
CLOUD SERVICES, NETWORKING AND
MANAGEMENT





CLOUD SERVICES, NETWORKING
AND MANAGEMENT

A JOHN WILEY & SONS, INC., PUBLICATION



Copyright c©year by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herin may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Title, etc
Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1







CONTENTS IN BRIEF

1 Virtual Machine Migration 1
Diogo M. F. Mattos, Lyno Henrique G. Ferraz, and

Otto Carlos M. B. Duarte.

vii





CONTENTS

1 Virtual Machine Migration 1
Diogo M. F. Mattos, Lyno Henrique G. Ferraz, and

Otto Carlos M. B. Duarte.

1.1 Introduction 1
1.2 Virtual Machine Migration 3

1.2.1 Offline and Live Migration 4
1.2.2 I/O Virtualization and Migration of Pass-through Devices 6

1.3 Virtual Network Migration without Packet Loss 10
1.4 Security of Virtual Environments 12

1.4.1 Requirements for a Secure Virtual Environment 12
1.4.2 Vulnerabilities 13
1.4.3 Isolation, Access Control, and Availability 15

1.5 Future Directions 17
1.6 Conclusion 18

References 19

ix





CHAPTER 1

VIRTUAL MACHINE MIGRATION

Diogo M. F. Mattos, Lyno Henrique G. Ferraz, and
Otto Carlos M. B. Duarte.

Grupo de Teleinformática e Automação (GTA/UFRJ)
PEE/COPPE - DEL/Poli
Universidade Federal do Rio de Janeiro
Rio de Janeiro, Brazil

Virtual Machine Migration is one of the most important benefits of virtualization be-
cause it provides facilities such as user mobility, load balancing, energy savings, system
up-dates, maintenance, and failure management. Different virtual machine migration pro-
cedures exist concerning online or offline migration, and live migration. Virtual network
live migration without packet losses is particularly interesting because I/O procedures are
not yet fully virtualized by current hypervisors. Seamless virtual machine migration must
overcome different level of complexity when source and destination physical machines
belong to the same cluster, or to the same local area network or to different clouds inter-
connected by a Wide Area Network.

This chapter details the pros and cons of each virtual machine migration model and
describes different proposal for guaranteeing an efficient migration procedure.

1.1 Introduction

Cloud Computing is experiencing an extraordinary growth [1, 2, 3, 4, 5]. Besides, vir-
tualization technologies are widely adopted by companies to manage flexible computing
environments and to run isolated virtual environments for each customer [6]. Virtualiza-
tion also provides the means to accomplish efficient allocation of resources and to improve
management, reducing operating costs, improving application performance and increas-
ing reliability. Virtualization logically slices physical resources into virtual environments,

title, edition.
By author Copyright c© 2014 John Wiley & Sons, Inc.

1



2 VIRTUAL MACHINE MIGRATION

which have the illusion of accessing the entire available physical resource. Hence, the
physical machine resources are shared between multiple virtual machines (VMs), which
run their own isolated environment with an operating system and applications. By de-
coupling virtual machines from their underlying physical realization, virtualization allows
flexible allocation of virtual machines over physical resources. To this end, virtualization
introduces a new management primitive: virtual machine migration [7]. Virtual Machine
migration is the relocation of virtual machines over the underlying physical machines, even
if the virtual machine is still running.

The VM migration primitive enhances user mobility, load balancing, fault management,
and system management [8]. The migration that occurs without the interruption of services
running is called live migration.

Virtual machine migration is similar to the process migration, but it migrates a com-
plete operating system and its applications. Process migration moves a running process
from one machine to another. Process migration is very difficult, or even impossible to
accomplish, because processes are strongly bound to operating systems, by means of open
sockets, pointers, file descriptors and other resources [8]. Unlike process migration, VM
migration moves the entire operating system along with all the running processes. Migrat-
ing an entire operating system with its applications is a more manageable procedure, and is
facilitated by the hypervisor, which exposes an interface between physical machine and the
VM operating system. The details of what is happening inside the VM can be ignored dur-
ing migration. The VM migration also has challenges inherent security to transfer the state
of a virtual machine across physical machines and to establish a trustworthy computing
environment on the destination physical machine.

In the context of virtualization, it is necessary to ensure that virtual environments are
secure and trustworthy. Thus, the hypervisor, which is a software layer responsible for
creating the hardware abstraction to the virtual environment, must implement a trusted
computing base (TCB) [9, 10]. Indeed, the TCB is divided into two parts: the hypervisor
and an administrative domain, as show in Figure 1.1. The hypervisor controls the hardware
directly and executes at the highest privilege level of the processor. The administrative
domain is a privileged VM that controls and monitors other VMs. The administrative
domain have privileges to start and stop VMs, to run guest VM configuration, to use and to
monitor physical resources, and to run I/O operation directly on the physical devices for the
virtualized domains. This common architecture for virtualized systems creates, however,
security challenges, such as lack of privacy of guest VMs. Administrative domain runs in
a privileged level to inspect the state of guest VMs, such as the contents of its registers
into memory and vCPUs. This privilege can be usurped by attacks on the software stack
in the administrative domain and by malicious system administrators [11]. Therefore, it
is necessary to establish a Trusted Computing Base (TCB) on the hypervisor and on the
administrative domain to ensure the security of virtualized environments.

Specific relevance is given to a hybrid virtualization system based on Xen and Open-
Flow platforms, called XenFlow [12], which focuses on router virtualization, especially
on the virtual router migration without packet losses. XenFlow provides migration of vir-
tual topologies over the physical realization, performing both migration of virtual routers
to another physical host and remapping virtual links on one or more physical links. This
feature allows to extent virtual-router migration when compared to the other proposals in
literature [13, 14, 15], because routes are remapped to any destination physical node by
means of OpenFlow network.

This chapter presents the major VM migration techniques. This work highlights the
benefits, costs and challenges for the realization of the live migration of virtual machines.



VIRTUAL MACHINE MIGRATION 3

Figure 1.1 General Xen-based virtualization architecture. The hachured areas, Administrative
Domain and Hypervisor, indicate the most sensitive software modules because they run on highest
privilege level.

We highlight I/O virtualization techniques and discuss how to migrate virtual machine even
if they directly access I/O devices or use I/O virtualization techniques. The chapter sets out
the main security requirements to be ensured during the migration of virtual environments.
Then, we examine various schemes of VM migration and discuss research directions in
virtualization security. The ultimate goal is to provide a deep understanding of the devel-
opments and the future directions regarding virtualized environments migration primitive.

The rest of this chapter is organized as follows. Section 1.2 sets a background for
understanding virtual machine migration and its challenges. Virtual network migration
is explained on Section 1.3, in which we also present a proposal for migrating virtual
routers without packet losses. The main security requirements and proposals for virtualized
environments are identified on Section 1.4. Future research directions and open challenges
are discussed in Section 1.5. Section 1.6 concludes this chapter.

1.2 Virtual Machine Migration

The procedure of migrating the operating system and applications from a physical ma-
chine to another physical machine is an important feature in a virtualized environment.
Virtual Machine (VM) migrations encompass four main resource transferring: processor,
memory, network, and storage [15]. During the migration process, the VM is paused on
source host and is resumed on the destination host only when all resources have already
been migrated and configured into the new host. The VM stays offline during a period of
time, called downtime, which corresponds to time when the VM is paused until its resump-
tion at the destination. The downtime period varies according to the resources available to
the VM, to the workload submitted to VM, and to the migration technique: offline or live
migration.



4 VIRTUAL MACHINE MIGRATION

1.2.1 Offline and Live Migration

Offline Migration transfers the VM to destination physical host while the VM is off.
The offline migration introduces a great delay in services of VM but it is the easiest to
accomplish because it does not require the VM state preservation. As the VM is off, there
is no network connections to preserve and it is neither necessary to transfer the processor
state nor the RAM content. The offline migration procedure just comprises shutting down
and restarting the VM into another location.

The storage migration, or disk migration, is accomplished by standard data transfer
tools and is the only network traffic generated. It takes a long time and a lot of network
bandwidth to transfer a whole disk. As a matter of fact, VM migration is usually accom-
plished within a LAN with a Network-Attached Storage (NAS) device that allows a VM
to access its disk from anywhere in the network, which makes unnecessary to migrate the
disk.

Live migration transfers the VM while it still runs. The live migration should not cause
a perceptible downtime to the VM user. Assuming the source and destination physical
machines in the same LAN with a NAS, live migration only should transfer the state of the
processor, the state of the memory and network connections.

The processor live migration consists of creating a virtual CPU (vCPU) for the vir-
tual machine at the destination and copying the vCPU state from source to destination
physical machines. Nevertheless, this task becomes complex when the source and the
destination host processors are different. Migrations between different processors of the
same manufacturer require the same instruction sets to work properly. In these cases, as
a consequence, it is necessary to limit the instruction set of the virtual CPU to a common
instructions set of both processors. This operation is called CPU mask.

The network live migration procedure should maintain the Internet Protocol (IP) ad-
dress of the source VM to preserve all open transmission control protocol (TCP) connec-
tions. To keep the same IP address at the destination, it is very simple when the source
and destination physical machines are in the same Local Area Network (LAN). In this
case, the destination physical machine generates gratuitous Address Resolution Protocol
(ARP) replies to advertise the new physical location of the virtual machine, that is, only
the advertisement of the Medium Access Control (MAC) address of the migrated VM is
required. Otherwise, when the source and destination machines are not in the same LAN,
network redirection mechanisms would be required due to the localization semantic of the
IP address.

Live memory migration is the transfer of memory contents from the source to the des-
tination host taking into account memory changes during the migration procedure, called
retransmission of dirty pages. Venkat [16] divided the memory migration into three phases:

Push phase: While the source VM is running, its memory pages are transferred to the
destination VM. If a page is modified after being transferred, it is necessary to resend
this page to avoid failures.

Stop-and-copy phase: As the name suggests, the source VM is stopped, then the
memory pages are transferred.

Pull phase: The destination VM is started and generates a page fault when it tries to
access a page that was not copied yet. This fault requests the page to be transferred
from the source to the destination.



VIRTUAL MACHINE MIGRATION 5

Two live migration strategies [16]: pre-copy and post-copy, only use a combination of two
of the above-mentioned phases.

The pre-copy live migration strategy applies the phases: push and stop-and-copy. First,
an empty VM is created at the destination physical host and the migrating VM memory
pages are copied to the VM at destination physical machine, while the VM still runs on the
source host. During this process, the running VM rewrite the memory pages which are re-
sent to destination host. This push phase ends when one of the two conditions are reached:
(i) The number of dirty pages per iteration are small enough to cause a short downtime pe-
riod; (ii) The push phase reaches a maximum number of iterations. After the push phase,
it comes the stop-and-copy phase, in which the VM is suspended at the source host, the
remaining dirty pages are transferred to the destination host, and the VM is resumed on the
destination host. The downtime varies according the workload from tens or hundreds of
milliseconds to a few seconds [15]. It is important to notice that determining when to stop
the push phase and start the stop-and-copy phase is not trivial. Stopping the push phase
too soon can result in longer downtime, as more data will be transferred after suspending
the VM. On the other hand, stopping too late results in longer total migration time and net-
work bandwidth occupation, as more time will be spent re-sending dirty pages. Therefore,
there is a trade-off between total migration time and downtime. The pre-copy procedure
requires the verification of memory pages to send them to the destination through the net-
work. These CPU and bandwidth consumption should be monitored to minimize service
degradation. Xen uses pre-copy as its live migration strategy [14].

The post-copy live migration strategy use the phase stop-and-copy first, then the pull
phase. First, the VM is suspended at the source and few VM execution states are trans-

Table 1.1 Comparison of Offline and Live migration techniques.

Technique

Characteristic

Storage
Migration

Memory
Migration

Network
Migration

Downtime Total
Migration
Time

Offline migration.
Shutdown VM
and restart at
destination host.

Standard
copying
tools, if
migrated.

Not trans-
fered.
Loss of
volatile
data.

Reconfig-
uration at
destina-
tion host.
Network
connec-
tions not
migrated.

Long period
of time. VM
and ser-
vices restart
(if stor-
age is not
migrated).

Equal to
downtime (if
storage is not
migrated).

Live migration.
Transfer running
VM to destination
host.

Not mi-
grated.
Storage
is ac-
cessable
through
the net-
work.

Transfered.
Pre- and
post-
copy and
retrans-
mission
of up-
dates.

Reconfig-
uration at
destina-
tion host.
Transfer
of net-
work state.
Network
connections
preserved.

Short period
of time. VM
pause/resume.

Equal to
downtime
plus memory
transfer time.
Vary accord-
ing to the
workload that
requires re-
transmission
of dirty pages.



6 VIRTUAL MACHINE MIGRATION

ferred to the destination host, namely CPU registers and non-paged memory. The VM is
resumed at the destination despite the absence of many memory pages, which still are at the
source host. The source host begins to send the remaining memory pages. The destination
host generates faulty memory accesses when the VM tries to access memory pages that
were not transferred yet. These faulty memory accesses are sent back to the source host,
which prioritizes the requested memory pages to send. This process can degrade memory
intensive application performance, but cause minimal downtime. There are some ways of
handling page fetching in order to increase performance, such as:

Active Pushing: the pages are pro-actively pushed from the source to the destination.
Page faults are handled with priority over non-critical pages.

Pre-paging: an estimation of memory access pattern is generated to allow the active
pushing of the pages that are most likely to generate faults.

Table 1.1 compares Offline and Live migrations.

1.2.2 I/O Virtualization and Migration of Pass-through Devices

Input/Output (I/O) virtualization of network devices is challenging because current net-
work interface controllers are unable to distinguish which specific virtual machine is writ-
ing to or reading from the shared memory space. Therefore, a controller or a hypervisor
must redirect (multiplexing or demultiplexing) data to/from specific memory area in an
administrative domain from/to different virtual machine shared memory areas. This pro-
cedure negatively impacts the performance, since it introduces extra memory copies, it
centralizes the interruption handling at administrative domain processing time slice, and
it demands execution of software instructions for multiplexing data in administrative do-
main, such as virtual bridges, as shown in Figure 1.2(a). Thus, a technique to improve I/O
device performance is the use of pass-through technologies to avoid the centralization and
memory copies by providing direct I/O procedures to/from the virtual domain from/to the
physical device. Although the pass-through technology improves I/O virtualization per-
formance, the pass-through device belongs to a single VM and cannot be shared by other
VMs, as shown in Figure 1.2(b).

The main technique to provide direct I/O virtualization is Single Root I/O Virtualization
(SR-IOV) for Peripheral Component Interconnect Express (PCIe) [17]. The specification
SR-IOV stands for how PCIe devices can share a single root I/O device with multiple vir-
tual machines. Indeed, a SR-IOV enabled hardware provides several PCIe virtual functions
to the hypervisor, which can be assigned directly to virtual machines as pass-through de-
vices, as shown in Figure 1.3(a). Besides SR-IOV, Intel also proposes Virtual Machine
Device Queues (VMDq) [4] for network I/O virtualization. VMDq technology enabled
network device has separated queues for virtual machines. The network interface classifies
received packets to the queue of a VM and fairly sends packets of all queues in round robin
manner. As VMDq applies a paravirtualized device driver, it uses shared pages to avoid
packet copying between the virtual network interface in the VM and the physical network
queue. The VM benefits from faster classification and a paravirtualized device driver, while
SR-IOV technology exposes a unique device interface to the virtual machine. The imple-
mentation of VMDq paravirtualized driver assures better performance than paravirtualized
network drivers. Besides, VMDq paravirtualized driver support live migration in a similar
way than when using common paravirtualized drivers [4], illustrated by Figure 1.3(b).



VIRTUAL MACHINE MIGRATION 7

(a) Network I/O virtualization with paravirtualized
drivers. Administrative domain centralizes all I/O
operations.

(b) Direct I/O network virtualization. A
network interface card is directly con-
nected to virtual machine.

Figure 1.2 I/O virtualization modes.

(a) Network I/O virtualization with SR-IOV. Virtual
machines directly access NIC virtual functions.

(b) Network I/O virtualization with VMDq. Virtual
machines access device queues through a paravirtu-
alized driver.

Figure 1.3 Hardware-assisted network I/O virtualization modes.

VMWare and Intel propose Network Plug-In Architecture (NPA/NPIA) [4] to live mi-
grate pass-through devices. The proposal creates a new driver for virtual machine, which
allows the online switching between SR-IOV and paravirtualized devices. This technology
designs two new software modules: a kernel shell and a plug-in for the virtual machine.
Kernel shell acts as an intermediate layer to manage pass-through devices, which imple-
ments a device driver for the SR-IOV device. Plug-in, in its turns, implements virtual
functions of the device, as a device driver, but interfaces with kernel shell instead of di-
rectly controlling the device, exposing a virtualized network interface card to the virtual
domain. The kernel shell provides a hardware abstraction layer and the plug-in implements
hardware communication through the kernel shell. Plug-in may be plugged or unplugged
on the fly. To reduce migration downtime, while performing plugging/unplugging actions,
the hypervisor employs an emulated network interface. This technology trivially supports



8 VIRTUAL MACHINE MIGRATION

live migration because a virtual network interface can be unplugged while running the VM.
On the other hand, a drawback of the this approach is the need for rewriting all the network
device drivers, which may limit its adoption [4].

Pass-through I/O virtualization technology improves virtualized device performance by
making a tight coupling between the VM and the hardware device. Thus, virtual machine
live migration becomes more difficult because pass-through devices are totally controlled
by virtual machine and the hypervisor does not access the internal states of the device.
Indeed, in pass-through I/O virtualization the hypervisor does not interfere into the com-
munication between the physical device and the virtual machine. Therefore, the internal
states of the physical device must be migrated with virtual machine, in order to accomplish
a successful live VM migration [4].

A way to migrate VM with pass-through devices is to let user stop everything using a
pass-through device, and then migrate and restore the virtual machine into the destination
physical host. Although this method works, it is not generic enough to fit all operating
systems, it involves a greater downtime, it needs to be inside the virtual machine, and it
needs a lot of intervention of the user [18]. A generic solution to suspend the VM before
migrating is Advanced Configuration and Power Interface (ACPI)1 S3 [18]. Sleep state S3
stands for the sleep or suspend state of a machine, in which the operating system freezes
all process, suspends all I/O devices, and then goes to the sleep state but the RAM remains
powered. It is worth noting that in sleep state all context is lost, except for the system
volatile memory. The major drawback of this approach is that whole system is affected,
inducing a long service downtime besides disabling the target device.

Migration of a pass-through I/O device may also be accomplished by the PCI hotplug
mechanism [18]. Migrating a VM using PCI hotplug work as follows. Before live mi-
grating, in the source host, the entity responsible for the migration triggers an event of hot
unplugging the virtual PCI pass-through device against the guest VM. Then, the migrating
VM responds to the hot unplugging event, and stops using the device after unloading its
driver. Without running any pass-through device, the VM can be safely live migrated to
the destination host. After the live migration, in the destination host, it triggers an event
of hot plugging a virtual PCI pass-through device against the VM. Eventually, the guest
VM loads the appropriate driver and starts using the new pass-through device. As the guest
reinitializes a new device, that has nothing to do with the old one, it should reconfigure it
as the previous one.

CompSC proposes a live migration mechanism for VM using pass-through I/O virtual-
ization [4]. The key idea of CompSC is to change as less as possible the code of drivers
and prevent the hypervisor to have any specific knowledge about the migrating device.
The hypervisor examines the list of registers of the network device and saves them into
the shared memory area. The hypervisor does not know the list of registers a priori. For
this reason, the hypervisor gets this list of registers also from the shared memory area,
where the device driver places it during the boot process. The device driver completes the
state transferring between hosts. Every time before the driver releases a read lock, it stores
enough information about the latest operations or set of operations to achieve a successful
resume. In the resume procedure, the device triggers the target hardware using the same
saved state information. The proposal also provides a layer of self-emulation, which can
be placed in the hypervisor or in the device driver. Placing the self-emulation layer in hy-

1Advanced Configuration and Power Interface (ACPI) specification is an open standard for device configuration
and power management by the operating system. This standard replaces some other standards bringing power
management under the control of the operating system instead of BIOS control as stated by the replaced standards.



VIRTUAL MACHINE MIGRATION 9

pervisor, the hypervisor intercepts all accesses to emulated registers and returns the correct

Table 1.2 Comparison of migrating I/O virtualization techniques.

Technique

Characteristic
Pros Cons Sumary

SR-IOV Good performance.
VM direct access to
device.

Hard to migrate. Hy-
pervisor cannot ac-
cess device state.

Hardware provides
multiple virtual func-
tions. Hypervisor
sets virtual functions
to VMs. VM inter-
acts directly with
hardware devices.

VMDq Good performance
and easy to migrate.
Packet classifica-
tion by hardware
and conventional
paravirtualized driver.

Slightly performance
degradation. Minor
driver domain partici-
pation in I/O.

VMDq driver writes
and reads packets di-
rectly on shared pages
in driver domain
which avoid packet
classification and
extra packet copies.

NPA-NPIA Good performance
and easy to migrate.
Hotplug of SR-IOV
virtual functions
and paravirtualized
drivers.

Hard to deploy. New
virtual network device
drivers in VMs.

It creates a pair
“Kernel Shell and
Plug-in”, which al-
lows Plug-in to be
migrated carrying all
device states, while
Kernel Shell imple-
ments virtual function
into the driver.

Pause/Resume Easy to deploy. It uses
current technologies.

Hard to migrate and
loss of volatile data.
It depends on users’
interaction. VM sus-
pension.

VM is suspent on
source host and, after,
it is resumed on desti-
nation host.

PCI Hotplug Good performance
and easy to de-
ploy. It uses current
technologies.

Loss of volatile data.
Pass-through devices
hotplugging.

Source host unplugs
the virtual PCI pass-
through device of
VM. After migration,
a new pass-through
device is loaded and
reconfigured on the
migrated VM.

CompSC Good performance
and easy to migrate.
VM uses current
technologies. Easy
to deploy. Hyper-
visor uses new live
migration software.

Slightly performance
degradation during
migration. It uses em-
ulated virtual network
device driver.

Hypervisor saves
pass-through device
states before migra-
tion, and restores
the device state after
migration.



10 VIRTUAL MACHINE MIGRATION

value. A layer of self-emulation in the driver processes the fetched value and corrects it
after the access. A layer of self-emulation in hypervisor requires only the list of emulated
registers and requires few code changes to the driver, but the performance degrades due to
interception of I/O operations. A layer of self-emulation in device driver requires less over-
head, but produces more code changes [4]. Table 1.2 summarizes the migration proposals
of main pass-through I/O virtualization techniques.

1.3 Virtual Network Migration without Packet Loss

Network virtualization is the technique that decouples network functions from their
physical substrate, enabling virtual networks to run logically separated and over the a
physical network topology [19]. The logical separation enables virtual network migration,
which allows online physical topology changes avoiding reconfiguration, traffic disruption
and long convergence delays [13]. The virtual network migration consists of migrating the
virtual network element, also called virtual router, to another physical location, without
packet losses or losing connectivity. The key idea to avoid packet losses is the separation
of control and data planes, the former responsible for performing control operations, such
as running routing protocols and defining QoS parameters, and the latter responsible for
the packet forwarding [13, 14]. As the virtual router should always forward the traffic, the
data plane is copied to the physical host while the virtual router migrates. After the migra-
tion, the data plane in source host is deactivated, so the virtual router completely runs in
the new location.

Both Wang et al. and Pisa et al. use plane separation paradigm to migrate virtual routers
without packet losses [13, 14]. They assume an external mechanism for link migrations to
preserve neighborhood after migration, such as maintaining the same set of neighbors or
tunneling. Pisa et al. assume all physical routers connect to the same Local Area Network
(LAN) to facilitate link migration [14]. On the other hand, flow migration on the OpenFlow
platform is easy. Pisa et al present an algorithm that is based on the redefinition of a flow
path in the OpenFlow network [14]. This proposal has zero packet losses and low overhead
of network control messages. Although, this migration proposal is limited to OpenFlow
switched networks, and it is not applicable to router virtualization systems.

Figure 1.4 XenFlow architecture overview. Xen virtual router data plane is copied to physical host
OpenFlow switch. Network controller orchestrates virtual router and link migration.

Mattos and Duarte present XenFlow [12], a hybrid network virtualization system based
on plane separation paradigm with Xen and OpenFlow platforms [20, 21] to both migrate



VIRTUAL NETWORK MIGRATION WITHOUT PACKET LOSS 11

virtual routers and virtual links. Virtual machines act as the routers control plane running
routing protocols, and data planes of all virtual routers run centrally in the Xen adminis-
trative domain Domain 0. Physical machines have an OpenFlow switch to connect Xen
virtual machines to the physical network, and each Xen virtual machine acts as generator
of rules to these switches. The remapping of the virtual topologies is orchestrated by a
network controller capable of acting on the OpenFlow switches and of triggering the mi-
gration of virtual machines on any network node. Figure 1.4 presents this architecture. The
architecture allows to migrate virtual routers beyond a local area network, because routes
are remapped to any destination physical node by means of OpenFlow network. How-
ever, the architecture forces all virtual networks to share the same data plane, violating
the requirement of isolation between virtual environments. Thus, XenFlow isolates vir-
tual networks by two mechanisms: Address space isolation among virtual networks, which
ensures VMs only access VMs that belong to the same virtual network; and virtual net-
work resources sharing isolation, which prevents virtual networks against using resources
of other virtual networks [22]. The system also offers Quality of Service through mapping
parameters of Service Level Agreements, defined as control plane directives, to parameters
of the data plane. It controls the basic resources of virtual networks: processing, memory,
and bandwidth, as those are the resources that can be locally controlled [23].

The XenFlow routing function is performed by a flow table dynamically controlled by
POX, an OpenFlow network controller [24]. Migration of virtual routers, shown in Fig-
ure 1.5, consists of three steps: migration of control plane, reconstruction of data plane,
and migration of virtual links. The control plane is migrated between two physical network
nodes through the live-migration mechanism of conventional Xen virtual machines [15].
Then, the reconstruction of data plane is performed as follows. The virtual router sends all
routes to the Domain 0. When the virtual router detects a connection disruption caused by
the migration, it reconnects to the Domain 0 in new physical host and sends all information
about the routing and ARP tables. Upon receiving such information, Domain 0 reconfig-
ures the data plane according to the control plane of the migrated virtual router. After
migration of the control plane and reconstruction of the data plane, links are migrated.
The links migration occurs in the OpenFlow switches instantiated in Domain 0 and other
OpenFlow hardware switches. Link migration creates a switched path between the neigh-
bors of the migrated virtual router to the physical host of virtual router after migration. The
migrated virtual router sends an ARP reply packet with a predefined destination MAC
address (AA:AA:AA:AA:AA:AA), which the network controller captures and reconfig-
ures the paths. This procedure updates the location of a virtual router after the migration
procedure, hence, the source physical host forward packets until the migration is complete,
which results in a migration primitive of virtual routers without packet loss or interruption
of packet-forwarding services.

XenFlow ensures the virtual router migration without packet loss, but the new path in
the underlying substrate may introduce a greater or a smaller delay when compared to the
original path. XenFlow does not control delay in forwarding nodes and also the new path
may comprise non-XenFlow nodes. Therefore, during virtual network migration, packets
may be out of order or may be received after a bigger delay of the new path. We assume
that this is not a constrain because transport protocols are resilient to delay variation, as
currently occurs due to changes in routing path or network congestion.



12 VIRTUAL MACHINE MIGRATION

Figure 1.5 XenFlow virtual topology migration. 1) Virtual machine and all running routing
protocol migration. 2) Data plane reconstruction based on control plane information. 3) Link
migration by sending a predefined ARP Reply message.

1.4 Security of Virtual Environments

There are several vulnerabilities that are disclosed in the current implementation of live
migration of well know hypervisors, such as Xen and VMWare [25]. The biggest issue
is that transferred data is not encrypted during migration procedure. Kernel memory, ap-
plication state, sensitive data such as passwords and keys, and other migration data are
transferred clearly, resulting in no confidentiality. Other vulnerabilities are: no guarantees
that the VM is migrating to a trusted destination platform, no authentication and no autho-
rization of operations, no integrity guarantees of VM data, and bugs in the hypervisor and
migration module code that introduce security vulnerabilities. In this section, we argue
about the main security issues of machine virtualization and we expose the main security
requirements for a secure virtualization platform. We focus on securing virtual machine
migration, but we also highlight security issues that affect Cloud Computing environment
based on machine virtualization.

1.4.1 Requirements for a Secure Virtual Environment

A secure virtualization environment must ensure that processor, RAM, storage, and net-
work, the main resources of a virtual machine, are invulnerable against other virtual ma-
chines or against infrastructure attacks. Therefore, we establish six security requirements
that summarize the needs of a secure virtualization environment. We also highlight that
a secure live migration should provide confidentiality, to guarantee that any VM data are
not accessed by others while they are transferred from one host to another, and auditabil-
ity, to secure that sensitive data have not been exposed or damaged [26]. The six secure
virtualization requirements are following: Availability and isolation; Integrity; Confiden-
tiality; Access Control, Authentication and Authorization; Non-Repudiation; and Replay
Resistance.

Availability and Isolation stands for the fact that any virtual machine should be neither
capable to access nor interfere other virtual machines. Even though several virtual ma-
chines share the same infrastructure, one virtual machine is not able to access other virtual
machines data or change computing results [1]. Thus, a secure hypervisor ensures strong
isolation between running virtual machines, running each virtual machine into a protected



SECURITY OF VIRTUAL ENVIRONMENTS 13

domain [27]. It is worth noting that isolation is achieved with confidentiality, integrity, and
protection against denial of service.

Integrity aims that a virtual environment must provide the means to verify and prove the
integrity and, therefore, it must be possible to identify if its processing, memory and storage
were modified. Attacks against integrity intend to modify information from virtual envi-
ronments or to modify running programs in a virtual environment. The migration process
should also be protected against integrity violation, because it clearly exposes the virtual
machine memory through the network to attacks, such as man in the middle attack [28]. In
addition, a hardware module can run cryptographic functions to perform integrity verifica-
tion and attestation. Attestation cryptographically ensures that a computing environment
is trustworthy and the running application are not compromised [27]. Attestation may also
assure that a remote environment is trustworthy because it has the same cryptographic sig-
nature of an integer environment. Attestation is also important to assure that after a virtual
machine migration, the destination machine is trustworthy and the migrated virtual ma-
chine keeps its integrity as its cryptographic signature remains the same of the one before
migration.

VM atomicity ensures that only one instance of the VM runs at a time [10]. Therefore,
VM migration should neither add new VMs nor eliminate anyone. Thus, after successful
migration, the system removes the VM instance in source host, and in case of migration
failure, the system removes the VM instance in target host. The atomicity is crucial to
ensure the integrity of the infrastructure for disaster recovery and to avoid generating du-
plicated copy of the same virtual machine.

Confidentiality ensures that an attacker should not be able to intercept, to access or to
modify the content of data transfer during the migration of a virtual machine. Therefore,
system may use secure communication channel to transfer data between peer hosts More-
over, the peers of the secure communication channel should be able to negotiate unique
cryptographic keys and ensure that they are known only by the peers [10].

Access Control, Authentication and Authorization define that the system must ensure
that a VM migration is performed between two secure authenticated platforms, which both
are authorized to perform the migration, and there is no one else between them (man in the
middle). Authentication ensures the true identity of an entity, hence, other security require-
ments depend on successful authentication. Authentication is a key feature because other
security requirements depend on the authentication such as authorization, to distinguish
legitimate and authorized from illegitimate participants based on authentication. Autho-
rization ensures that only authorized entities perform operations such as VM migration.
Besides, the VM should be neither migrated to unauthorized host nor from one [29].

Non-repudiation stands for the peers involved in migration cannot deny the migration
participation [10]. The system must guarantee the provision of conclusive evidences of the
migration event and peers participation, even when peers do not cooperate.

Replay resistance aims that an attacker cannot reproduce the migration procedure with-
out being detected. Hence, all migration packets are unique and lose validity after migra-
tion.

1.4.2 Vulnerabilities

In a virtual environment, multiple virtual machines running on top of the same physical
machine increase the efficiency of the system, but it also introduces software on sensitive
areas of the system, which increases vulnerabilities. These vulnerabilities can be exploited



14 VIRTUAL MACHINE MIGRATION

by malicious users to obtain sensitive information, such as passwords and encryption keys,
or perform other types of attacks such as denial of service.

In internal attacks, the system administrator performs attacks on the virtual machines.
In this case, the system is completely vulnerable, because the administrator is authenticated
and authorized to perform actions, neither cryptographic nor integrity techniques prevent
the attacks. A malicious user who gains super-user privileges, via flaws in the authentica-
tion and authorization modules, performs an internal attack.

In other attacks, the attacker exploits the flaws of the virtualization system source code
to inject malicious code and modify the system modules. This attack is possible due to the
complexity of virtualization systems that end up having security flaws [2].

The attack can also be originated from an infected virtual machine (or a legitimate
machine with a malicious user) targeting other virtual machines sharing the same system.
This type of attack requires that the attacker and the target virtual machine are in the same
physical machine. Due to the sharing of resources (CPU data cache, e.g.), the attacker can
steal cryptographic keys using techniques such as covert channel. This attack is facilitated
when the network infrastructure indirectly allows the user to map the virtual networks and
verify co-residence with the target virtual machine [1]. These procedures are facilitated
when static IPs are used for virtual networks, associating them with the physical IPs, but it
can also be checked with IP common tools, such as traceroute.

The side channel attack is any attack that information, obtained to break the system,
relies on information leaked by the hardware that are obtained by physical measurements
as a “side” or an alternative channel [30]. The attack only concerns the implementation
of a cryptosystem, rather than cryptanalysis of the math of the algorithm or brute force.
Examples of physical measurements used to build a side channel can be: time took for
performing different computations [31], varying power consumption [32] or leaked elec-
tromagnetic radiation provided by the hardware during computations, and even sound pro-
duced by the hardware. Therefore, assuming side attacks, the weakness of the security
system is not the algorithm but its implementation. Brumley and Boneh [33] have shown
that they succeeded to extract private keys from an OpenSSL-based web server running
on a machine in the local network. They run a timing attack in which an attacker ma-
chine measures the decryption queries response time of an OpenSSL server, in order to
extract the private key stored on the server. They successfully performed the attack be-
tween two virtual machines, then, their results invalidate the announced isolation provided
by the hypervisor. As mentioned before, side channel attacks only concern the crypto
algorithm implementation and, thus, a virtualized system does not interfere on the weak-
ness or strengthen of an implementation. Otherwise, virtualization is a shared operating
hardware environment and actions of one virtual machine may cause effects in another
virtual machine. Therefore, a virtualized system should not facilitate the access to phys-
ical measurements and should fully isolate one virtual environment from another virtual
environment to prevent side channels attacks.

Covert channel is a type of security attack that creates and conveys information through
a hidden communication channel, which is able to transfer information between processes
that violate the security policy. A covert channel is not a legitimate channel and, therefore,
it depends upon an ingenious mechanism, which is a program scheme to hide the way
used to transfer the information from the source to the destination and requires access to
the file system. Hence, different from side channel attack, covert channel are illegitimate
communication channel built on already compromised systems. Covert channel requires
viral infection of the system or a programming effort accomplished by the administrator
or other authorized user of the system. Covert channels are usually difficult to detect



SECURITY OF VIRTUAL ENVIRONMENTS 15

and low detectability, the capacity to stay hidden, is often the assumed measurement of
effectiveness of a covert channel attack. The usual hardware based security mechanisms
that underlie ultra-high-assurance secure operating systems cannot detect or control covert
channels because they do not employ legitimate data transfer mechanisms of the computer
system such as read and write. Thus, the covert channel must not interfere into legitimate
operations to not be detected by security systems.

Intruders have limited options to get the data out of secured systems with Intrusion De-
tection Systems, Packet Anomaly Detection systems, and firewalls [34]. In this scenario,
the intruder creates a covert channel. The communication media often used are ordinary
actions unnoticed by administrator and legitimate users such as use of header- or payload-
embedded information, altering a store location, performing operations that modify the real
response time, using of packet inter-arrival times, etc. Adding data to the payload section
of Ping packets or encoding data in the unused fields of packet headers. A covert channel
attack, which is the most difficult to detect, is to use inter-packet delay times to encode
data. This means that the intruder does not necessarily have to create new traffic because
he encodes the data by modulating the time between packets of regular legitimate com-
munication. Data exfiltration can be an indication that a computer has been compromised
even when other intrusion detection schemes have failed to detect a successful attack.

During the process of live migration, vulnerabilities may be exploited by attackers. Such
vulnerabilities include authorization, integrity and isolation failures.

Inappropriate access control policy: If access control policies are not defined properly
or the module responsible for regulating them does not act effectively, an attacker can ac-
quire undue control of systems to perform internal attacks. When the attacker controls the
migration operation, the attacker can cause a denial of service by migrating multiple VMs
to one physical machine to overload the communication link and the physical machine
itself. The attacker may also migrate a malicious virtual machine to a target physical ma-
chine, or migrating a target virtual machine to a malicious physical machine. In both cases,
after migration, the attacker gains full control of the target machine (physical or virtual).

Unprotected channel transmission: If the migration channel does not guarantee the
confidentiality of the data, an attacker can steal or modify sensitive information, such
as passwords and encryption keys. Attacks can be done passively (sniffing) or actively
(man-in-the-middle) using techniques such as ARP spoofing, DNS poisoning and route hi-
jacking. Active attacks are usually more problematic since they violate integrity, and may
include modifications in the authentication services of the virtual machine (sshd/login) and
manipulation of kernel memory.

Loopholes in the migration module: The contemporary virtualization software such as
Xen, VMware and KVM, have an extensive and complex code base, which tend to have
bugs. Perez-Botero et al. identified 59 vulnerabilities in Xen and 38 in KVM until July
15, 2012, according to reports of CVE security vulnerability database [35]. These results
confirm the existence of vulnerabilities, which an attacker can exploit to obstruct or access
virtual machines.

1.4.3 Isolation, Access Control, and Availability

Several proposals aim to improve virtualization isolation, QoS provisioning, and virtual
topologies migration. Besides, some proposals use Software Defined Networking (SDN)
to manage network migrations. There are proposals for developing security applications
on OpenFlow network infrastructures, as there are others that seek to ensure the security
of the infrastructure itself [36].



16 VIRTUAL MACHINE MIGRATION

NetLord [37] introduces a software agent on each physical server, which encapsulates
packets of virtual machines with a new IP header. The new IP header whose semantics of
addresses of Layers 2 and 3 are overloaded to indicate to which virtual network the frames
belong to. Similarly, VL2 [38] encapsulates IP packets of a virtual network with another
IP header. In this case, the semantics of the IP addresses indicate both the virtual network
and the localization of the physical host.

Distributed Overlay Virtual Ethernet (DOVE) [39] is a proposal of network virtualiza-
tion that provides address space isolation by using a network identifier field of the envelop
DOVE header, creating an overlay network. Address space isolation is also achieved using
VXLAN encapsulation [40]. VXLAN also adds to each Ethernet frame an outer Ethernet
header, followed by an external IP, UDP and VXLAN headers. Network Virtualization
Generic Routing Encapsulation (NVGRE) [41] also encapsulates to allow multi-tenancy
in public or private clouds. Both VXLAN and NVGRE use 24 bits to identify the virtual
network that a frame belongs to. Nevertheless, these proposals create an overlay network
that interconnects the nodes of the virtual network.

Houidi et al. propose an adaptive system that provides resources on demand for virtual
networks [42]. It provides more resources for virtual networks as soon it detects service
degradation or after a resource failure. The system uses a distributed multi-agent mech-
anism in physical infrastructure to negotiate requests, to fit the resources to the network
needs, and to synchronize supplier nodes and virtual networks. Another proposal, OMNI
(OpenFlow Management Infrastructure) [43] provides Quality of Service (QoS) to Open-
Flow networks [21]. OMNI manages all flows of the network and define QoS parameters to
each one. Besides, OMNI migrates flows to different paths without any packet losses. Kim
et al. map QoS parameters of the virtual networks with different workloads on resources
available on OpenFlow switches, such as queues and rate limiters [44]. The proposal main
goal is to provide QoS to scenarios in which the physical infrastructure belongs to a cloud
multi-tenant provider. Nevertheless, the control of QoS parameters and QoS mapping are
centralized on the OpenFlow controller node. McIlroy and Sventek provide QoS to virtual
networks with a new router architecture [45]. The router is composed of multiple virtual
machines, called Routelets. Each it Routelet is isolated from others and their resources are
limited and guaranteed. it Routelets who route QoS sensitive flows have access priority
to substrate resources. Nevertheless, packet forwarding is performed by virtual machines,
which limits the forwarding performance of it Routelets.

Wang et al. propose a load balancer based on programming low cost OpenFlow switches
to multiplex requests among different server replicas [46]. The proposed solution weight-
ily fragments the IP address space of clients between server replicas. Thus, according to
the client IP, it identifies the replica that serves a client. The proposal, however, does not
guarantee the reservation of resources, nor QoS of flows. Hao et al. present the infrastruc-
ture VICTOR (Virtually Clustered Open Router) which is based on creating a cluster of
datacenters via a virtualized network infrastructure [47]. The central idea of this approach
is to use the OpenFlow as the basic network infrastructure of datacenters to allow moving
a virtual machine from one physical location to another, as it is possible to reconfigure
network paths. This proposal optimizes the datacenter network usage performing server
migrations, but it does not guarantee Quality of Service of each flow, and also does not
isolate the use of resources from different virtualized servers.



FUTURE DIRECTIONS 17

1.5 Future Directions

The most important performance goal in Virtual Machine live migration is a short VM
downtime. Current migration approaches apply a combination of push and stop-and-copy
strategies for VM live migration. The combined push and stop-and-copy strategy reduces
the VM downtime at the cost of increasing the total migration time and network traffic
due to migration. When transferring the VM storage during migration, total migration
time is also affected. Therefore, a main research topic is to decrease the total downtime,
keeping memory and storage consistence and reducing network bandwidth. Downtime
directly impacts on the virtualization performance and compromises the deployment of
virtual machine migration on different scenarios.

Virtual Network Migration is another research topic. When moving a virtual machine,
its network connections should follow accordingly. VM migration between different Lo-
cal Area Networks demands mechanisms for IP address migration or for networks traffic
redirection. Migration within the same datacenter can also present performance problems
when datacenters are globally distributed in a wide geographical area. Current research
efforts focus on tunneling network traffic between source and destination host [22]. In
this direction, there are proposal, such as NVGRE (Network Virtualtization Generic Rout-
ing Encapsulation) [41], VXLAN (Virtual eXtended Local Area Network) [40], and DOVE
(Distributed Overlay Virtual Ethernet) [39], that creates tunnels to maintain virtual network
connectivity even in scenarios that sites are separated by a Wide Area Network. Moreover,
NetLord [37] and VL2 [38] change IP semantics for isolating and creating virtual networks
within a datacenter. Other proposals for handling virtual machine mobility across the In-
ternet is to use Locator/Identifier Separation Protocol (LISP) [48, 49]. LISP uses two IP
headers, one for the locator and other for identifier of the host. LISP maintains a globally
reachable service that maps locator into identifier, and vice-versa, in order to ensure the
correct location of virtual machine no matter where it is hosted. After the virtual machine
migration, only the locator is changed, and all services remain online and reachable. Future
trends also point to OpenFlow [21] as a possible approach for managing virtual network.
Nevertheless, all above mentioned approaches require adaptations or more sophisticated
deployments to be fully functional. To achieve a seamless network migration, we believe
that new standards should take place to define a common way to migrate virtual network.

Storage is an important resource to virtualized servers, because it must be always avail-
able and present high performance. When migrating a VM, its storage should be also
available at migration destination. Therefore, both source and destination sites share the
storage service, or all VM storage must be sent over the network to destination host. EMC2,
one of the world’s leader storage provider enterprise, provides a storage facility focused
on a distributed federation of data, which allows data to be accessed among locations over
synchronous distances. The EMC2 distributed storage service is called VPLEX 2. More-
over, Ceph is an open source project which aims to provide a distributed and redundant file
system [50]. We agree that there are several initiatives for providing distributed storage
service that are a step ahead for an available file system for virtual machine migration.
Nevertheless, these initiatives are new and immature. The proprietary ones have a higher
maturity grade, but still are expensive and demand large infrastructure. Providing a dis-
tributed and available storage service, that requires low investment into infrastructure and
is backward compatible, is a key research area.

2http://www.emc.com/campaign/global/vplex/index.htm.



18 VIRTUAL MACHINE MIGRATION

Automated migration is also a key research topic, because the virtual machines alloca-
tion into physical servers is a np-hard problem. This scenario is aggravated considering big
datacenters and multiple datacenters in a Cloud Provider environment, due to the size and
unmanageability of the scenario. There are proposed heuristics [51] based optimization
and others based on system modeling [52, 53], aiming to better use physical resources.
An important factor to be considered in the use of optimization algorithms is the conver-
gence time of the algorithm, which will directly interfere into the dynamics of the system.
Proposals for optimization of use of physical resources are complementary to automatic
migration systems and can be used to manage migrations. Trends show that a key research
theme is matching the tradeoff between optimizing physical resource usage and limiting
the number of migrations into the network.

A major research topic that arises is securing virtual machine migration. Our studies
show that there is no proposal that achieves a complete secure live migration primitive.
Security must be deployed all long the development of a virtualization system. It must
be present since the hypervisor, which should be reliable, trustworthy, and should provide
secure virtualized environment, till the migration procedure, which should authenticate
peers, check the trust of the foreign peer, and ensure a confidential channel between peers
for transferring the virtual machine. Security must also be ensured for all resources used
by a virtual machine. Isolation is a key challenge for network virtualization, as availability
is another key challenge for storage virtualization. Confidentiality is an open topic while
virtualizing memory. Trust warranting is a trend of research, in which we identified some
works proposing protocols and new approaches [54]. We believe that providing security
for virtualized environments is a hot research topic, in which the proposals still are initial
and immature. Therefore, trends show that new security mechanisms should be proposed
for guaranteeing a securer virtualizing system.

1.6 Conclusion

Virtual Machine Migration is one of the most useful primitive introduced by virtualiza-
tion technique. Virtual Machine Migration stands for the relocation of virtual computing
environments over the physical infrastructure. The main idea of the migration primitive is
to remap virtual resources into physical resources without disrupting the function of the
virtual resources. We consider Virtual Machine Migration of particular interest for cloud
computing environments and for network virtualization approaches. We claim that migra-
tion is a powerful tool for fitting computer capacity to dynamic workloads, facilitating user
mobility, improving energy savings, and managing failures. In a network virtualization
scenario, virtual machine migration plays the hole of flexibly changing network topologies
without constraining the physical realization of the virtual topology. Nevertheless, virtual
machine migration is both challenging in its realization and in its security guarantees.

In this chapter, we explained that live migration is the key migration mechanism of most
of current hypervisor. We identified that the key resource to migrate is the virtual machine
memory, as it is constantly updated during the migration process. We also discussed how
to migrate storage service of virtual machines through wide area networks. Moreover, we
present a network virtualization approach, called XenFlow, which focuses on migrating
virtual networks, without losing packets or disrupting network services. Besides the tech-
nical difficulties of migrating a virtual machine, while it is running, we also highlighted
how to assure that a virtual machine migration occurs in a secure environment.



REFERENCES

1. T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud:
Exploring information leakage in third-party compute clouds,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security, ser. CCS ’09. New York, NY, USA:
ACM, 2009, pp. 199–212. [Online]. Available: http://doi.acm.org/10.1145/1653662.1653687

2. Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide lifetime hypervisor
control-flow integrity,” in Security and Privacy (SP), 2010 IEEE Symposium on, May 2010, pp.
380–395.

3. M. Pearce, S. Zeadally, and R. Hunt, “Virtualization: Issues, security threats, and solutions,”
ACM Comput. Surv., vol. 45, no. 2, pp. 17:1–17:39, Mar. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2431211.2431216

4. Z. Pan, Y. Dong, Y. Chen, L. Zhang, and Z. Zhang, “Compsc: Live migration with
pass-through devices,” SIGPLAN Not., vol. 47, no. 7, pp. 109–120, Mar. 2012. [Online].
Available: http://doi.acm.org/10.1145/2365864.2151040

5. L. H. G. Ferraz, D. M. F. Mattos, and O. C. M. B. Duarte, “A two-phase multipathing scheme
with genetic algorithm for data center network,” IEEE Global Communications Conference -
GLOBECOM (to appear), December 2014.

6. O. C. M. B. Duarte and G. Pujolle, Virtual Networks: Pluralistic Approach for the Next Gener-
ation of Internet. John Wiley & Sons, 2013.

7. I. M. Moraes, D. M. Mattos, L. H. G. Ferraz, M. E. M. Campista, M. G. Rubinstein, L. H. M.
Costa, M. D. de Amorim, P. B. Velloso, O. C. M. Duarte, and G. Pujolle, “FITS: A flexible
virtual network testbed architecture,” Computer Networks, no. 0, pp. –, 2014.

8. H. T. Mouftah, H. T. Mouftah, and B. Kantarci, Communication Infrastructures for Cloud
Computing, 1st ed. Hershey, PA, USA: IGI Global, 2013.

title, edition.
By author Copyright c© 2014 John Wiley & Sons, Inc.

19



20 REFERENCES

9. S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and L. van Doorn, “vtpm: Virtualiz-
ing the trusted platform module,” in Proceedings of the 15th Conference on USENIX Security
Symposium - Volume 15, ser. USENIX-SS’06. USENIX Association, 2006.

10. X. Wan, X. Zhang, L. Chen, and J. Zhu, “An improved vtpm migration protocol based trusted
channel,” in Systems and Informatics (ICSAI), 2012 International Conference on, May 2012,
pp. 870–875.

11. M. Aslam, C. Gehrmann, and M. Bjorkman, “Security and trust preserving VM migrations in
public clouds,” in Trust, Security and Privacy in Computing and Communications (TrustCom),
2012 IEEE 11th International Conference on, June 2012, pp. 869–876.

12. D. M. F. Mattos and O. C. M. B. Duarte, “XenFlow: Seamless migration primitive and quality
of service for virtual networks,” IEEE Global Communications Conference - GLOBECOM (to
appear), December 2014.

13. Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford, “Virtual
routers on the move: Live router migration as a network-management primitive,” in
Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication, ser.
SIGCOMM ’08. New York, NY, USA: ACM, 2008, pp. 231–242. [Online]. Available:
http://doi.acm.org/10.1145/1402958.1402985

14. P. Pisa, N. Fernandes, H. Carvalho, M. Moreira, M. Campista, L. Costa, and O. Duarte, “Open-
flow and xen-based virtual network migration,” in Communications: Wireless in Developing
Countries and Networks of the Future, ser. IFIP Advances in Information and Communication
Technology, A. Pont, G. Pujolle, and S. Raghavan, Eds. Springer Boston, 2010, vol. 327, pp.
170–181.

15. C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield, “Live mi-
gration of virtual machines,” in Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2. USENIX Association, 2005, pp. 273–286.

16. S. Venkatesha, S. Sadhu, and S. Kintali, “Survey of virtual machine migration techniques,”
Department of Computer Science - University of California, Santa Barbara, CA, U.S.A, Tech.
Rep., Mar. 2009.

17. J. Suzuki, Y. Hidaka, J. Higuchi, T. Baba, N. Kami, and T. Yoshikawa, “Multi-root share of
single-root i/o virtualization (sr-iov) compliant pci express device,” in High Performance Inter-
connects (HOTI), 2010 IEEE 18th Annual Symposium on, Aug 2010, pp. 25–31.

18. E. Zhai, G. D. Cummings, and Y. Dong, “Live migration with pass-through device for linux
vm,” in OLS’08: The 2008 Ottawa Linux Symposium, 2008, pp. 261–268.

19. N. Fernandes, M. Moreira, I. Moraes, L. Ferraz, R. Couto, H. Carvalho, M. Campista, L. Costa,
and O. Duarte, “Virtual networks: Isolation, performance, and trends,” Annals of Telecommu-
nications, pp. 1–17, 2010.

20. N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy, “Towards high per-
formance virtual routers on commodity hardware,” in Proceedings of the 2008 ACM CoNEXT
Conference. ACM, 2008, pp. 1–12.

21. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “OpenFlow: enabling innovation in campus networks,” SIGCOMM Comput.
Commun. Rev., 2008, Mar. 2008.

22. M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani, Q. Zhang, and
M. Zhani, “Data center network virtualization: A survey,” Communications Surveys Tutorials,
IEEE, vol. 15, no. 2, pp. 909–928, 2013.

23. R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McKeown, and G. Parulkar,
“Flowvisor: A network virtualization layer,” Tech. Rep. OPENFLOW-TR-2009-01, OpenFlow
Consortium, Tech. Rep., 2009.



REFERENCES 21

24. M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing the network forwarding
plane,” in Proceedings of the Workshop on Programmable Routers for Extensible Services of
Tomorrow. ACM, 2010, p. 8.

25. V. Melvin, “Dynamic load balancing based on live migration of virtual machines: Security
threats and effects,” Master’s thesis, B. Thomas Golisano College of Computing and Informa-
tion Sciences (GCCIS) - Rochester Institute of Technology, Rochester, NY, U.S.A, 2011.

26. Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and research
challenges,” Journal of Internet Services and Applications, vol. 1, no. 1, pp. 7–18, 2010.
[Online]. Available: http://dx.doi.org/10.1007/s13174-010-0007-6

27. T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A virtual machine-based
platform for trusted computing,” in Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, ser. SOSP ’03. New York, NY, USA: ACM, 2003, pp.
193–206. [Online]. Available: http://doi.acm.org/10.1145/945445.945464

28. J. Oberheide, E. Cooke, and F. Jahanian, “Empirical exploitation of live virtual machine migra-
tion,” in Proc. of BlackHat DC convention, 2008.

29. B. Danev, R. J. Masti, G. O. Karame, and S. Capkun, “Enabling secure VM-vTPM migration
in private clouds,” in Proceedings of the 27th Annual Computer Security Applications
Conference, ser. ACSAC ’11. New York, NY, USA: ACM, 2011, pp. 187–196. [Online].
Available: http://doi.acm.org/10.1145/2076732.2076759

30. D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM side—channel(s),”
in Cryptographic Hardware and Embedded Systems - CHES 2002, ser. Lecture Notes in
Computer Science, B. S. Kaliski, c. K. Koç, and C. Paar, Eds. Springer Berlin Heidelberg,
2003, vol. 2523, pp. 29–45. [Online]. Available: http://dx.doi.org/10.1007/3-540-36400-5 4

31. P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems,” in Advances in Cryptology — CRYPTO ’96, ser. Lecture Notes in Computer
Science, N. Koblitz, Ed. Springer Berlin Heidelberg, 1996, vol. 1109, pp. 104–113. [Online].
Available: http://dx.doi.org/10.1007/3-540-68697-5 9

32. P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in
Cryptology — CRYPTO’ 99, ser. Lecture Notes in Computer Science, M. Wiener,
Ed. Springer Berlin Heidelberg, 1999, vol. 1666, pp. 388–397. [Online]. Available:
http://dx.doi.org/10.1007/3-540-48405-1 25

33. D. Brumley and D. Boneh, “Remote timing attacks are practical,” Computer Networks,
vol. 48, no. 5, pp. 701 – 716, 2005, web Security. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1389128605000125

34. C. Fung, D. Lam, and R. Boutaba, “RevMatch: An Efficient and Robust Decision Model for
Collaborative Malware Detection,” in IEEE/IFIP Network Operation and Management Sympo-
sium (NOMS14), 2014.

35. D. Perez-Botero, J. Szefer, and R. B. Lee, “Characterizing hypervisor vulnerabilities in cloud
computing servers,” in Proceedings of the 2013 International Workshop on Security in Cloud
Computing, ser. Cloud Computing ’13. New York, NY, USA: ACM, 2013, pp. 3–10.
[Online]. Available: http://doi.acm.org/10.1145/2484402.2484406

36. D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and dependable software-defined
networks,” in Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp. 55–60.

37. J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary, “Netlord: a scalable multi-
tenant network architecture for virtualized datacenters,” in Proceedings of the ACM SIGCOMM
2011, ser. SIGCOMM ’11. Toronto, Ontario, Canada: ACM, 2011, pp. 62–73.

38. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta, “Vl2: a scalable and flexible data center network,” in Proceedings of the ACM
SIGCOMM 2009, ser. SIGCOMM ’09. New York, NY, USA: ACM, 2009, pp. 51–62.



22 REFERENCES

39. K. Barabash, R. Cohen, D. Hadas, V. Jain, R. Recio, and B. Rochwerger, “A case for overlays
in DCN virtualization,” in Proceedings of the 3rd Workshop on Data Center - Converged and
Virtual Ethernet Switching, ser. DC-CaVES ’11. ITCP, 2011, pp. 30–37.

40. Y. Nakagawa, K. Hyoudou, and T. Shimizu, “A management method of IP multicast in overlay
networks using openflow,” in Proceedings of the first workshop on Hot topics in software
defined networks, ser. HotSDN ’12. Helsinki, Finland: ACM, 2012, pp. 91–96. [Online].
Available: http://doi.acm.org/10.1145/2342441.2342460

41. M. Sridharan, K. Duda, I. Ganga, A. Greenberg, G. Lin, M. Pearson, and
P. Thaler, “NVGRE: Network Virtualization using Generic Routing Encapsula-
tion,” NVGRE, Internet Engineering Task Force, Feb. 2013. [Online]. Available:
http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-02

42. I. Houidi, W. Louati, D. Zeghlache, P. Papadimitriou, and L. Mathy, “Adaptive virtual net-
work provisioning,” in Proceedings of the second ACM SIGCOMM workshop on Virtualized
infrastructure systems and architectures. ACM, 2010, pp. 41–48.

43. D. M. F. Mattos, N. C. Fernandes, V. T. da Costa, L. P. Cardoso, M. E. M. Campista, L. H. M. K.
Costa, and O. C. M. B. Duarte, “OMNI: Openflow management infrastructure,” in Network of
the Future (NOF), 2011 International Conference on the. IEEE, 2011, pp. 52–56.

44. W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S. Lee, and P. Yalagandula, “Automated
and scalable QoS control for network convergence,” Proc. INM/WREN, Apr. 2010.

45. R. McIlory and J. Sventek, “Resource virtualisation of network routers,” in High Performance
Switching and Routing, 2006 Workshop on. IEEE, 2006, pp. 6–pp.

46. R. Wang, D. Butnariu, and J. Rexford, “Openflow-based server load balancing gone wild,” in
Proceedings of the 11th USENIX conference on Hot topics in management of internet, cloud,
and enterprise networks and services. USENIX Association, 2011, pp. 12–12.

47. F. Hao, T. Lakshman, S. Mukherjee, and H. Song, “Enhancing dynamic cloud-based services
using network virtualization,” in Proceedings of the 1st ACM workshop on Virtualized infras-
tructure systems and architectures. ACM, 2009, pp. 37–44.

48. D. Phung, S. Secci, D. Saucez, and L. Iannone, “The openlisp control plane architecture,”
Network, IEEE, vol. 28, no. 2, pp. 34–40, March 2014.

49. P. Raad, S. Secci, D. C. Phung, A. Cianfrani, P. Gallard, and G. Pujolle, “Achieving sub-
second downtimes in large-scale virtual machine migrations with lisp,” Network and Service
Management, IEEE Transactions on, vol. 11, no. 2, pp. 133–143, Jun. 2014.

50. S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Proceedings of the
7th Symposium on Operating Systems Design and Implementation, ser. OSDI ’06.
Berkeley, CA, USA: USENIX Association, 2006, pp. 307–320. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1298455.1298485

51. I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “Vne-ac: Virtual network embedding
algorithm based on ant colony metaheuristic,” in Communications (ICC), 2011 IEEE Interna-
tional Conference on, 2011, pp. 1–6.

52. E. Rodriguez, G. Alkmim, D. Batista, and N. da Fonseca, “Live migration in green virtual-
ized networks,” in Communications (ICC), 2013 IEEE International Conference on, 2013, pp.
2262–2266.

53. G. P. Alkmim, D. M. Batista, and N. L. S. da Fonseca, “Mapping virtual networks onto
substrate networks,” Journal of Internet Services and Applications, vol. 4, no. 1, 2013.
[Online]. Available: http://dx.doi.org/10.1186/1869-0238-4-3

54. L. H. G. Ferraz, P. B. Velloso, and O. C. M. Duarte, “An accurate and precise malicious
node exclusion mechanism for ad hoc networks,” Ad Hoc Networks, vol. 19, no. 0,
pp. 142 – 155, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1570870514000468


