
Virtual Network Performance Evaluation for
Future Internet Architectures

Diogo M. F. Mattos, Lyno Henrique G. Ferraz,
Luı́s Henrique M. K. Costa, and Otto Carlos M. B. Duarte

Universidade Federal do Rio de Janeiro - GTA/COPPE/UFRJ
Rio de Janeiro, Brazil

Email: {menezes,lyno,luish,otto}@gta.ufrj.br

Abstract— Internet Service Providers resist innovating in
the network core, fearing that deploying a new protocol
or service compromises the network operation and their
profit, as a consequence. Therefore, a new Internet model,
called Future Internet, which enables core innovation, must
accommodate new protocols and services with the current
scenario, isolating each protocol stack from others. Vir-
tualization is the key technique that provides concurrent
protocol stack capability to the Future Internet elements. In
this paper, we evaluate the performance of three widespread
virtualization tools, Xen, VMware, and OpenVZ, considering
their use for router virtualization. We conduct experiments
with benchmarking tools to measure the overhead intro-
duced by virtualization in terms of memory, processor,
network, and disk performance of virtual routers running
on commodity hardware. We also evaluate the effects of
the increasing number of virtual machines on Xen network
virtualization mechanism. Our results show that Xen best fits
virtual router requirements. Moreover, Xen fairly shares the
network access among virtual routers, but needs further en-
hancement when multiple virtual machines simultaneously
forward traffic.

Index Terms— Xen, OpenVZ, VMware, Hypervisor, Virtual
Router, Pluralism, Future Internet.

I. INTRODUCTION

The Internet success is mainly based on two pillars, the
end-to-end data transfer service and the TCP/IP stack.
The intelligence of the network is placed at the end
systems, while the network core is simple and transpar-
ent. The TCP/IP model, however, has some structural
issues that are difficult to solve, like scalability, mobility,
management, and security [1]–[3]. Furthermore, the de-
ployment of innovations on the network core is difficult
because Internet Service Providers have no practical way
to experiment new protocols and services in realistic
scenarios without disturbing the running services. Cur-
rent trends point to a new Internet architecture, which
must provide flexibility and support for innovation in
the network core [4]. Hence, many proposals for the
Future Internet [5], [6] advocate a network model with

This paper is based on “Evaluating Virtual Router Performance for a
Pluralist Future Internet,” by D. M. F. Mattos, L. H. G. Ferraz, L. H. M.
K. Costa, and O. C. M. B. Duarte, which appeared in the Proceedings
of the 3th International Conference on Information and Communication
Systems (ICICS 2012), Irbid, Jordan, April 2012.

This work was supported by FINEP, FUNTTEL, CNPq, CAPES,
FUJB, and FAPERJ.

multiple protocol stacks running simultaneously, called
pluralist model. A way to provide a pluralist network
is virtualizing router to allow multiple router instances
to share the same underlying substrate. In this sence,
the current Internet architecture may run in parallel with
other virtual networks, e.g., a secure network [7] or a
intelligence-oriented network [8], sharing the same phys-
ical substrate. Thus, virtualization is a key concept for a
pluralist architecture [9].

One of the key advantages of virtualization is isolating
logical environments from each other [10]. With virtual
routers, multiple network stacks are deployed over the
same physical substrate [11]. The virtual router concept
adds flexibility to Future Internet architectures and keeps
the new model backward compatible, as one of the virtual
routers runs the current TCP/IP stack. In this sense, one
powerful virtualizing technique is hardware virtualization,
since it allows multiple router operating systems run over
a hardware abstraction layer, which multiplexes the virtual
router accesses to the physical substrate. Nevertheless,
hardware virtualization introduces processing overhead to
control the access of the different OSes to the hardware.
In this paper, we devise the overhead and isolation prop-
erties of different hardware virtualization techniques. We
introduce a methodology to compare the different tools.

In this paper, we extend a previous work [1] in which
we study three widespread hardware virtualization tools,
VMware ESX [12], Xen [11], and OpenVZ [13]. Each one
implements a different virtualization technique. The main
difficulty to evaluate a virtualization tool is that common
benchmarking tools have their measurements distorted
by the time keeping inside the virtual environment [14].
Within a virtualized environment, the guest operation
system does not have access to physical time sources
or timer interrupts. Virtualized time system is usually
implemented through software emulation of the real time
devices. Thus, a difference between virtualized time and
real world time often exists. Common benchmark tools
use the guest OS time and get affected by the virtualized
time distortion. Therefore, we propose a methodology
to evaluate virtualized systems which is independent of
virtual environment time distortion. We use the proposed
methodology to evaluate the virtualization tools, and we
conclude that Xen is the one that best fits virtual router
requirements. Thus, we also analyze the performance

of a Xen virtual router. Our results show that Xen
virtual routers fairly share the network hardware access,
although the aggregated packet forwarding performance is
degraded as the number of virtual routers over the same
physical substrate increases. We also evaluate how new
hardware-assisted I/O virtualization technologies affects
Xen network virtualization performance.

Our proposed evaluation methodology differs from the
main proposals of virtualization tools benchmark because
it takes external time sources as reference, while the
conventional benchmarks take system specific variables
as reference. Indeed, two common performance evaluation
tools are VMmark [15] and Xenoprof [16]. The former
can only be used with VMware platform and consists
of measuring the score of processing several workloads
simultaneously within different virtual machines. The
latter is a profiler for Xen virtualization environment.
Xenoprof provides detailed information about each indi-
vidual process and routine running in the virtual machines
or in the Xen hypervisor. Xenoprof estimates the virtual-
ization overhead introduced by Xen. Xenoprof, however,
is specific to Xen. Our methodology, on the other hand,
is generic.

This paper is organized as follows. Section II analyzes
the considered virtualization tools and their main charac-
teristics. Section III presents our proposed methodology
and experimental setup. Section IV discusses the virtual-
ization tool evaluation results, and Section V investigates
our Xen virtual router evaluation results. Section VI
evaluates hardware assited Xen network virtualization
performance. Section VII concludes the paper and intro-
duces our future work.

II. VIRTUALIZATION TOOLS

Virtualization is a technology that allows sharing a
physical substrate among multiple systems. Virtualized
systems are isolated from each other, ignoring the ex-
istence of other systems sharing the same hardware. The
software layer that isolates the shared guest systems is
called Virtual Machine Monitor (VMM) or hypervisor.
We present three of the most well-known available hy-
pervisors: VMware, Xen, and OpenVZ. VMware and
Xen are hardware virtualization systems that virtualize
hardware resources such as CPU, memory, and I/O
guaranteeing high flexibility and isolation between the
virtualized systems [2]. OpenVZ, however, claims to be a
lightweight virtualization platform because it virtualizes
the OS kernel, creating multiple isolated user spaces [13].

A. VMware

Hereafter, we consider the VMware ESX Server prod-
uct, which is a datacenter virtualization platform that
implements the full virtualization technique, i.e., the
guest operating system is not modified or adapted to
run in a virtual environment [12]. It is mainly used for
server consolidation and it is one of most used enter-
prise virtualization software. VMware ESX Server aims

at guaranteeing virtual machine isolation and resource-
sharing fairness based on resource-allocation policies set
by the system administrator. Resource sharing is dynamic,
because resources can be allocated and re-allocated to
virtual machines on demand [12].

VMware architecture, as shown in Figure 1, is com-
posed of the Hardware Interface Components, the Virtual
Machine Monitor, the VMkernel, the Resource Man-
ager, and the Service Console. The Hardware Interface
Components are responsible for implementing hardware-
specific functions and create a hardware abstraction that is
provided to virtual machines. It makes Virtual Machines
hardware independent. The Virtual Machine Monitor
(VMM) is responsible for CPU virtualization, providing
a virtual CPU to each virtual machine. The VMkernel
controls and manages the hardware substrate. VMM and
VMkernel together implement the Virtualization Layer.
The Resource Manager is implemented by VMkernel.
It partitions the underlying physical resources among
the virtual machines, allocating the resources for each
one. VMkernel also implements the hardware interface
components. The Service Console implements a variety
of services such as bootstrapping, initiating execution
of virtualization layer and resource manager, and runs
applications that implements supporting, managing, and
administrative functions.

Figure 1. VMware architecture.

VMware ESX Server, as others virtualization tools,
virtualizes four main resources: CPU, memory, disk,
and network device. We will further detail bellow how
VMware virtualizes each resource.

CPU virtualization is done by setting a virtual CPU
for each virtual machine. The virtual machine does not
realize that it is running over a virtual CPU, because
virtual CPUs seem to have their own registers and con-
trol structures [12]. A virtual machine can have one or
two virtual CPUs. When it has more than one CPU, it
is called a Symmetric Multi-Processing (SMP) virtual
machine. The virtual machine monitor is responsible for
CPU virtualization, by setting system states and executing
instructions issued by the virtual machine.

In a virtualized environment, the guest operating system
runs in a lower privilege level than it was designed to
run. A classical approach to virtualize CPU resources

is trap-and-emulate, which is a technique in which the
virtual machine tries executing an instruction, and, if it
cannot be executed in a lower privilege level, the CPU
generates a trap that is treated by the VMM, which
emulates the instruction execution to the guest operating
system. Nevertheless, this technique does not work for the
x86 architecture, since it has instructions that are sensitive
to privilege level and would execute in a different way
than meant by the OS, without generating a trap. In order
to solve this issue and keep a satisfactory performance,
VMware combines two CPU virtualization techniques:
direct execution and CPU emulation. The instructions
from the user-space of a virtual machine are executed
directly on the physical CPU, a technique known as direct
execution. Instructions that are sensitive to privilege level
are trapped by the VMM, which emulates the instruction
execution, adding performance overhead. Combining both
techniques allows CPU intensive user-space applications
to have near-native performance. The performance loss
depends on the number of sensitive instructions that had
to be replaced.

CPU scheduling is made by the Resource Manager.
CPU scheduling is based on shares, which are units
used to measure how much time is given to each virtual
machine. CPU scheduling is proportional-share, meaning
that CPU time given to each virtual machine is propor-
tional to the amount of shares it has in comparison
with the total amount of shares in the system. In
a Symmetric Multi-Processing (SMP) virtual machine,
CPU allocation is different. Resource Manager schedules
the virtual CPUs one-to-one onto physical CPUs, and
tries executing them at the same time. VMware CPU
scheduling tries to keep fairness between virtual machines
CPU allocation. When a virtual machine is halted, or idle,
Resource Manager schedules its CPU time to other virtual
machines that are running.

VMware memory virtualization approach is to create
a new level of memory address translation. It is done
by providing each guest operating system a virtual page
table that is not visible to the memory-management
unit (MMU) [17]. Within a VMware virtualization en-
vironment, the guest operating system accesses a virtual
memory space provided to the virtual machine. The guest
operating system page table maintains the consistency
between guest virtual pages and guest virtual “physical”
pages. Guest virtual pages are virtual memory pages
within a virtual machine, as in a native operating system
virtual memory. However, guest virtual paging mechanism
cannot access directly the physical memory, it accesses
guest virtual “physical” memory. Guest virtual “physical”
memory is an abstraction of the physical memory. When
a guest operating system tries to execute an instruction
to access physical memory, this instruction is trapped
by the VMM and its address is translated to the real
physical address. Guest virtual “physical” memory is al-
ways contiguous, but can be mapped into non-contiguous
real physical memory. VMware memory sharing obeys
administration policies, which for example defines a min-

imum and a maximum amount of physical memory to be
accessed by a virtual machine. It is also possible to have
virtual machines consuming more than the total amount of
physical memory available on the physical machine. This
is possible because the host system can also do swap as in
a traditional virtual memory mechanism used in modern
OSes. The memory sharing scheduler works like the CPU
scheduler, but takes into account memory shares instead
of CPU shares.

VMware I/O virtualization approach is to emulate
performance-critical devices, such as disk and network
interface cards. Device accesses are emulated by the
VMkernel. The VMkernel calls the hardware interface
layer, which is responsible for accessing the device driver
and executing the operation on the physical hardware
device. For storage virtualization, a SCSI driver is pre-
sented to the virtual machine. Virtual machines access
this driver, the VMkernel traps driver access instructions
and implements virtual machine disks as files in the host
file system.

Concerning network I/O virtualization, VMware im-
plements the vmxnet [12] device driver, which is an
abstraction of the underlying physical device. When an
application wants to send data through the network, the
guest operating system processes the request and calls
the vmxnet device driver. The I/O request is intercepted
by the VMM and control is transferred to VMkernel.
VMkernel is independent of the physical device. It pro-
cesses the request, manages the various virtual machine
requests, and calls the hardware interface layer, which
implements the specific device driver. When data arrives
to the physical interface, the mechanism for sending it
to the specific virtual machine is the same, but in reverse
order. The main overhead introduced by this mechanism is
the context switching between the virtual machine and the
VMkernel. In order to decrease the overhead caused by
context switching, VMware ESX Server collects cluster
of sending or receiving network packets before doing a
context transition. This mechanism is only used when
packet rate is high enough, to avoid increasing packet
delays.

Summing up, VMware ESX Server is a full virtualiza-
tion tool which provides a number of management and
administrative tools. VMware ESX Server is focused on
datacenter virtualization. It provides a flexible and high-
performance CPU and memory virtualization. However,
I/O virtualization is still an issue, since it is done by em-
ulating the physical devices and involves context changes.

B. Xen

Xen is an open-source hypervisor designed to run
on commodity hardware platforms [17]. Xen allows to
simultaneously run multiple virtual machines on a single
physical machine. Xen implements the paravirtualization
technique, which enhances guest system performance
by changing its behavior to call the hypervisor when
necessary, avoiding the need of binary translation of
system instructions. Xen architecture is composed of

one hypervisor located above the physical hardware and
several virtual machines over the hypervisor, as shown
in Figure 2. Each virtual machine has its own operating
system and applications. The hypervisor controls the
access to the hardware and also manages the available
resources shared by virtual machines. In addition, device
drivers are kept in an isolated virtual machine, called
Domain 0 (dom0), in order to provide reliable and ef-
ficient hardware support [11]. Because dom0 has total
access to the hardware of the physical machine, it has
special privileges compared with other virtual machines,
referred to as user domains (domUs). On the other hand,
user domains have virtual drivers, called front-end drivers
(fe), which communicate with the back-end drivers (be)
located in dom0 to access the physical hardware. Next, we
briefly explain how Xen virtualizes each machine resource
of interest to a virtual router: processor, memory, and I/O
devices.

Figure 2. The Xen architecture.

Xen virtualizes the processor by assigning virtual CPUs
(vCPUs) to virtual machines. Virtual CPUs are the CPUs
that the running processes within each virtual machine can
see. The hypervisor maps vCPUs to physical CPUs. Xen
hypervisor implements a CPU scheduler that dynamically
maps a physical CPU to each vCPU during a certain
period. The default Xen scheduler is the Credit Sched-
uler [18], which makes a proportional CPU share. The
Credit scheduler allocates CPU resources to each virtual
machine (or, more specifically, to each vCPU) according
to weights assigned to virtual machines. The Credit sched-
uler can also be work conserving on Symmetric Multi-
Processing (SMP) hosts. This means that the scheduler
permits the physical CPUs to run at 100% if any virtual
machine has work to do. In a work-conserving scheduler
there is no limit on the amount of CPU resources that a
virtual machine can use [19].

Memory allocation in Xen is currently done statically.
Each virtual machine receives a fixed amount of memory
space which is specified at the time of its creation.
In addition, to require a minimal involvement from the
hypervisor, virtual machines are responsible for allocating
and managing the corresponding portion of the hardware
page tables. Each time a virtual machine requires a new
page table, it allocates and initializes a page from its own

memory space and registers it with the Xen hypervisor,
which is responsible to ensure isolation.

In Xen, data from I/O devices is transferred to and from
each virtual machine using shared-memory asynchronous
buffer descriptor rings. The task of Xen hypervisor is to
perform validation checks, e.g., checking that buffers are
contained within a virtual machine memory space. Dom0
access I/O devices directly by using its native device
drivers and also performs I/O operations on behalf of
user domains (domUs). On the other hand, user domains
employ their back-end drivers to request device access
from dom0 [20]. A special case of I/O virtualization
is network virtualization, which is responsible for de-
multiplexing incoming packets from physical interfaces
to virtual machines and also for multiplexing outgoing
packets generated by virtual machines. For each domU,
Xen creates the virtual network interfaces required by this
domU. These interfaces are called front-end interfaces (fe)
and are used by domUs for all of its network communi-
cations. Furthermore, back-end interfaces (be)are created
in dom0, corresponding to each front-end interface in a
user domain. In order to exchange data between back-
end and front-end interfaces, Xen uses an I/O channel,
which employs a zero-copy mechanism. This mechanism
remaps the physical page containing the data into the
target domain [20]. Back-end interfaces act as the proxy
for the virtual interfaces in dom0. Front-end and back-
end interfaces are connected to each other through the
I/O channel. In Figure 2, back-end interfaces in dom0
are connected to the physical interfaces and also to
each other through a virtual network bridge. This default
architecture used by Xen is called bridged mode. Thus,
both the I/O channel and the network bridge establish a
communication path between the virtual interfaces created
in user domains and the physical interface.

C. OpenVZ

OpenVZ is an open-source operating system-level vir-
tualization tool. OpenVZ allows multiple isolated ex-
ecution environments over a single operating system
kernel. Each isolated execution environment is called
a Virtual Private Server (VPS). A VPS looks like a
physical server, having its own processes, users, files, IP
addresses, system configuration, and providing full root
shell access. OpenVZ claims to be the virtualization tool
which introduces less overhead, because each VPS shares
the same operating system kernel, providing a high-
level virtualization abstraction. The main usages for this
virtualization technology are in web hosting, providing
every customer a complete Linux environment, and in
information technology (IT) education institutions, pro-
viding every student a Linux server that can be monitored
and managed remotely [13]. Despite the small overhead
introduced by OpenVZ, it is less flexible than other vir-
tualization tools, like VMware or Xen, because OpenVZ
execution environments have to be a Linux distribution,
based on the same operating system kernel of the physical
server.

OpenVZ architecture, as shown in Figure 3, is com-
posed of a modified Linux kernel that runs above the
hardware. The OpenVZ modified kernel implements vir-
tualization and isolation of several subsystems, resource
management and checkpoints [13]. In addition, I/O vir-
tualization mechanisms are provided by the OpenVZ
modified kernel, which has a device driver for each I/O
device. This modified kernel implements also a two-
level process scheduler which is responsible of, in the
first level, defining which VPS will run and, in the
second level, on deciding which VPS process will run.
The two-level scheduler and some features that provide
isolation between VPSs form the OpenVZ Virtualization
Layer. VPSs run above the OpenVZ Virtualization Layer.
Each VPS has its own set of applications and packages,
which are segmentations of certain Linux Distributions
that contains applications or services. Therefore a VPS
can have its own services and applications independent
of each other.

Figure 3. The OpenVZ architecture.

Resource virtualization in OpenVZ is done by allowing
or prohibiting a VPS to access a resource on the physical
server. In general, resources in OpenVZ are not emulated,
they are shared among VPSs. In order to define the
amount of each resource that is guaranteed for each VPS,
a number of counters (about 20) are defined in VPS
configuration file. Next, we further detail how OpenVZ
virtualizes the processor, memory, and disk and network
devices.

For processor virtualization, OpenVZ implements a
two-level CPU scheduler [13]. In the first level, the
virtualization layer decides which VPS will execute for
each time slice, taking into account the VPS CPU priority,
measured in cpuunits. On the level-2 scheduler, which
runs inside the VPS, the standard Linux scheduler defines
which process will execute for each time slice, taking into
account the standard process priority parameters.

OpenVZ allows VPSs to directly access the memory.
Moreover, it is more flexible than other virtualization
technologies, such as Xen. During VPS execution, the
memory amount dedicated to one VPS can be dynami-
cally changed by the host administrator. OpenVZ kernel
manages VPSs memory space to keep in physical memory
a block of the virtual memory corresponding to the

running VPS.
OpenVZ virtual disk is a partition of the host file

system. Similarly to CPU scheduling, OpenVZ disk usage
is determined by a two-level disk quota. On the first level,
OpenVZ virtualization layer defines a disk quota for each
VPS, for example by limiting the maximum size of folder
in the host file system. On the second level, it is possible
to define disk quotas for users and groups in a VPS, using
standard Linux quota mechanisms.

Network virtualization layer isolates VPSs from each
other and from the physical network [13]. The default
network virtualization mechanism of OpenVZ creates a
virtual network interface for a VPS and assigns an IP ad-
dress to it in the host system. When a packet arrives to the
host system with the destination IP address of a VPS, the
host system routes the packet to the corresponding VPS.
This approach simplifies network virtualization because
allows VPS to receive and to send packets using the host
system routing module, but introduces an additional hop
in the route packets follow.

Summing up, OpenVZ provides a high-level virtualiza-
tion abstraction and, thus, it claims to introduce less over-
head than other virtualization tools. On the other hand, it
is more restrictive in terms of the virtual environments
that have to share the physical host system kernel.

III. EVALUATION OF THE HYPERVISORS

The main task of a router is to forward packets. The ba-
sic operation is to receive a packet, check the forwarding
table for the packet destination, and forward the packet
to the outgoing network interface. Therefore, the main
resources of interest for a router are networking, mem-
ory, and processing. Therefore, we evaluate networking
throughput, memory access, and processing capacity, in
order to assess which hypervisor has the most satisfactory
performance for router virtualization. Although hard disk
access performance is not critical for router virtualization,
we also consider the hard disk virtualization performance
to provide a more complete analysis. To provide a fair
comparison, we run different tests to evaluate CPU, RAM,
storage, and networking performance of the virtualized
environments. Our main performance metric is the period
of time required for each tool to perform a specific task.
We use the following versions of the three hypervisors:
Xen 3.2-1, VMware ESX 3.5, and Debian Linux Kernel
2.6.26-amd64 with OpenVZ support. All tools are con-
sidered with no modifications, tunings, or enhancements.
We also present the results for a native Linux environment
as a reference value. We expect that the results for
the virtualized scenarios will be equal or worse than
the reference values, as a consequence of the overhead
introduced by virtualization.

A. Methodology

Evaluating the virtualization overhead is not a trivial
task. Whitepapers from VMware [21] and XenSource [22]

compare the performance of the two hypervisors produc-
ing different conclusions. When virtualization is imple-
mented, several issues arise from the fact that hardware
is being shared by virtual machines. One of the problems
specifically related to performance measuring is how the
hypervisor provides the timekeeping mechanisms to the
virtual machine [14]. There are several ways to keep track
of time in a personal computer, like reading BIOS clock,
using CPU registers like the Time Stamp Counter (TSC),
or requesting system time from the OS. For the system
timekeeping mechanism, Xen constantly synchronizes the
virtual machine clock with the clock of Domain 0 by
sending correct time information through shared memory
between Domain U and the hypervisor. With that solution,
system timekeeping is correct for most of the applications
but, for applications that sample time more frequently
than the virtual machine clock is being synchronized,
a cumulative time measurement error may occur. To
avoid such error, we do not consider timekeeping from
the virtual machine in our tests, but instead we use an
alternative time measurement procedure.

We use a different virtualization benchmarking method-
ology based on an external time measuring mechanism
to evaluate the performance of the hypervisors. The
methodology consists of running standard benchmarking
tools within the virtualized system, but instead of relying
on benchmark time information, the time information is
provided by an external mechanism. This mechanism is
implemented over a point-to-point network link between
the target machine and the external time-measuring ma-
chine. Over this link, the target machine sends an ICMP
Echo request to the time-measuring machine. At this
moment, it starts a timer. After the target machine com-
pletes its job, another ICMP Echo request packet is
sent, and the time-measuring machine stops the timer. As
a result, the responsibility of reporting the time difference
relies on a non-virtualized system.

Based on the proposed methodology, we evaluate the
overhead of the different hypervisors in terms of processor
usage, disk access performance, and memory access per-
formance. Nevertheless, this methodology is not needed
to networking I/O. For the networking tests, the metric of
interest is the throughput achieved by the virtual routers
both when receiving and sending. For this kind of tests,
it is necessary to have at least two computers, one for
generating and another one for receiving traffic. Only
one computer needs to be virtualized. The remaining
non-virtualized system measures the amount of bits and
the time difference, which are therefore not affected by
virtualization.

IV. EXPERIMENTAL RESULTS

Our experimental setup is composed of a physical
server, a traffic generator machine and a time measuring
machine, as shown in Figure 4. The physical server
that hosts the virtualized environments is an HP Proliant
DL380 Generation 5 server equipped with two Quad
Core Intel Xeon processors (2.83 GHz each), 10 GB of

Figure 4. Experimental setup.

RAM, and an integrated 2-port Broadcom Nextreme II
gigabit network interface. The traffic generator machine
sends packets to the system under test or receives in
the reverse-traffic test. The traffic generator machine is
a desktop computer with an Intel motherboard, an Intel
2.4 GHz Core 2 Quad processor, 4 GB of RAM, and
an on-board Intel gigabit network interface. The role of
the Time Measuring Machine is to measure the period
of time required by a system under test to perform each
benchmark task. For that role we use a desktop computer
equipped with an Intel motherboard, an Intel 2.66 GHz
Core 2 Duo processor, 2 GB of system memory, and an
on-board Intel gigabit network interface. All results are
shown with a 95% confidence interval.

A. Processor Performance

In order to evaluate CPU virtualization overhead, we
perform CPU-intensive workloads using the Super Pi
benchmark. It is based on the Gauss-Legendre algorithm
to compute the π value. The Gauss-Legendre algorithm is
iterative and does many arithmetic operations. We execute
the Super Pi benchmark to compute the Pi value with 222

digits.
The mean execution time for a round of the Super-Pi

test is shown in Fig. 5(a), smaller values are faster and,
consequently, better. The virtualization tools and native
Linux are spread along the horizontal axis. Fig. 5(a) indi-
cates that all virtualization tools introduce an overhead in
processor usage. The smallest overhead is introduced by
the Xen Hypervisor, which implements the paravirtualiza-
tion technique. VMware introduces the bigger overhead in
processor usage, because it uses full virtualization, where
each instruction that generates a fault is trapped by the
hypervisor. The hypervisor simulates its execution and
then returns the result to the application in the virtual
machine. This overhead is larger than using paravirtu-
alization, where an instruction that would generate a
fault is modified to execute directly over the hypervisor.
OpenVZ has an overhead slightly higher than Xen, due
to the scheduling mechanism to share CPU among the
containers. Xen CPU scheduling involves vCPU context
switching, whereas OpenVZ schedules VPSes and, inside
a VPS, process over a single OS kernel context.

 0

 20

 40

 60

 80

 100

SuperPi

E
xe

cu
tio

n
T

im
e

(i
n

se
co

nd
s)

Native Linux
Xen

VMware
OpenVz

(a) Mean execution time for Super Pi benchmark.

 0

 20

 40

 60

 80

 100

 120

MASR

E
xe

cu
tio

n
T

im
e

(i
n

se
co

nd
s)

Native Linux
Xen

VMware
OpenVZ

(b) Mean execution time for MASR benchmark.

Figure 5. CPU and memory benchmark results.

B. Memory Performance

Memory access performance has significant influence
in the overall router performance [11]. We developed a
benchmarking tool, called MASR (Memory Allocation,
Set and Read), to evaluate the overhead caused by the
virtualization layer on virtual router memory access.
MASR benchmarks memory performance by allocating
2 GB of memory, setting sequential memory positions to
a fixed value and afterwards reading each one. MASR was
developed for benchmarking memory with a deterministic
number of operations, independently of the performance
of the computer. The main focus of common memory
benchmarks is to determine writing or reading data rates
on memory. On the other hand, MASR focus is to execute
deterministic memory writings and readings, indepen-
dently of the virtualization tool, to allow comparing the
time taken to execute the same set of memory operations
between each virtual machines tools.

Fig. 5(b) shows the results for the MASR benchmark.
The mean execution time for a round of the test is
shown in the vertical axis. OpenVZ is the virtualization
tool that introduces less overhead in memory access.
OpenVZ directly accesses the memory, then a virtual
environment accesses memory as an application accesses
virtual memory pages on a native operating system. As a
consequence, OpenVZ performs similar to native Linux.
On the other hand, Xen hypervisor statically allocates
memory areas to each virtual environment. A Xen virtual
machine accesses a portion of the total system memory.

 0

 50

 100

 150

 200

 250

 300

 350

 400

Bonnie++

E
xe

cu
tio

n
T

im
e

(i
n

se
co

nd
s)

Native Linux
Xen

VMware
OpenVZ

(a) Mean execution time for Bonie++ benchmark.

 0

 10

 20

 30

 40

 50

 60

 70

 80

ZFG

E
xe

cu
tio

n
T

im
e

(i
n

se
co

nd
s)

Native Linux
Xen

VMware
OpenVZ

(b) Mean execution time for ZFG benchmark.

Figure 6. Disk benchmark results.

As Xen employs paravirtualization, the virtual machine
is aware of its address space and directly handles the
physical address, improving the memory access perfor-
mance. VMware has worse memory access performance
than the others. VMware implements memory translation.
As it is fully virtualized, a virtual machine is unaware
that it runs over a hypervisor, and when it tries to access
memory, the memory instructions are trapped by the
hypervisor. The hypervisor translates and executes the
memory access instruction, and then gives the result to
the virtual machine. Hence, it introduces a larger overhead
than the other hypervisors.

C. Hard Disk Performance

For sake of completeness, we also analyze the hard disk
access performance even though this resource is the least
important for a virtual router. We aim at measuring the
virtualization overhead of disk writing and reading tasks,
and compare the overhead obtained by each hypervisor.
We use two different benchmarking tools. The first one
is Bonnie++, an open-source disk benchmarking tool that
simulates some file operations, such as creating, reading
and deleting small files [23]. Bonnie++ also tests the
performance of accessing different regions of the hard
disk, reading sectors at the beginning, middle, and end of
the hard disk. The second tool, developed by the authors,
is ZFG (Zero File Generator), which was designed to run
within virtualized systems. ZFG benchmarks the hard disk
continuous writing speed by writing ten times a 2 GB

 0

 200

 400

 600

 800

 1000

 1200

Iperf UDP Transmission

T
hr

ou
gh

pu
t (

in
 M

b/
s)

Native Linux
Xen

VMware
OpenVZ

(a) Traffic transmission throughput experiment.

 0

 200

 400

 600

 800

 1000

 1200

Iperf UDP Reception

T
hr

ou
gh

pu
t (

in
 M

b/
s)

Native Linux
Xen

VMware
OpenVZ

(b) Traffic reception throughput experiment.

Figure 7. Network benchmark results.

binary file filled with zeros. The main feature of this tool
is that it writes some dump information on disk during the
time between two rounds. This is important to guarantee
that the time elapsed in each round is actually the time
spent by the virtual machine to write the file on the disk.
If that is not guaranteed, the measured time can be the
time that a virtual machine writes the file on a buffer,
whose content will be later written on physical disk by
the hypervisor. Common disk benchmark tools do not
guarantee these properties.

Fig. 6(a) and Fig. 6(b) present the hard disk access
performance comparison. The mean execution time for a
round of the test is shown in the vertical axis, smaller
values are better. The virtualization tools and native
Linux are along the horizontal axis. OpenVZ implements
hard disk access using the quota method provided by
native Linux. The difference between OpenVZ and native
Linux hard disk access is just that OpenVZ introduces
a scheduler to decide which virtual environment should
access the hard disk in each turn. As a consequence,
OpenVZ performs close to native Linux, as shown in
Fig. 6(a) and Fig. 6(b). On the other hand, Xen and
VMware perform poorly, especially with ZFG. As Xen
and VMware implement the hard disk resource as a virtual
abstraction of the physical hard disk, virtual machines
access an interface that is believed to be the real hard
disk. Writing and reading requests are trapped by the
hypervisors and properly handled. Therefore, this proce-
dure introduces a delay on disk access causing additional
processing overhead and memory page copies.

D. Networking Performance

A virtual router must be able to efficiently receive
packets and send them to the output interface. Hence,
the virtualization layer cannot degrade networking per-
formance. In order to evaluate the virtualization overhead
on networking performance, we adopted the Iperf [24]
tool for measuring the throughput from an external host
to the system under test, and vice-versa. We use an UDP
flow with data packets of 1472 bytes, which represents the
maximum size for a packet without fragmenting Ethernet
frames.

The networking evaluation results are shown in Fig. 8.
First of all, it is important to highlight that, for both traffic
transmission (Fig. 7(a)) and reception (Fig. 7(b)), native
Linux system achieves a throughput near the nominal
gigabit Ethernet transmission bit rate. Xen virtual machine
also achieves the same transmission and reception rates of
native Linux. This shows that Xen networking virtualiza-
tion mechanism is fast enough in sending/receiving pack-
ets to/from virtual machines and was not the bottleneck
in the evaluated scenario. On the other hand, VMware
and OpenVZ present a poor performance for network
virtualization.

VMware has a lower network performance than Xen,
but it is better than OpenVZ. VMware performs worse
than Xen, because it emulates a network device to the
virtual machine. Then, the virtual machine calls a generic
network device interface, which is mapped to hypervisors
functions, and after, mapped in devices functions. It also
implies on copying the packet twice to the memory: one
from the network interface to the hypervisor memory, and
other from hypervisor memory to the virtual machine
memory. Xen copies the packet to memory only once,
after that, it handles the descriptor of the memory address.
OpenVZ has the worst network performance because it
implements the network virtualization on higher level.
OpenVZ virtualization environment access protocols on
network device at IP layer, but does not access the
Ethernet layer. Hence, to send a packet to the virtual envi-
ronment and from the virtual environment to the network,
the OpenVZ hypervisor needs to route the packet between
host and virtual hosts. The additional hop introduced
by OpenVZ plus the scheduling time needed to run the
host and the virtual environment justifies its bad network
virtualization performance.

V. XEN VIRTUAL ROUTER EVALUATION

Xen performs better than VMware and OpenVZ for
network, therefore, we further investigate Xen as a pos-
sible platform for router virtualization and evaluate its
scalability. We analyze the packet forwarding capability
of a Xen virtual router for increasing routing table and
increasing number of virtual machines over the same
hypervisor.

The routing table size influences the packet forwarding
rate, because a large table increases the per-packet delay
on routing table lookup. The Linux kernel, however,
implements the routing table as a hash table. As a

consequence, there is no linear search over the routing
table and the next hop in packet route is discovered in
a constant time, regardless of the routing table size. To
confirm this fact, we conduct experiments in which a
virtual router is configured with routing tables with 1,000,
10,000, and 100,000 routes. The maximum routing table
size is fixed in 100,000 routes because this is a typical
size for the routing table of a BGP border router [25]. In
all scenarios, the packet forwarding rate does not change
due to the addition of new entries in the routing table.
Hence, Xen virtual router scales to the routing table size.

We also perform an evaluation of the fairness in Xen
network virtualization mechanism, whereas multiple vir-
tual machines share a single network interface card. In a
first experiment, whose results are shown in Fig. 8(a), we
instantiate from one up to four virtual machines over the
Xen hypervisor and set them to generate a network traffic
to an external computer. The generated traffic is an UDP
flow, with maximum Ethernet frame size, 1472 B. In this
scenario, using just one virtual machine, we achieve the
theoretical maximum Gigabit Ethernet bandwidth, which
is 969 Mb/s. The results show that, as the number of
virtual machines increases, each virtual machine achieves
a throughput that is inversely proportional to the number
of virtual machines. It is also important to observe that
the aggregated throughput is equally shared by all virtual
machines running on the same physical substrate. There-
fore, Xen network virtualization fairly scales to multiple
virtual machines.

 0

 200

 400

 600

 800

 1000

4 3 2 1

T
hr

ou
gh

pu
t (

in
 M

b/
s)

Number of VMs

1st VM
2nd VM
3rd VM
4th VM

(a) Network traffic transmission test.

 0

 40

 80

 120

 1 2 3 4A
gg

re
ga

te
d

Pa
ck

et
 F

or
w

ar
di

ng
 R

at
e

(k
p/

s)

Number of Virtual Machines

(b) Network traffic forwarding test.

Figure 8. Xen scalability tests with multiple virtual machines send-
ing/forwarding network traffic to the external computer.

We also evaluate the degradation of the packet for-

warding rate as the number of virtual routers increases.
In this experiment, the sending packet rate is 130 kp/s
and we measure the packet forwarding rate as the rate
of packets that reach the next-hop destination machine
after being forwarded by the virtual router. Fig. 8(b)
shows that, as the number of virtual routers running
in parallel increases, the traffic forwarding performance
degrades. It is a consequence of the processing capacity
starvation [19]. The CPU scheduler, which is responsible
for sharing the processor among all virtual routers, has
to switch context between a running virtual router and a
blocked one. The time consumed with context switching
comes at the expense of time for serving router vCPUs.
In this way, each virtual router is requesting to forward its
own traffic, but the available resources are being used by
the other virtual routers and for context switching. Hence,
the virtual routers drop packets, reducing the aggregated
packet forwarding rate. Our results show a 30% reduction
on the overall packet forwarding rate, when four virtual
routers are running over the same hypervisor.

VI. HARDWARE-ASSISTED NETWORK
VIRTUALIZATION

Xen hypervisor multiplexes virtual machine access to
the physical network interface cards using either bridge or
router modes. In bridge mode, packet forwarding among
Xen virtual interfaces and physical network interface
cards is performed as layer-2 forwarding. Thus, as a
packet arrives at a physical interface in Domain 0, the
bridge forwards packets to the correct virtual machine
according to their MAC addresses. The bridge mode
implements a software switch. On the other hand, the
router mode performs like an IP router. Therefore, when
a packet arrives at the network physical interface card in
Domain 0, it is forwarded to the correct virtual machine
according to its IP address. As the Domain 0 uses IP
addresses to forward packets to virtual machines, it has
valid routes to each virtual machine.

Besides bridge and router modes, another possible
way of implementing packet forwarding among virtual
routers and physical interface cards is using hardware-
assisted virtualization techniques. In this mode, virtual
routers directly access network interface cards, without
Xen hypervisor interference, such as the PCI-SIG Single
Root I/O Virtualization (SR-IOV) [26]. Hence, hardware-
assisted virtualization techniques improve I/O virtualiza-
tion performance, as they reduce hypervisor participation
into I/O operations. A single PCI Express (PCIe) device
with SR-IOV technology presents itself as multiple virtual
functions, which act as dedicated devices to different vir-
tual routers. Each virtual function is dedicated to a virtual
router that has direct access to the hardware instance as a
virtual device. Thus, it avoids context switching, control
overhead, and traffic classification tasks. In addition, it
also avoids extra memory copies when compared with
software switches for multiplexing I/O operations to ac-
cess physical devices.

We perform an evaluation of the forwarding packet rate
comparing Xen default network virtualization modes with
hardware assisted network I/O virtualization. Three com-
puters compose the experiment scenario. The computers
act as traffic generator (TG), as traffic receiver (TR) and
as traffic forwarder (TF), as shown in Figure 9(a).1

(a) Experiment topology.

 0

 200

 400

 600

 800

 0 200 400 600 800

R
ec

ep
ti

o
n

 R
at

e
(k

p
/s

)

Transmission Rate (kp/s)

Native Linux

Xen−sriov

Xen−router

Xen−bridge

(b) Packet forwarding rate for 64 Bytes packets.

Figure 9. Packet forwarding rate for a Xen virtual router with hardware-
assisted I/O virtualization.

Our experiment compares the routing of I/O hardware-
assisted virtualization with native Linux, Xen bridge
mode, and Xen router mode. The traffic generator (TG)
generates a flow of 64 bytes packets to the traffic receiver
(TR) through the traffic forwarder (TF). The main idea of
this experiment is measuring the maximum rate of packet
forwarding in the four scenarios. The native Linux sce-
nario is the theoretical maximum forwarding rate that the
physical router can achieve. In bridge mode, the packets
are switched between the physical and virtual interfaces.
In router mode, routing tables are created to forward pack-
ets among physical and virtual interfaces. Finally, when
virtualizing I/O with hardware-assisted techniques, each
virtual router directly accesses a virtual network function,
which is created by physical network devices according
to the PCI-SIG SR-IOV specification. Figure 9(b) shows
that native Linux forwarding scheme achieves packet
forwarding rates of up to 750 kp/s. Xen bridge and router
network virtualization modes perform worse and do not
achieve rates above 150 kp/s and 200 kp/s, respectively.
In Xen bridge and router modes, packets are first received
on a physical interface card by Domain 0, which forwards
packets to the virtual routers. Then, virtual routers forward

1The generator and receiver are servers equipped with two Intel
Xeon Quad-Core 2.93 GHz processors and 48 GB of RAM. The traffic
forwarder is a desktop computer equipped with an Intel i7 Quad-Core
3.06 GHz and an Intel E1G44ET network card, supporting SR-IOV I/O.
The kernel version of the physical machines is 2.6.32-5, and virtual
router kernel is the 2.6.32-5-xen.

packets back to Domain 0, which sends them to their
next destination. This process overloads the virtual router
network access and, consequently, degrades the overall
network performance. In the scenario of I/O virtualization
with SR-IOV, the hardware device itself classifies packets
addressed to the virtual routers, and virtual routers directly
access the physical device dedicated to each of them.
Hence, hardware-assisted I/O virtualization achieves a
packet forwarding rate similar to the one of native Linux.

VII. CONCLUSION

In this paper, we have investigated the virtualization
tool that best fits the requirements of a virtual router for a
pluralist Future Internet architecture. We have proposed a
new methodology for evaluating the overhead introduced
by the virtualization layer, considering more precise time
accounting. We performed CPU, memory, disk, and net-
working experiments. Our results show that OpenVZ is
the virtualization tool that introduces less overhead over
CPU, disk, and memory usage performing almost as well
as native Linux. On the other hand, OpenVZ requires the
same operating system (OS) and degrades for networking,
which is crucial for virtual routing. Xen presents the best
performance for networking and has a small overhead on
processor and memory usage. VMware, which provides
a fully virtualized environment, is flexible, but introduces
bigger overhead over all resources usage.

Xen provides multiple virtual environments, each one
with its complete OS environment, independent of other
virtual machines and of host OS. Xen virtual environment
performance is compatible with the virtual router require-
ments. Hence, Xen is the virtualization tool that presents
the best trade-off between performance and flexibility.
Therefore, it fits well for router virtualization require-
ments. Hence, we have also analyzed the performance and
the scalability of router virtualization over Xen. It scales
well for multiple virtual routers, running simultaneously,
and for increasing routing table size. In the first scenario,
as the number of virtual routers over a single physical
router increases and the transmitted throughput is main-
tained, the throughput of each router is equally reduced.
Nevertheless, the aggregated throughput is maintained. In
the second scenario, we increase the routing table size
and the packet forwarded rate remains the same.

Xen Hypervisor, however, must be enhanced to sup-
port a virtual router within a production network. Our
results have shown that, when submitted to a high packet
transmission rate, the packet forwarding rate is reduced
by 30% when running multiple virtual machines over
the same hypervisor. We also evaluate a new network
virtualization technique, in which each virtual router
directly accesses the physical device. Our results show
that applying this technique, a virtual router forwards the
same packet rate as a native Linux system. Therefore, our
future work focuses on developing Xen as virtual router
and deploying a virtual network testbed based on Xen.

ACKNOWLEDGMENT

We would like to thank Carlo Fragni and Marcelo D.
D. Moreira for their help with the benchmarking tools and
measurements.

REFERENCES

[1] D. M. F. Mattos, L. H. G. Ferraz, L. H. M. K. Costa, and
O. C. M. B. Duarte, “Evaluating virtual router performance
for a pluralist future Internet,” in Proceedings of the 3rd
International Conference on Information and Communica-
tion Systems, ser. ICICS ’12. Irbid, Jordan: ACM, Apr.
2012.

[2] N. Fernandes, M. Moreira, I. Moraes, L. Ferraz, R. Couto,
H. Carvalho, M. Campista, L. Costa, and O. Duarte, “Vir-
tual networks: isolation, performance, and trends,” Annals
of Telecommunications, vol. 66, pp. 339–355, Oct. 2011.

[3] P. Pisa, R. Couto, H. Carvalho, D. Neto, N. Fernandes,
M. Campista, L. Costa, O. Duarte, and G. Pujolle, “Vnext:
Virtual network management for Xen-based testbeds,” in
Network of the Future (NOF), 2011 International Confer-
ence on the, Nov. 2011, pp. 41–45.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S., and J. Turner, “OpenFlow: En-
abling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, pp. 69–
74, Apr. 2008.

[5] N. Feamster, L. Gao, and J. Rexford, “How to Lease
the Internet in your Spare Time,” SIGCOMM Comput.
Commun. Rev., vol. 37, pp. 61–64, Jan. 2007.

[6] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann,
R. Bless, A. Greenhalgh, A. Wundsam, M. Kind, O. Maen-
nel, and L. Mathy, “Network Virtualization Architecture:
Proposal and Initial Prototype,” in Proceedings of the 1st
ACM workshop on Virtualized infrastructure systems and
architectures, ser. VISA ’09. Barcelona, Spain: ACM,
Aug. 2009, pp. 63–72.

[7] S. Panda and V. Mangla, “Protecting data from the cyber
theft-a virulent disease,” Journal of Emerging Technologies
in Web Intelligence, vol. 2, no. 2, pp. 152–155, 2010.

[8] I. Lykourentzou, D. Vergados, E. Kapetanios, and
V. Loumos, “Collective intelligence systems: Classification
and modeling,” Journal of Emerging Technologies in Web
Intelligence, vol. 3, no. 3, pp. 217–226, 2011.

[9] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker,
“Virtualizing the network forwarding plane,” ser. PRESTO
’10, Nov. 2010, pp. 8:1–8:6.

[10] N. Fernandes and O. Duarte, “XNetMon: A network
monitor for securing virtual networks,” in Communications
(ICC), 2011 IEEE International Conference on, June 2011,
pp. 1–5.

[11] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, L. Mathy,
and T. Schooley, “Evaluating Xen for router virtualization,”
in International Workshop on Performance Modeling and
Evaluation (PMECT), Aug. 2007.

[12] VMware ESX Server 2 Architecture and Performance Im-
plications, VMWare Inc, 2005.

[13] OpenVZ User’s Guide, SWsoft Inc, 2005.
[14] S. Chen, M. Zhu, and L. Xiao, “Implementation of virtual

time system for the distributed virtual machine moni-
tor,” IEEE/ISECS International Colloquium on Computing,
Communication, Control, and Management, Aug. 2009.

[15] V. Makhija, B. Herndon, P. Smith, L. Roderick, E. Zamost,
and J. Anderson, “VMmark: A scalable benchmark for vir-
tualized systems,” VMware Inc, CA, Tech. Rep. VMware-
TR-2006-002, Sept. 2006.

[16] D. Gupta, R. Gardner, and L. Cherkasova, “Xenmon: QoS
monitoring and performance profiling tool,” HP Labs,
Tech. Rep., 2005.

[17] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,” in Proceedings of the nine-
teenth ACM Symposium on Operating Systems Principles
- SOSP03, Oct. 2003.

[18] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling i/o in
virtual machine monitors,” in Proceedings of the fourth
ACM SIGPLAN/SIGOPS international conference on Vir-
tual execution environments, ser. VEE ’08. ACM, 2008,
pp. 1–10.

[19] R. S. Couto, M. E. M. Campista, and L. H. M. K. Costa,
“XTC: a throughput control mechanism for Xen-based
virtualized software routers,” in IEEE Global Communi-
cations Conference (GLOBECOM’2011), Houston, Texas,
USA, Dec. 2011.

[20] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing
network virtualization in Xen,” in USENIX Annual Tech-
nical Conference, May 2006, pp. 15–28.

[21] A Performance Comparison of Hypervi-
sors, VMWare Inc, 2007. [Online]. Available:
www.vmware.com/pdf/hypervisor performance.pdf

[22] A Performance Comparison of Commercial Hypervisors,
XenSource, Inc., 2007.

[23] R. Coker. (2012, June) Bonnie++ file-system benchmark.
[Online]. Available: http://www.coker.com.au/bonnie++/

[24] NLANR/DAST. (2012, June) Iperf. [Online]. Available:
http://iperf.sourceforge.net/

[25] T. Bates, P. Smith, and G. Huston. (2012, Jan.) BGP
Reports. [Online]. Available: http://bgp.potaroo.net/ipv4-
stats/prefixes adv pool.txt

[26] I. L. A. Division, “PCI-SIG SR-IOV primer, an introduc-
tion to SR-IOV technology,” Intel, Tech. Rep., Jan. 2011.

Diogo M. F. Mattos is currently a M.Sc. candidate at Uni-
versidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
He received the Computer Engineer degree from Universidade
Federal do Rio de Janeiro, Rio de Janeiro, in 2011. His research
interests include virtualization, software-defined networks, Fu-
ture Internet and network security.

Lyno Henrique G. Ferraz is currently pursuing his Ph.D. de-
gree in the Electrical Engineering Program at Federal University
of Rio de Janeiro (Rio de Janeiro, RJ, Brazil). He received
his B.Sc. and M.Sc. degrees in Electronical Engineering from
the Federal University of Rio de (Rio de Janeiro, RJ, Brazil)
in 2010 and 2011 respectively. His current research interests
include network virtualization, big data and cloud computing.

Luı́s Henrique M. K. Costa received the Electronics Engineer
degree and the M.Sc. in electrical engineering from the Federal
University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil,
in 1997 and 1998, respectively, and the Dr. degree from the
University Pierre et Marie Curie (Paris 6), Paris, France, in 2001.
Luis spent 2002 as a Post-Doctoral Researcher with Laboratoire
d’Informatique de Paris 6, Paris. Then, Luı́s was awarded a
research grant from CAPES (an agency of the Brazilian Ministry
of Education), and joined COPPE/UFRJ. Since August 2004, he
has been an Associate Professor with UFRJ. His major research
interests are in the area of routing, especially on wireless
networks, group communication, quality of service, multicast,
and large-scale routing.

Otto Carlos M. B. Duarte received the Electronics Engineer
degree and the M.Sc. degree in electrical engineering from
Universidade Federal do Rio de Janeiro, Brazil, in 1976 and
1981, respectively, and the Dr. Ing. degree from ENST/Paris,
France, in 1985. Since 1978, he has been a Professor with UFRJ.
His major research interests are in QoS guarantees, security and
big data.

