Evaluating Virtual Router Performance
for a Pluralist Future Internet

Diogo M. F. Mattos, Lyno Henrique G. Ferraz,

Luis Henrique M. K. Costa, and Otto Carlos M. B. Duarte
Universidade Federal do Rio de Janeiro - GTA/COPPE/UFRJ
Rio de Janeiro, Brazil
Email: {menezes, lyno, luish, otto} @gta.ufrj.br

Abstract—Internet Service Providers resist innovating in the
network core, fearing that deploying a new protocol or service
compromises the network operation and their profit, as a
consequence. Therefore, a new Internet model, called Future
Internet, which enables core innovation, must accommodate new
protocols and services with the current scenario, isolating each
protocol stack from others. Virtualization is the key technique
that provides concurrent protocol stack capability to the Future
Internet elements. In this paper, we evaluate the performance
of three widespread virtualization tools, Xen, VMware, and
OpenVZ, considering their use for router virtualization. We
conduct experiments with benchmarking tools to measure the
overhead introduced by virtualization in terms of memory,
processor, network, and disk performance of virtual routers
running on commodity hardware. We also evaluate the effects of
the increasing number of virtual machines on Xen network virtu-
alization mechanism. Qur results show that Xen best fits virtual
router requirements. Moreover, Xen fairly shares the network
access among virtual routers, but needs further enhancement
when multiple virtual machines simultaneously forward traffic.

Keywords-Xen; OpenVZ; VMware; Hypervisor; Virtual Router

I. INTRODUCTION

The Internet success is mainly based on two pillars, the
end-to-end data transfer service and the TCP/IP stack. The
intelligence of the network is placed at the end systems,
while the network core is simple and transparent. The TCP/IP
model, however, has some structural issues that are difficult to
solve, like scalability, mobility, management, and security [1].
Furthermore, the deployment of innovations on the network
core is difficult because Internet Service Providers have no
practical way to experiment new protocols and services in
realistic scenarios without disturbing the running services.
Current trends point to a new Internet architecture, which must
provide flexibility and support for innovation in the network
core [?]. Hence, many proposals for the Future Internet [B],
[@] advocate a network model with multiple protocol stacks
running simultaneously, called pluralist model. A way to pro-
vide a pluralist network is virtualizing router to allow multiple
router instances to share the same underlying substrate. Thus,
virtualization is a key concept for a pluralist architecture [S].

One of the key advantages of virtualization is isolating
logical environments from each other. With virtual routers,
multiple network stacks are deployed over the same physi-
cal substrate [B]. The virtual router concept adds flexibility
to Future Internet architectures and keeps the new model

This work was supported by FINEP, FUNTTEL, CNPq, CAPES, FUJB and
FAPERJ.

backward compatible, as one of the virtual routers runs the
current TCP/IP stack. In this sense, one powerful virtualizing
technique is hardware virtualization, since it allows multiple
router operating systems run over a hardware abstraction layer,
which multiplexes the virtual router accesses to the physi-
cal substrate. Nevertheless, hardware virtualization introduces
processing overhead to control the access of the different
OSes to the hardware. In this paper, we devise the overhead
and isolation properties of different hardware virtualization
techniques. We introduce a methodology to compare the
different tools.

In this paper, we study three widespread hardware virtual-
ization tools, VMware ESX [[], Xen [6], and OpenVZ [&].
Each one implements a different virtualization technique. The
main difficulty to evaluate a virtualization tool is that common
benchmarking tools have their measurements distorted by
the time keeping inside the virtual environment [9]. Within
a virtualized environment, the guest operation system does
not have access to physical time sources or timer interrupts.
Virtualized time system is usually implemented through soft-
ware emulation of the real time devices. Thus, a difference
between virtualized time and real world time often exists.
Common benchmark tools use the guest OS time and get
affected by the virtualized time distortion. Therefore, we
propose a methodology to evaluate virtualized systems which
is independent of virtual environment time distortion. We use
the proposed methodology to evaluate the virtualization tools,
and we conclude that Xen is the one that best fits virtual router
requirements. Thus, we also analyze the performance of a Xen
virtual router. Our results show that Xen virtual routers fairly
share the network hardware access, although the aggregated
packet forwarding performance is degraded as the number of
virtual routers over the same physical substrate increases.

Our proposed evaluation methodology differs from the main
proposals of virtualization tools benchmark because it takes
external time sources as reference, while the conventional
benchmarks take system specific variables as reference. In-
deed, two common performance evaluation tools are VM-
mark [[0] and Xenoprof [I[T]. The former can only be used
with VMware platform and consists of measuring the score of
processing several workloads simultaneously within different
virtual machines. The latter is a profiler for Xen virtualization
environment. Xenoprof provides detailed information about
each individual process and routine running in the virtual
machines or in the Xen hypervisor. Xenoprof estimates the
virtualization overhead introduced by Xen. Xenoprof, how-

ever, is specific to Xen. Our methodology, on the other hand,
is generic.

This paper is organized as follows. Section O analyzes the
considered virtualization tools and their main characteristics.
Section M presents our proposed methodology and exper-
imental setup. Section IM discusses the virtualization tool
evaluation results, and Section M investigates our Xen virtual
router evaluation results. Section M concludes the paper and
introduces our future work.

II. VIRTUALIZATION TOOLS

Virtualization is the technology that allows sharing a phys-
ical hardware among multiple systems. Virtualized systems
are isolated from each other, ignoring the existence of other
systems sharing the same hardware. The software layer that
isolates the guest systems is called hypervisor. We present
three of the most well-known hypervisors available: VMware,
Xen, and OpenVZ.

A. VMware

Hereafter, we consider the VMware ESX Server product,
which is a datacenter virtualization platform that implements
the full virtualization technique, i.e., the guest operating sys-
tem is not modified or adapted to run in a virtual environ-
ment [I]. VMware guarantees virtual machine isolation and
resource sharing fairness based on resource-allocation policies
set by the system administrator. Resources are allocated and
re-allocated to virtual machines on demand. CPU virtualization
is accomplished by setting a virtual CPU for each virtual
machine. The virtual machine does not realize that it is running
over a virtual CPU, because virtual CPUs provide their own
registers and control structures. VMware combines two CPU
virtualization modes: direct execution and CPU emulation. In
the direct execution mode, instructions from the user-space of
virtual machine are executed directly on the physical CPU. On
the other hand, guest operating system instructions, like system
calls, traps, interrupts, and other events, are trapped by the
hypervisor, or Virtual Machine Monitor (VMM), a software
layer that emulates the instruction execution. Therefore, the
VMM adds a variable amount of virtualization overhead
depending on the instruction type. VMware memory virtu-
alization approach is to create a new level of memory address
translation that provides to each guest operating system a
virtual page table that is invisible to the memory-management
unit (MMU) [B]. Within a VMware virtualization environment,
the guest operating system accesses a virtual memory space
that is internal to the virtual machine. As for network I/O
virtualization, VMware implements the vmxnet [[1] device
driver, which is an abstraction of the underlying physical
device. When an application wants to send data over the
network, the vmxnet device driver is called and the I/O request
is intercepted by the VMM, which calls the specific device
driver on the physical machine.

B. Xen

Xen is an open-source hypervisor designed to run on com-
modity hardware platforms [H]. Xen implements the paravirtu-
alization technique, which enhances guest system performance
by changing its behavior to call the hypervisor when necessary,

avoiding the need of binary translation of system instruc-
tions. Xen virtualizes the processor by assigning virtual CPUs
(vCPUs) to virtual machines. Xen hypervisor implements a
CPU scheduler that dynamically maps a physical CPU to
each vCPU during a certain period, based on a scheduling
algorithm [I2]. Memory virtualization in Xen is static and
the RAM is divided among virtual machines. Each machine
accesses a fixed amount of memory space, specified at the time
of its creation. In addition, device drivers are kept in a special
virtual machine, called the driver domain. The driver domain
tasks are often executed by Domain 0, a privileged virtual
machine that also executes hypervisor managing tasks. The
driver domain access 1/O devices directly by using its native
device drivers and also performs I/O operations on behalf of
virtual machines. In their turn, a virtual machine, also called
unprivileged domain or Domain U, employs virtual I/O devices
controlled by virtual drivers to request Domain 0 for device
access [I3], [I4].

C. OpenVZ

OpenVZ is an open-source operating system-level virtual-
ization tool [B]. OpenVZ allows multiple isolated execution
environments over a single operating system kernel. Each ex-
ecution environment is called a Virtual Private Server (VPS).
A VPS looks like a physical server; it has its own processes,
users, files, IP addresses, system configuration, and provides
full root shell access. OpenVZ claims to be the virtualization
tool that introduces less overhead, because each VPS shares
the same operating system kernel. On the other hand, OpenVZ
is less flexible than other virtualization tools, like VMware or
Xen, because OpenVZ execution environments have to be a
Linux distribution, based on the same operating system kernel
of the physical server. For processor virtualization, OpenVZ
implements a two-level CPU scheduler. On the first level, the
OpenVZ virtualization layer decides which VPS will execute
in each time slice, taking into account the VPS CPU priority.
On the level-2 scheduler, which runs inside the VPS, the
standard Linux scheduler defines which process will execute
in each time slice, taking into account the standard process
priority parameters. OpenVZ allows VPSs to directly access
the memory. The memory amount dedicated for each VPS
can be dynamically changed by modifying the virtual memory
space of each VPS. OpenVZ kernel manages VPSes memory
space in order to keep in physical memory the block of the
virtual memory corresponding to the VPS that is currently
running. OpenVZ default network virtualization mechanism
creates a virtual network interface for a VPS and assigns an
IP address to it in the host system. When a packet arrives to
the host system with an IP address assigned to a VPS, the
host system routes the packet to the corresponding VPS. This
approach simplifies network virtualization because allows VPS
to receive and to send packets using the host system routing
module, but introduces an additional hop in the route packets
follow.

III. EVALUATION OF HYPERVISOR

The main task of a router is to forward packets. The basic
operation is to receive a packet, check the forwarding table for
the packet destination, and forward the packet to the outgoing

network interface. Therefore, the main resources of interest
for a router are networking, memory, and processing. There-
fore, we evaluate networking throughput, memory access, and
processing capacity, in order to assess which hypervisor has
the most satisfactory performance for router virtualization.
Although hard disk access performance is not critical for router
virtualization, we also consider the hard disk virtualization
performance to provide a more complete analysis. To provide
a fair comparison, we run different tests to evaluate CPU,
RAM, storage, and networking performance of the virtualized
environments. Our main performance metric is the period
of time required for each tool to perform a specific task.
We use the following versions of the three hypervisors: Xen
3.2-1, VMware ESX 3.5, and Debian Linux Kernel 2.6.26-
amd64 with OpenVZ support. All tools are considered with
no modifications, tunings, or enhancements. We also present
the results for a native Linux environment as a reference value.
We expect that the results for the virtualized scenarios will be
equal or worse than the reference values, as a consequence of
the overhead introduced by virtualization.

A. Evaluation Methodology

Evaluating the virtualization overhead is not a trivial task.
Whitepapers from VMware [[3] and XenSource [T6] compare
the performance of the two hypervisors producing different
conclusions. When virtualization is implemented, several is-
sues arise from the fact that hardware is being shared by
virtual machines. One of the problems specifically related to
performance measuring is how the hypervisor provides the
timekeeping mechanisms to the virtual machine [9]. There are
several ways to keep track of time in a personal computer, like
reading BIOS clock, using CPU registers like the Time Stamp
Counter (TSC), or requesting system time from the OS. For the
system timekeeping mechanism, Xen constantly synchronizes
the virtual machine clock with the clock of Domain 0 by
sending correct time information through shared memory
between Domain U and the hypervisor. With that solution,
system timekeeping is correct for most of the applications
but, for applications that sample time more frequently than
the virtual machine clock is being synchronized, a cumulative
time measurement error may occur. To avoid such error, we do
not consider timekeeping from the virtual machine in our tests,
but instead we use an alternative time measurement procedure.

We use a different virtualization benchmarking method-
ology based on an external time measuring mechanism to
evaluate the performance of the hypervisors. The methodology
consists of running standard benchmarking tools within the
virtualized system, but instead of relying on benchmark time
information, the time information is provided by an external
mechanism. This mechanism is implemented over a point-to-
point network link between the target machine and the external
time-measuring machine. Over this link, the target machine
sends an ICMP Echo request to the time-measuring ma-
chine. At this moment, it starts a timer. After the target
machine completes its job, another ICMP Echo request
packet is sent, and the time-measuring machine stops the timer.
As a result, the responsibility of reporting the time difference
relies on a non-virtualized system.

Based on the proposed methodology, we evaluate the over-
head of the different hypervisors in terms of processor usage,
disk access performance, and memory access performance.
Nevertheless, this methodology is not needed to networking
I/0. For the networking tests, the metric of interest is the
throughput achieved by the virtual routers both when receiving
and sending. For this kind of tests, it is necessary to have at
least two computers, one for generating and another one for
receiving traffic. Only one computer needs to be virtualized.
The remaining non-virtualized system measures the amount of
bits and the time difference, which are therefore not affected
by virtualization.

IV. EXPERIMENTAL RESULTS

Our experimental setup is composed of a physical server, a
traffic generator machine and a time measuring machine. The
physical server that hosts the virtualized environments is an
HP Proliant DL.380 Generation 5 server equipped with two
Quad Core Intel Xeon processors (2.83 GHz each), 10 GB of
RAM, and an integrated 2-port Broadcom Nextreme II gigabit
network interface. The traffic generator machine sends packets
to the system under test or receives in the reverse-traffic test.
The traffic generator machine is a desktop computer with an
Intel motherboard, an Intel 2.4 GHz Core 2 Quad processor,
4 GB of RAM, and an on-board Intel gigabit network interface.
The role of the Time Measuring Machine is to measure the
period of time required by a system under test to perform
each benchmark task. For that role we use a desktop computer
equipped with an Intel motherboard, an Intel 2.66 GHz Core
2 Duo processor, 2 GB of system memory, and an on-board
Intel gigabit network interface.

A. Processor Performance

In order to evaluate CPU virtualization overhead, we per-
form CPU-intensive workloads using the Super Pi benchmark.
It is based on the Gauss-Legendre algorithm to compute
the Pi value. The Gauss-Legendre algorithm is iterative and
does many arithmetic operations. We execute the Super Pi
benchmark to compute the Pi value with 222 digits.

The mean execution time for a round of the Super-Pi
test is shown in Fig. [[(a), smaller values are faster and,
consequently, better. The virtualization tools and native Linux
are spread along the horizontal axis. Fig. indicates that all
virtualization tools introduce an overhead in processor usage.
The smallest overhead is introduced by the Xen Hypervisor,
which implements the paravirtualization technique. VMware
introduces the bigger overhead in processor usage, because it
uses full virtualization, where each instruction that generates
a fault is trapped by the hypervisor. The hypervisor simulates
its execution and then returns the result to the application
in the virtual machine. This overhead is larger than using
paravirtualization, where an instruction that would generate
a fault is modified to execute directly over the hypervisor.
OpenVZ has an overhead slightly higher than Xen, due to
the scheduling mechanism to share CPU among the contain-
ers. Xen CPU scheduling involves vCPU context switching,
whereas OpenVZ schedules VPSes and, inside a VPS, process
over a single OS kernel context.

- - 120
Native Linux =

100 - Xen Xen 350 Xen &3
) VMware E3 Z 100 VMware E3 o) VMware
; & Openvz mm g OpenvVZ == g 300 OpenVZ mm g
[80
£ < g =0
g 0r 2 e 2 20
e = =
& 4wt S w s W
5 5 5
8 3 8 100
g 20 d 20 i

SuperPi

Native Linux 3

400 —
Native Linux =

50

MASR

(a) Mean execution time for Super Pi benchmark. (b) Mean execution time for MASR benchmark. (c) Mean execution time for Bonie++ benchmark.

80
Native Linux 3 Native Linux 3 Native Linux 3
& 70 Xen 1200 Xen 1200 Xen
B VMware VMware &3 VMware
g 60 OpenvVZ mm 2 1000 OpenvVZ mm @ 1000 OpenvVZ mm
5 5
c 50 = =
2 £ Y
£ 40 = =
= 2 2 g0
s 30 5 5
g 3 3
g 20 _‘c'_' _E 400
d 10
200
0
ZFG

Iperf UDP Transmission

(d) Mean execution time for ZFG benchmark.

Figure 1.

B. Memory Performance

Memory access performance has significant influence in the
overall router performance [B]. We developed a benchmarking
tool, called MASR (Memory Allocation, Set and Read), to
evaluate the overhead caused by the virtualization layer on
virtual router memory access. MASR benchmarks memory
performance by allocating 2 GB of memory, setting sequential
memory positions to a fixed value and afterwards reading
each one. MASR was developed for benchmarking memory
with a deterministic number of operations, no matter the
performance of the computer. The main focus of common
memory benchmarks is to determine writing or reading data
rates on memory. On the other hand, MASR focus is to execute
deterministic memory writings and readings, independently
of the virtualization tool, to allow comparing the time taken
to execute the same set of memory operations between each
virtual machines tools.

Fig. [[(B) shows the results for the MASR benchmark.
The mean execution time for a round of the test is shown
in the vertical axis. OpenVZ is the virtualization tool that
introduces less overhead in memory access. OpenVZ directly
accesses the memory, then a virtual environment accesses
memory as an application accesses virtual memory pages
on a native operating system. As a consequence, OpenVZ
performs similar to native Linux. On the other hand, Xen
hypervisor statically allocates memory areas to each virtual
environment. A Xen virtual machine accesses a portion of
the total system memory. As Xen employs paravirtualization,
the virtual machine is aware of its address space and directly
handles the physical address, improving the memory access
performance. VMware has worse memory access performance
than the others. VMware implements memory translation. As

(e) Traffic transmission throughput experiment.

Iperf UDP Reception

(f) Traffic reception throughput experiment.

CPU, memory, disk, and network benchmark results. All results are shown with a 95% of confidence interval.

it is fully virtualized, a virtual machine is unaware that it runs
over a hypervisor, and when it tries to access memory, the
memory instructions are trapped by the hypervisor. The hyper-
visor translates and executes the memory access instruction,
and then gives the result to the virtual machine. Hence, it
introduces a larger overhead than the other hypervisors.

C. Hard Disk Performance

For sake of completeness, we also analyze the hard disk
access performance even though this resource is the least
important for a virtual router. We aim at measuring the
virtualization overhead of disk writing and reading tasks, and
compare the overhead obtained by each hypervisor. We use
two different benchmarking tools. The first one is Bonnie++,
an open-source disk benchmarking tool that simulates some
file operations, such as creating, reading and deleting small
files. Bonnie++ also tests the performance of accessing differ-
ent regions of the hard disk, reading sectors at the beginning,
middle, and end of the hard disk. The second tool, developed
by the authors, is ZFG (Zero File Generator), which was
designed to run within virtualized systems. ZFG benchmarks
the hard disk continuous writing speed by writing ten times
a 2 GB binary file filled with zeros. The main feature of this
tool is that it writes some dump information on disk during
the time between two rounds. This is important to guarantee
that the time elapsed in each round is actually the time spent
by the virtual machine to write the file on the disk. If that
is not guaranteed, the measured time can be the time that a
virtual machine writes the file on a buffer, whose content will
be later written on physical disk by the hypervisor. Common
disk benchmark tools do not guarantee these properties.

Fig. and Fig. [[(d] present the hard disk access perfor-
mance comparison. The mean execution time for a round of the

test is shown in the vertical axis, smaller values are better. The
virtualization tools and native Linux are along the horizontal
axis. OpenVZ implements hard disk access using the quota
method provided by native Linux. The difference between
OpenVZ and native Linux hard disk access is just that OpenVZ
introduces a scheduler to decide which virtual environment
should access the hard disk in each turn. As a consequence,
OpenVZ performs close to native Linux, as shown in Fig.
and Fig. [[(d). On the other hand, Xen and VMware perform
poorly, especially with ZFG. As Xen and VMware implement
the hard disk resource as a virtual abstraction of the physical
hard disk, virtual machines access an interface that is believed
to be the real hard disk. Writing and reading requests are
trapped by the hypervisors and properly handled. Therefore,
this procedure introduces a delay on disk access causing
additional processing overhead and memory page copies.

D. Networking Performance

A virtual router must be able to efficiently receive packets
and send them to the output interface. Hence, the virtualization
layer cannot degrade networking performance. In order to eval-
uate the virtualization overhead on networking performance,
we adopted the Iperf tool for measuring the throughput from an
external host to the system under test, and vice-versa. We use
an UDP flow with data packets of 1472 bytes, which represents
the maximum size for a packet without fragmenting Ethernet
frames.

The networking evaluation results are shown in Fig. D.
First of all, it is important to highlight that, for both traffic
transmission (Fig. [[(€]) and reception (Fig. [[{T]), native Linux
system achieves a throughput near the nominal gigabit Ether-
net transmission bit rate. Xen virtual machine also achieves the
same transmission and reception rates of native Linux. This
shows that Xen networking virtualization mechanism is fast
enough in sending/receiving packets to/from virtual machines
and was not the bottleneck in the evaluated scenario. On the
other hand, VMware and OpenVZ present a poor performance
for network virtualization.

VMware has a lower network performance than Xen, but
it is better than OpenVZ. VMware performs worse than Xen,
because it emulates a network device to the virtual machine.
Then, the virtual machine calls a generic network device
interface, which is mapped to hypervisors functions, and after,
mapped in devices functions. It also implies on copying the
packet twice to the memory: one from the network interface
to the hypervisor memory, and other from hypervisor memory
to the virtual machine memory. Xen copies the packet to
memory only once, after that, it handles the descriptor of the
memory address. OpenVZ has the worst network performance
because it implements the network virtualization on higher
level. OpenVZ virtualization environment access protocols on
network device at IP layer, but does not access the Ethernet
layer. Hence, to send a packet to the virtual environment and
from the virtual environment to the network, the OpenVZ
hypervisor needs to route the packet between host and virtual
hosts. The additional hop introduced by OpenVZ plus the
scheduling time needed to run the host and the virtual envi-
ronment justifies its bad network virtualization performance.

V. XEN VIRTUAL ROUTER EVALUATION

Xen performs better than VMware and OpenVZ for net-
work, therefore, we further investigate Xen as a possible
platform for router virtualization and evaluate its scalability.
We analyze the packet forwarding capability of a Xen virtual
router for increasing routing table and increasing number of
virtual machines over the same hypervisor.

The routing table size influences the packet forwarding
rate, because a large table increases the per-packet delay on
routing table lookup. The Linux kernel, however, implements
the routing table as a hash table. As a consequence, there is no
linear search over the routing table and the next hop in packet
route is discovered in a constant time, regardless of the routing
table size. To confirm this fact, we conduct experiments in
which a virtual router is configured with routing tables with
1,000, 10,000, and 100,000 routes. The maximum routing table
size is fixed in 100,000 routes because this is a typical size for
the routing table of a BGP border router [I'Z]. In all scenarios,
the packet forwarding rate does not change due to the addition
of new entries in the routing table. Hence, Xen virtual router
scales to the routing table size.

We also perform an evaluation of the fairness in Xen
network virtualization mechanism, whereas multiple virtual
machines share a single network interface card. In a first
experiment, whose results are shown in Fig. P(a], we in-
stantiate from one up to four virtual machines over the Xen
hypervisor and set them to generate a network traffic to an
external computer. The generated traffic is an UDP flow,
with maximum Ethernet frame size, 1472 B. In this scenario,
using just one virtual machine, we achieve the theoretical
maximum Gigabit Ethernet bandwidth, which is 969 Mb/s.
The results show that, as the number of virtual machines
increases, each virtual machine achieves a throughput that is
inversely proportional to the number of virtual machines. It
is also important to observe that the aggregated throughput
is equally shared by all virtual machines running on the same
physical substrate. Therefore, Xen network virtualization fairly
scales to multiple virtual machines.

We also evaluate the degradation of the packet forwarding
rate as the number of virtual routers increases. In this exper-
iment, the sending packet rate is 130 kp/s and we measure
the packet forwarding rate as the rate of packets that reach
the next-hop destination machine after being forwarded by the
virtual router. Fig. shows that, as the number of virtual
routers running in parallel increases, the traffic forwarding
performance degrades. It is a consequence of the processing
capacity starvation [I2]. The CPU scheduler, which is respon-
sible for sharing the processor among all virtual routers, has to
switch context between a running virtual router and a blocked
one. The time consumed with context switching comes at the
expense of time for serving router vCPUs. In this way, each
virtual router is requesting to forward its own traffic, but the
available resources are being used by the other virtual routers
and for context switching. Hence, the virtual routers drop
packets, reducing the aggregated packet forwarding rate. Our
results show a 30% reduction on the overall packet forwarding
rate, when four virtual routers are running over the same
hypervisor.

1000
1st VM ER
2nd VM =
l 3rdVM mm 1
g 800 4th VM
=
£ 600 1 1
=1
o
S 400t 1
>
(=]
£
200 1
0

Number of VMs

(a) Network traffic transmission test.

Q

o T T T

=3

g 120} 1
@

D

c

5

= 80f il
5

L.

b

)

a 40 + R
B

®

54

8 0

<

Number of Virtual Machines

(b) Network traffic forwarding test.

Figure 2. Xen scalability tests with multiple virtual machines sending/for-
warding network traffic to the external computer.

VI. CONCLUSION

In this paper, we have investigated the virtualization tool
that best fits the requirements of a virtual router for a plu-
ralist Future Internet architecture. We have proposed a new
methodology for evaluating the overhead introduced by the
virtualization layer, considering more precise time accounting.
We performed CPU, memory, disk, and networking experi-
ments. Our results show that OpenVZ is the virtualization
tool that introduces less overhead over CPU, disk, and memory
usage performing almost as well as native Linux. On the other
hand, OpenVZ requires the same operating system (OS) and
degrades for networking, which is crucial for virtual routing.
Xen presents the best performance for networking and has
a small overhead on processor and memory usage. VMware,
which provides a fully virtualized environment, is flexible, but
introduces bigger overhead over all resources usage.

Xen provides multiple virtual environments, each one with
its complete OS environment, independent of other virtual ma-
chines and of host OS. Xen virtual environment performance is
compatible with the virtual router requirements. Hence, Xen is
the virtualization tool that presents the best trade-off between
performance and flexibility. Therefore, it fits well for router
virtualization requirements. Hence, we have also analyzed
the performance and the scalability of router virtualization
over Xen. It scales well for multiple virtual routers, running
simultaneously, and for increasing routing table size. In the

first scenario, as the number of virtual routers over a single
physical router increases and the transmitted throughput is
maintained, the throughput of each router is equally reduced.
Nevertheless, the aggregated throughput is maintained. In the
second scenario, we increase the routing table size and the
packet forwarded rate remains the same.

Xen Hypervisor, however, must be enhanced to support a
virtual router within a production network. Our results have
shown that, when submitted to a high packet transmission rate,
the packet forwarding rate is reduced by 30% when running
multiple virtual machines over the same hypervisor. Therefore,
our future work focuses on developing Xen as virtual router
and evaluating new virtualization techniques for improving
virtual routers performance.

ACKNOWLEDGEMENTS

We would like to thank Carlo Fragni and Marcelo D.
D. Moreira for their help with the benchmarking tools and
measurements.

REFERENCES

[1] N. Fernandes, M. Moreira, I. Moraes, L. Ferraz, R. Couto, H. Carvalho,
M. Campista, L. Costa, and O. Duarte, “Virtual networks: isolation,
performance, and trends,” Annals of Telecommunications, vol. 66, pp.
339-355, 2011.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S., and J. Turner, “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69-74, Apr. 2008.

[3] N. Feamster, L. Gao, and J. Rexford, “How to Lease the Internet in your
Spare Time,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 61-64,
Jan. 2007.

[4] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless,
A. Greenhalgh, A. Wundsam, M. Kind, O. Maennel, and L. Mathy,
“Network Virtualization Architecture: Proposal and Initial Prototype,”
in Proceedings of the 1st ACM workshop on Virtualized infrastructure
systems and architectures, ser. VISA 09. New York, NY, USA: ACM,
2009, pp. 63-72.

[5] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing
the network forwarding plane,” ser. PRESTO 10, 2010, pp. 8:1-8:6.

[6] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, L. Mathy, and T. Schoo-
ley, “Evaluating xen for router virtualization,” in International Workshop
on Performance Modeling and Evaluation (PMECT), August 2007.

[71 VMware ESX Server 2 Architecture and Performance Implications,
VMWare Inc, 2005.

[81 OpenVZ User’s Guide, SWsoft Inc, 2005.

[9] S. Chen, M. Zhu, and L. Xiao, “Implementation of virtual time system
for the distributed virtual machine monitor,” IEEE/ISECS International
Colloquium on Computing, Communication, Control, and Management,
August 2009.

[10] V. Makhija, B. Herndon, P. Smith, L. Roderick, E. Zamost, and J. Ander-
son, “Vmmark: A scalable benchmark for virtualized systems,” VMware
Inc, CA, Tech. Rep. VMware-TR-2006-002, September, 2006.

[11] D. Gupta, R. Gardner, and L. Cherkasova, “Xenmon: Qos monitoring
and performance profiling tool,” HP Labs, Tech. Rep., 2005.

[12] R. S. Couto, M. E. M. Campista, and L. H. M. K. Costa, “XTC:
a throughput control mechanism for Xen-based virtualized soft-
ware routers,” in IEEE Global Communications Conference (GLOBE-
COM’2011), Houston, Texas, USA, Dec. 2011.

[13] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing network
virtualization in Xen,” in USENIX Annual Technical Conference, May
2006, pp. 15-28.

[14] K. Ibrahim, S. Hofmeyr, and C. Iancu, “Characterizing the performance
of parallel applications on multi-socket virtual machines,” in Cluster,
Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM Interna-
tional Symposium on. 1EEE, 2011, pp. 1-12.

[15] A Performance Comparison of Hypervisors, VMWare Inc, 2007.
[Online]. Available: www.vmware.com/pdt/hypervisor performance.pdf

[16] A Performance Comparison of Commercial Hypervisors, XenSource,
Inc., 2007.

[17] “BGP Reports,” http://bgp.potaroo.net/ipv4-stats/prefixes_adv_pool.txi,
Jan. 2012.

www.vmware.com/pdf/hypervisor_performance.pdf
http://bgp.potaroo.net/ipv4-stats/prefixes_adv_pool.txt

	I Introduction
	II Virtualization Tools
	II-A VMware
	II-B Xen
	II-C OpenVZ

	III Evaluation of Hypervisor
	III-A Evaluation Methodology

	IV Experimental Results
	IV-A Processor Performance
	IV-B Memory Performance
	IV-C Hard Disk Performance
	IV-D Networking Performance

	V Xen Virtual Router Evaluation
	VI Conclusion
	References

