Set and Read). MASR bench-
marks memory by allocating 2GB of memory, setting se-
quentially memory positions to a fixed value and after read-
ing each one. MASR was developed for benchmarking
memory with a deterministic number of operations, inde-
pendent of the performance of the computer.

Fig. 1(b) shows that OpenVZ is the virtualization layer
that introduces less overhead in memory access. OpenVZ
accesses directly the memory. The OpenVZ virtual envi-
ronment accesses memory as an application accesses vir-
tual memory pages on a native operating system. As a con-
sequence, OpenVZ performs similar to native Linux. On
the other hand, Xen Hypervisor statically allocates mem-
ory areas to each virtual environment. The Xen virtual ma-
chine access its memory space as if it was the machines to-
tal memory, however, it is just a portion of it. Nevertheless,
the virtual machine directly accesses memory, because, as

it paravirtualized, it is aware of its address space and it han-
dles the physical address of its portion of the memory. The
Proprietary Solution has worse memory access performance
than the others. PS implements the memory translation, and
it is also full virtualized. As it is full virtualized, a virtual
machine is unaware that it is over a hypervisor, and when it
tries to access memory, this set of instructions is trapped by
the hypervisor. The hypervisor executes the memory access
instruction, and then, gives the result to the virtual machine.
It introduces a larger overhead than the other hypervisors
do.

3.3.3 Hard Disk Performance

We also analyze the hard disk access performance, expand-
ing our hypervisors evaluation to a wider virtualization sce-
nario than only router virtualization. We aim at measur-
ing the virtualization overhead of disk writing and reading
tasks, and compare the overhead obtained by each hypervi-
sor. We use two different benchmarking tools. The first one
is Bonnie++, an open-source disk benchmarking tool that
simulates some file operations, such as creating, reading and
deleting of small files, and also tests the performance of ac-
cessing different regions of the hard disk, reading sectorsat
the beginning, middle, and end of the hard disk. The second
tool, developed by the authors, is ZFG (Zero File Genera-
tor), which was designed to run within virtualized systems.
ZFG benchmarks the hard disk continuous writing speed by
writing ten times a 2 GB binary file filled with zeros. The
main feature of this tool is that it writes some dump infor-
mation on disk during the time between two rounds. This is
important to guarantee that the time elapsed in each round
is actually the time spent by the virtual machine to write the
file on disk. If this is not guaranteed, the measured time can
be the time that a virtual machine writes the file on a buffer,
whose content will be later written on physical disk by the
hypervisor.

OpenVZ implements hard disk access using the quota
method provided by native Linux. The difference between
OpenVZ and native Linux hard disk access is just that
OpenVZ introduces a scheduler to decide which virtual en-
vironment should access the hard disk in each turn. As
a consequence, OpenVZ performs near native Linux, as
shown in Fig.2. On the other hand, Xen and the PS per-
form poorly, especially in ZFG tests. Because Xen and PS
implement the hard disk resource as a virtual abstraction of
the physical hard disk, virtual machines access an interface
that is believed to be the real hard disk. Writing and reading
requests are trapped by the hypervisors and properly han-
dled. Therefore, this procedure introduces a delay on disk
access caused by additional processing overhead and mem-
ory page copies.

 0

 20

 40

 60

 80

 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
on

ds
) Native Linux

Xen
PS

OpenVz

(a) Mean execution time for Super Pi test.

 0

 20

 40

 60

 80

 100

 120

E
xe

cu
tio

n
T

im
e

(in
 s

ec
on

ds
) Native Linux

Xen
PS

OpenVZ

(b) Mean execution time for MASR.

Figure 1. Mean execution time for CPU and memory access bench marks.

 0

 50

 100

 150

 200

 250

 300

 350

 400

E
xe

cu
tio

n
T

im
e

(in
 s

ec
on

ds
) Native Linux

Xen
PS

OpenVZ

(a) Bonnie++ test.

 0

 10

 20

 30

 40

 50

 60

 70

 80

E
xe

cu
tio

n
T

im
e

(in
 s

ec
on

ds
) Native Linux

Xen
PS

OpenVZ

(b) ZFG test.

Figure 2. Hard disk performance evaluation results using Bo nnie++ and ZFG benchmarking tools.
Smaller values are better.

3.3.4 Networking Performance

A virtual router must be able to efficiently receive pack-
ets and sent them to the correct output interface. Hence,
the virtualization layer cannot degrade networking perfor-
mance. In order to evaluate the virtualization overhead on
networking performance, we adopted the Iperf tool for mea-
suring the available bandwidth from an external host to the
system under test, and vice-versa. Iperf is an open-source
networking benchmarking tool that uses both unidirectional
and bidirectional data flows over TCP or UDP. Iperf has sev-
eral parameters that can be configured, such as packet size,
intended bandwidth, and test duration. In our experiments,
the network traffic is an UDP flow with data packets of 1472
bytes, which represents the maximum size for a packet pay-

load to avoid fragmentation over an Ethernet domain, whose
most common MTU is 1500 bytes.

The networking evaluation results are shown in Fig.4.
First of all, it is important to highlight that, for both network
traffic transmission (Fig.3(a)) and reception (Fig.3(b)) sce-
narios the native Linux system achieves a network perfor-
mance near the nominal gigabit Ethernet transmission bit
rate. An also important result is that Xen virtual machine
achieves the same transmission and reception rate of the
native Linux. This shows that Xen networking virtualiza-
tion mechanism is fast enough in sending/receiving packets
to/from virtual machines to not be a bottleneck in the eval-
uated scenario. On the other hand, the other virtualization
tools have not succeeded on virtualizing the network device.
There are some implementation issues that may be a bottle-

 0

 200

 400

 600

 800

 1000

 1200

T
hr

ou
gh

pu
t (

in
 M

b/
s)

Native Linux
Xen
PS

OpenVZ

(a) Network traffic transmission test.

 0

 200

 400

 600

 800

 1000

 1200

T
hr

ou
gh

pu
t (

in
 M

b/
s)

Native Linux
Xen
PS

OpenVZ

(b) Network traffic reception test.

Figure 3. Average throughput achieved by the evaluated syst ems while transmitting/receiving unidi-
rectional UDP flows generated by the used network benchmarki ng tool (Iperf).

neck to the rate that the network virtualization mechanism
can handle network I/O operations, such as multiple mem-
ory page copies, the time wasted to schedule the virtual en-
vironments and the host system, or small input/output buffer
sizes.

4 Xen Virtual Router Evaluation

In the following experiments we aim at evaluating the
scalability of the Xen hypervisor. First, we evaluate the im-
pact of increasing the routing table in a virtual router. After
that, we measure the degradation of the packet forwarding
rate as we increase the number of virtual routers running
over the same hypervisor.

The routing table size may influence the packet forward-
ing rate, because a large table can increase the per-packet
delay on routing table lookup. The Linux kernel, however,
implements the routing table as a hash table. As a conse-
quence, there is no linear search over the routing table and
the next hop in packet route is discovered in a constant time,
regardless of the routing table size. To confirm this fact, we
conduct experiments in which the virtual router is config-
ured with routing tables with 1,000, 10,000, and 100,000
routes. The maximum routing table size is fixed in 100,000
routes because this is a common size of a routing table of
BGP border router [7]. In all scenarios, the packet forward-
ing rate does not change due to the addition of new entries
in the routing table. Hence, Xen virtual router scales to the
routing table size.

We perform an evaluation of the fairness in Xen network
virtualization mechanism, in order to evaluate the Xen scal-
ability for multiple virtual machines sharing a single net-

work interface card. In a first experiment, whose results are
shown in Fig.4(a), we instantiate from one to four virtual
machines over the Xen hypervisor and set them to gener-
ate a network traffic to an external computer. The gener-
ated traffic is an UDP flow, with maximum Ethernet frame
size. In this scenario, using just one virtual machine, we
achieve the theoretical maximum Gigabit Ethernet band-
width, which is 969 Mb/s. The results show that, as the
number of virtual machines increases, each virtual machine
achieves a throughput that is inversely proportional to the
number of virtual machines. It is also important to observe
that the aggregated throughput is equally shared by all vir-
tual machines running on the same physical substrate. The
conclusion of this first scalability test is that Xen network
virtualization fairly scales to multiple virtual machines.

The second scalability experiment measures the degra-
dation of the packet forwarding rate with the number of
virtual routers. In this experiment, the sent packet rate is
130 kp/s and we measure the packet forwarding rate as the
rate of packets that reach the external machine after being
forwarded by the virtual router. Fig.4(b) shows that, as
the number of virtual routers running at the same time in-
creases, the traffic forwarding performance degrades. It isa
consequence of the lack of CPU. The CPU scheduler, which
is responsible for sharing the processor among all virtual
routers, has to quickly switch context between a running
virtual router and a blocked one. As this context switch-
ing becomes more frequent, there is a processing time lost
for doing this task, instead of serving virtual router proces-
sors. Hence, each virtual router is requesting to forward its
own traffic, but the available resources are being used by the
other virtual routers and for context switching. Hence, the

 0

 200

 400

 600

 800

 1000

1 2 3 4

T
hr

ou
gh

pu
t (

in
 M

b/
s)

Number of Virtual Machines

1st VM
2nd VM
3rd VM
4th VM

(a) Network traffic transmission test.

 0

 40

 80

 120

 1 2 3 4A
gg

re
ga

te
d

P
ac

ke
t F

or
w

ar
di

ng
 R

at
e

(k
p/

s)

Number of Virtual Machines

(b) Network traffic forwarding test.

Figure 4. Xen scalability tests with multiple virtual machi nes sending/forwarding network traffic to
the external computer.

virtual routers drop packets, reducing the aggregated packet
forwarding rate. Our results show a 30 percent reduction on
packet forwarding rate, when four virtual routers are run-
ning over the same hypervisor.

5 Conclusion

In this paper, we have investigated what is the virtualiza-
tion tool that best fits the requirements of a virtual router
for the Future Internet pluralist approach. In order to do
this, we propose a new methodology for evaluating the over-
head introduced by the virtualization layer. We performed
disk, memory, and networking tests. Our results show that
OpenVZ is the virtualization tool that introduces less over-
head over processor, disk and memory usage. OpenVZ per-
forms almost as well as native Linux. On the other hand,
Xen performs better for networking and has a small over-
head on processor and memory usage. Finally, the Propri-
etary Solution, which provides a full virtualized environ-
ment, is more flexible, but introduces bigger overheads over
all resources usage.

Xen provides multiple virtual environments, which are
complete OS environments, independent of each one and of
the guest OS. Xen virtual environment performance is com-
patible with the virtual router requirements. Hence, Xen is
the virtualization tool that best fits for the requirements for
router virtualization in a Future Internet architecture.

We also analyze the performance and the scalability of
router virtualization over Xen. It scales well for multiple
virtual routers, running simultaneously, and for increasing
routing table size. In the first scenario, as the number of
virtual routers over a single physical router increases, the

throughput of each router is equally reduced. Nevertheless,
the aggregated throughput is maintained and is near the the-
oretical Ethernet maximum throughput. In the second sce-
nario, we increase the routing table size and the packet for-
ward rate remains the same. It shows that the processor
and memory access overhead, introduced by Xen, a virtual
router.

After all, we conclude that Xen is the virtualization tool
that best fits the router virtualization requirements. Xen Hy-
pervisor, however, must be enhanced to support a virtual
router within a production network, as we observed that the
packet forwarding rate is 30 percent reduced when running
multiple virtual machines over the same hypervisor. There-
fore, our future work focus on developing Xen virtual router
enhancement and evaluate new virtualization technologies
for improving virtual routers performance.

Acknowledgment

This work was supported by CNPq, CAPES, FINEP,
FUNTTEL, and FAPERJ.

References

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of virtu-
alization. InProceedings of the nineteenth ACM Sym-
posium on Operating Systems Principles - SOSP03,
October 2003.

[2] Marjory S. Blumenthal and David D. Clark. Rethink-
ing the design of the Internet: the end-to-end argu-

ments vs. the brave new world.ACM Transactions on
Internet Technology, 1(1):70–109, August 2001.

[3] Siming Chen, Mingfa Zhu, and Limin Xiao. Imple-
mentation of virtual time system for the distributed
virtual machine monitor. IEEE/ISECS International
Colloquium on Computing, Communication, Control,
and Management, August 2009.

[4] Karen Sollins David Clark, Robert Braden. New Arch:
Future generation internet architecture. Technical re-
port, MIT Computer Science and AI Lab, August
2004.

[5] Norbert Egi, Adam Greenhalgh, Mark Handley, Mick-
ael Hoerdt, Laurent Mathy, and Tim Schooley. Eval-
uating xen for router virtualization. InInternational
Workshop on Performance Modeling and Evaluation
(PMECT), August 2007.

[6] Norbert Egi, Mickael Hoerdt, Adam Greenhalgh,
Mark Handley, Felipe Huici, and Laurent Mathy. To-
wards high performance virtual routers on commodity
hardware. InIn Proceedings of ACM CoNEXT 2008,
2008.

[7] Geoff Huston. BGP Reports, may
2010. http://bgp.potaroo.net/ipv4-
stats/prefixesadv pool.txt.

[8] Kirill Kolyshkin. Virtualization in Linux, 2006.
http://download.openvz.org/doc/openvz-intro.pdf.

[9] Luı́s Henrique M. K. Costa e Otto Carlos M. B. Duarte
Marcelo D. D. Moreira, Natalia C. Fernandes. In-
ternet do Futuro: Um Novo Horizonte.Minicursos
do Simṕosio Brasileiro de Redes de Computadores -
SBRC’2009, pages 1–59, 2009.

[10] Aravind Menon, Alan L. Cox, and Willy Zwaenepoel.
Optimizing network virtualization in Xen. InUSENIX
Annual Technical Conference, pages 15–28, May
2006.

[11] OpenVZ User’s Guide. SWsoft Inc, 2005.

[12] A Performance Comparison of Hy-
pervisors. VMWare Inc, 2007.
www.vmware.com/pdf/hypervisorperformance.pdf.

[13] VMware ESX Server 2 Architecture and Performance
Implications. VMWare Inc, 2005.

[14] A Performance Comparison of Commercial Hypervi-
sors. XenSource, Inc., 2007.

	1 Introduction
	2 Virtualization Tools
	2.1 VMware
	2.2 Xen
	2.3 OpenVZ

	3 Hypervisors Evaluation
	3.1 Evaluation Methodology
	3.2 Scenario
	3.3 Evaluation
	3.3.1 Processor Performance
	3.3.2 Memory Performance
	3.3.3 Hard Disk Performance
	3.3.4 Networking Performance

	4 Xen Virtual Router Evaluation
	5 Conclusion

