
Packet Forwarding Using OpenFlow
Marcelo D. D. Moreira, Natalia C. Fernandes, Hugo E. T. Carvalho, Lyno Henrique G. Ferraz, Rodrigo S. Couto,

Igor M. Moraes, Miguel Elias M. Campista, Lus Henrique M. K. Costa, Otto Carlos M. B. Duarte
Universidade Federal do Rio de Janeiro - GTA/COPPE - Rio de Janeiro, Brazil

Abstract—OpenFlow is a network virtualization platform that
separates the network control function from the forwarding
function. OpenFlow defines a centralized element, called Open-
Flow controller, that controls and programs shared forwarding
tables in forwarding elements, called OpenFlow switches. The
forwarding structure is highly flexible, because a packet is
forwarded based not only on the destination IP address, but on
user-defined header fields. This paper presents a performance
evaluation of OpenFlow switches acting as a virtual network
element in a personal computer.

I. I NTRODUCTION

The OpenFlow protocol defines a secure communication
channel between OpenFlow switches and the controller,
which uses this channel to monitor and configure OpenFlow
switches [1]. The flow definition is generalized to ann-tuple of
header fields, enabling a flexible forwarding structure based on
multilayer wildcards. OpenFlow does not assume virtualized
data planes on forwarding elements and, consequently, follows
the model of one data plane shared by all virtual networks.
Consequently, it is expected for OpenFlow performance the
same performance of the native packet forwarding. OpenFlow,
however, shows a disadvantage when a flow is not yet con-
figured, because the first packet of unclassified flows must be
forwarded to the controller. Then, the controller sets a path
for the following packets of the flow in the chosen OpenFlow
switches. This mechanism may introduce a significant delay,
particularly if the traffic is mostly composed of small flows.

II. EXPERIMENTAL RESULTS

We deploy OpenFlow in a Linux system and use native
Linux performance as a reference to measure the overhead
introduced by OpenFlow virtualization. We evaluate the per-
formance of OpenFlow in a testbed composed of three ma-
chines. Our PC-based OpenFlow switch prototype forwards
traffic from a traffic generator to a traffic receiver machine.
Our prototype is an HP Proliant DL380 G5 server equipped
with two Intel Xeon E5440 2.83 GHz processors and 10 GB
of RAM, set up with just one logical CPU.

Our first experiments measure the forwarding rate achieved
by OpenFlow forwarding solution. The packet forwarding rate
analysis is accomplished with minimum (64 bytes) and large
(1512 bytes) frames. We use 64-byte frames to generate high
packet rates and force high packet processing in the OpenFlow
switch and 1512-byte frames to saturate the 1 Gb/s physical
link. Fig. 1 shows that OpenFlow performs close to Native
Linux in router mode. Because the data plane is shared by all
virtual networks, OpenFlow causes a low processing overhead.

Next, we analyze OpenFlow behavior with multiple net-
works. In this scenario, each network is represented as a
flow of packets. If there is more than one parallel flow, the

0 0.4 0.8 1.2
0

0.4

0.8

1.2

Generated packet rate (Mp/s)

R
ec

ei
ve

d
pa

ck
et

 r
at

e
(M

p/
s)

OpenFlow

Native−Router

Figure 1. Packet forwarding rate, using 64-byte frames.

traffic is equally divided among the flows, maintaining a fixed
aggregated traffic. The results shows that OpenFlow switch
performance is similar to a software bridge running over
Native Linux, maintaining the received packet rate close to
the generated rate, despite the fact that the first packet of the
flow must go to the OpenFlow controller.

We also analyze the impact of OpenFlow on traffic latency.
We create background traffic with different rates to be for-
warded by OpenFlow switch. For each of those rates, an ICMP
echo request is sent, from the generator to the receiver, to
evaluate the round trip time (RTT) and the jitter according
to the generated background traffic. The results show that
OpenFlow packet processing introduces no measurable delay
and jitter, and hence does not affect real-time applications.

III. C ONCLUSIONS

OpenFlow network virtualization model follows the shared
data plane approach by defining a centralized element that
controls and programs the forwarding table in each network
element. Our results demonstrate that the generalization of
a flow to ann-tuple of header fields enables a flexible and
yet performant forwarding structure. Our OpenFlow prototype
forwards packets as fast as native Linux. Further experiments
show that OpenFlow is a suitable platform for network virtu-
alization, because it is proved to support multiple instances of
virtual networks with no measurable performance loss.

ACKNOWLEDGMENTS

This work was supported by FINEP, FUNTTEL, CNPq,
CAPES, and FAPERJ.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S., and J. Turner. OpenFlow:
Enabling innovation in campus networks.ACM SIG-
COMM Computer Communication Review, 38(2):69–74,
April 2008.

