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Abstract—Software Defined Networking decouples packet-
forwarding from logically centralized network control. Conceiv-
ing network control as load-aware responsive distributed system
remains a key challenge. In this paper, we propose a scheme for
dynamically provisioning and placing network controllers based
on their usage profiles. The proposed scheme analyze the amount
of calls each controller is handling at the same time, and uses
a Markov chain to identify if the network load is increasing,
decreasing, or stable. Our controller placement algorithm chooses
the most central nodes for installing the controllers. We simulate
our proposal over real network topologies for a variable network
load. We compare our proposal with a centralized-controller ap-
proach and with an approach where all nodes are also controllers.
Our results show that the proposal achieves an efficient controller
placement and provides as many controllers as needed to respond
to the demand. The proposed scheme installs 50% controllers less
than the distributed approach, while keeps the minimum load
over each controller.

I. INTRODUCTION

The main concept of Software Defined Networking (SDN)
is to decouple the hardware realization of the packet-
forwarding from the software realization of the logically cen-
tralized control [1], [2]. The software realization of the control
is usually proposed as a distributed system that provides the
abstraction of a global network view [3], [4]. Distributing the
SDN control enhances the availability, the performance, and
the scalability of the network, as multiple coordinated nodes
act as a network controller [5]. Nevertheless, changes on the
network load directly imply changes on the best placement for
the controllers and on the required capacity for each controller.

The variation of the network load may increase the number
of requests addressed to a specific controller on the net-
work, causing long flow setup delays, while other available
controllers remain idle. It occurs because a set of nearby
switches are usually controlled by the same single controller
instance [6], [7], [8], clustering the network load into one
single controller. Thus, an efficient controller placement on
SDN has to take into account the variable load distribution on
the network and has to adapt the resulting software control
according to the current network conditions.

In this paper, we propose a scheme for dynamically pro-
visioning controllers for Software Defined Networking with
a distributed control plane. Our proposal creates a profile of
the controller usage through sampling the number of requests
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each controller receives. We classify the controller behavior
into one of three states: increasing, decreasing, or stable
flow setup request load. The state transitions are handled
as a Markov chain, which enable our scheme to calculate
the most probable future state. Thus, if the network load is
increasing, the proposed scheme instantiates a new controller.
If it is decreasing, a controller should be shut down. A stable
network load means that the current set of controllers is able
to promptly respond to the demand. We also propose a greedy
algorithm that installs controllers on the network according to
the betweenness centrality and the estimated capacity of each
node.

The controller placement is usually handled as an opti-
mization problem that only depends on the network topology
and on the resources of the nodes [9], [5], [10], [11]. The
network load, however, impacts on the need of controllers,
and also on the best location of each controller [6], [12]. The
previous approaches for dynamically providing controllers on
SDN rely on monitoring the controllers’ resources while they
are on operation. In turn, our proposal keeps it simpler as
it only monitors the number of requests a controller receives
and handles at a time. This approach is simple and hardware
agnostic, since it considers just the network load and not
the resource usage. Moreover, we also propose a placement
algorithm, which is able to relocate the controllers to a more
suitable location. We simulate our proposal over real network
topologies. The results show that our proposal instantiates at
most 50% of the number of controllers when compared to a
fully distributed scenario, and we also decrease by 13x the
average usage of a controller when compared to a centralized-
control approach. Moreover, our solution achieves the same
average load as a fully distributed approach.

The rest of the paper is organized as follows. The Section II
presents the related work. The problem of dynamically provi-
sioning network controllers is stated in Section III. Section IV
proposes our provisioning scheme as well as our dynamic
placement algorithm. The simulation results are discussed in
Section V. Section VI concludes the paper.

II. RELATED WORK

Control centralization on Software Defined Networking
hampers the security, the performance, and the scalability of
the network [5]. Thus, several works propose to distribute the
SDN control over dedicated distributed servers that abstract
the global network view. HyperFlow proposes a distributed
filesystem, implemented through Publisher/Subscriber chan-
nels, in which each controller instance registers a network978–1–5090–4671–3/16/$31.00 c© 2016 IEEE



event that is propagated to the others [4]. The Kandoo proposal
hierarchally organizes the controller instances and divides the
network applications into two categories, root and local [8].
The proposal argues that local applications can run next to
switches, while root applications run on a root controller, top
of the hierarchy. Mattos et al. propose the idea of a designed
controller that is responsible for keeping the strong consistence
of all changes over the global network view [5]. The proposal
also argues that the control distribution should consider both
the controller design and placement.

Heller et al. firstly defined the controller placement prob-
lem [9]. They argue that the suitable number of controllers and
their location on the network are essential features to achieve
a good performance of the network control plane. Müller et
al. propose a controller placement algorithm that enhances the
resilience of the network [10]. Zang et al. compare different
approaches for providing resilience while placing controllers
on network architectures, in which control and data plane are
decoupled [11]. Lange et al. argues that to achieve network
resilience, the controller placement should also consider other
metrics and, thus, they propose Pareto-based heuristics to
decide which placement better fits to a network topology [13].
Hu et al. introduce a reliability estimator that is a metric to
evaluate the resilience of the network. They propose a linear
programming approach, based on their estimator, to solve the
controller placement problem [14].

Bari et al. introduce the idea of a dynamic controller
provisioning on SDN [6]. Their main idea is to instantiate new
controllers as the network load increases. The decision algo-
rithm is based on monitoring controller resources. Similarly,
Dixit et al. propose the idea of a controller pool, which can
increase and shrink according to traffic conditions [12].

III. THE DYNAMIC CONTROLLER PROVISIONING

The dynamic provisioning of controllers on SDN deals
with defining how many controllers are suitable to answer
the network demand for control. It worths noting that the
performance of the control plane directly impacts on the data
plane, as the greater is the load in network controllers, the
longer is the flow setup time and the lower is the control
plane throughput. Therefore, the control plane should expand
and shrink according to the traffic on the network. Besides,
the location of each controller should be guided by the traffic
pattern on the network, as a controller that is not placed next to
requesting switches also increases the flow setup time. Hence,
the dynamic provisioning of controllers is composed of two
sub-problems: defining the ideal number of controllers to a
given network load, and placing the controllers on suitable
network nodes. The two sub-problems are a generalization of
the controller placement problem [9]. Nevertheless, the main
constraint of the dynamic provisioning is to execute an online
optimization that considers the traffic load and the current
network topology as inputs. In this sense, the dynamic provi-
sioning problem intrinsically requires networking monitoring,
which is not assumed by the placement problem. Besides, the
monitoring activity may focus on the controller resource usage
or on the network activity.

On the one hand, monitoring controller resource usage
allows providing an elastic pool of controllers, in which a

new controller is added as soon as a lack of resources is
detected, or a controller is removed as it detects underused
controllers. The main drawback of this approach is that it
is based on the controller behavior, which may introduce
a late reaction to changes on the network traffic pattern.
On the other hand, monitoring the network activity allows
forecasting the augmentation or the reduction of new flow
arrivals on the network. Moreover, provisioning controllers
based on the network activity decouples the network-control
decision of adding or removing a controller from infrastructure
data statistics, as monitoring the resource consumption of each
controller.

IV. THE PROPOSED DYNAMIC SCHEME

The proposed controller-provisioning scheme is divided
into three main components: network usage profile, Markov
chain model, and controller placement. All controllers are
timely queried by a centralized orchestrator about their statis-
tics of received and handled requests. We consider as requests
all events on a controller that sign the arrival of new flows on
the network 1.

A. Network Usage Profile

Each controller keeps the count of the number of requests it
has received since the last time it was polled by the orchestra-
tor. The orchestrator collects the statistics for each controller.
The orchestrator keeps a sliding window data structure of size
w for each controller. As a new value is added to the sliding
window, the oldest value is discarded. The orchestrator polls
each controller every t seconds. It is worth noting that the
values of w and t are set for each network and are tuned
according to the responsiveness that is expected from the
scheme. Moreover, it is also important to highlight that the
sliding window of one controller is not necessarily related to
the others. They may not be strictly synchronized, which is
not a problem because the state changes are independent and
locally calculated for each controller.

B. Markov Chain Model

We consider that a controller may be into one of the three
states: increasing load (S0), stable load (S1), or decreasing
load (S2). Hence, we consider a matrix of dimension 3 × 3
that describes the state changing for a controller. This matrix
represents the probability of controller changing from the state
Si to the state Sj , where i represents the row index, and j,
the column. We consider that a state change always occurs
between two followed values in a sliding window. As each
sliding window, for each controller, has w samples, thus, we
calculate w − 1 states. Indeed, we iterate over the sliding
window and if the previous value is less than the current one,
we consider that the controller went to a state of increasing
load, if both values are equal, stable load, and if the previous
is greater than the current one, decreasing load state. Based
on the state calculation, we achieve a w − 1 vector of states.
Iterating over the state vector, we have w−2 state changes that
are the data source for filling the Markov probability matrix.

1In the case of using OpenFlow as Southbound API, we consider the
PacketIn events.



Then, we calculate the right-hand eigenvector of the
Markov probability matrix,

[
S0 → S0 S0 → S1 S0 → S2

S1 → S1 S0 → S1 S1 → S2

S2 → S2 S1 → S1 S2 → S2

]
×

[
S′
0
S′
1
S′
2

]
= λ

[
S′
0
S′
1
S′
2

]
, (1)

where Si → Sj indicates the probability of changing from
state Si to Sj , and λ is the corresponding eigenvalue. Choosing
λ = 1, we have the eigenvector ~Pc that represents the invariant
probabilities of the states S′

0, S′
1, and S′

2 of the controller c.
~Pc is used in the controller placement component to decide
whether is needed to change the controller assignment for each
switch.

C. Controller Placement

The controller placement component runs two algorithms.
The first one is to decide whether to add or to remove a
controller on the network. The second one decides in which
available network node a new controller should be instantiated.

Let Cn be the set of all controllers currently on the network.
To decide how many controllers should be started on the
network, the algorithm receives as initial input the current
number of controllers, Kn = |Cn|. Then, it calculates the new
number of controllers on the network Kn+1:

• summing one to Kn, for each ~Pc | c ∈ Cn, where
S′
0 > 0.5;

• subtracting one from Kn, for each ~Pc | c ∈ Cn,
where S′

2 > 0.5.

After that, Kn+1 stores the number of controllers that
should be active on the network. The Kn+1 controllers are
placed on the network on the Kn+1 nodes that have the greatest
betweeness centrality on the known network topology2 [15].
The set Cn+1 contains the selected nodes.

The mapping procedure between switches and controllers
are shown in Algorithm 1, where T is the graph of the network
topology. The function SortedListOfClosestNodes(T, c)
returns a list containing all nodes sorted by the distance
between c and the node in the topology T . Function
randomChoice(X) chooses a random element of the set X . It
is worth to highlight that mapping switches into controllers is a
NP-hard problem, because it traces back to the facility location
problem[13]. Therefore, our algorithm is a simple heuristic that
allocates first the switches to the less central nodes (lines 3-
17). This behavior assures that the most central controllers still
be available for the nodes that are not easy to connect with
the rest of the network.

The proposed scheme estimates the capacity of each al-
ready installed controller. To do so, the number of switches
controlled by a controller in the step n + 1 is the number of
switches it controlled in step n weighted by 1−S′c

0 . The value
1 − S′c

0 estimates the probability of a controller c not being
overload. If the capacity estimation calculates that the currently
installed controllers can respond to more than the total amount

2We consider that all nodes on the network are able to run a controller.

Algorithm 1 Algorithm for mapping switches into the most
suitable controller.
Input: Cn, Cn+1, and T
Output: map

1: map = ∅
2: Sort Cn+1 on the reverse order of betweeness centrality
3: for c ∈ Cn+1 do
4: if (c ∈ Cn) then
5: kcn+1 = 1− S′

0(c)× kcn
6: closestNodes = SortedListOfClosestNodes(T, c)
7: added = 0
8: i = 0
9: while i < len(closestNodes) 6= ∅∧added < kcn+1

do
10: if (closestNodes[i] /∈ map) then
11: map[i] = c
12: added+ = 1
13: end if
14: i+ = 1
15: end while
16: end if
17: end for
18: for t ∈ T do
19: if t /∈ map then
20: map[t] = randomChoice(Cn+1 − Cn)
21: end if
22: if t /∈ map then
23: map[t] = randomChoice(Cn+1)
24: end if
25: end for
26: return map

of switches, some controllers are deactivated. For calculating
the number of switches a recently added controller should
control, we consider that all new controllers equally share the
not assigned switches (lines 19 – 21). If it still has any switch
that is not assigned to any controller, we randomly chose a
controller (lines 22-24). The algorithm returns the map that
implements a map data structure (<key, value>), which
relates the key switch with its value controller.

Algorithm 1 also acts as a optimization mechanism that
bans badly located controllers from the controller pool. This
behavior happens because of the selection of the best-located
controllers, according to our heuristic, on selecting the Kn+1

nodes with the highest betweeness centrality. Selecting the
most central nodes in the network is a simple way of fairly
sharing the network load among all controller nodes [15].

V. THE EVALUATION OF THE PROPOSED SCHEME

The evaluation of the proposed scheme is performed by
simulation. Our simulator is an extension of the SDN simulator
previously developed by Mattos et al. [1]. The main idea
of this simulator is to implement the formal SDN model
proposed by Reitblatt et al. [16], adapting the original model
into an event-driven simulation. The simulator was extended to
support multiple controllers, as well as we also implemented
the proposed dynamic controller provision scheme as a module
of the simulator. The SDN simulator is written in Python
language. We simulate three different real network topologies.
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(c) AT&T Topology in USA.

Figure 1. Network load simulation in each topology. New flows arrive at random nodes in the topology, following a log-normal distribution for the inter-arrival
time (µ ∈ [6, 7]).
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Figure 2. Comparison of the instantiated number of controllers: the proposed dynamic controller-provisioning scheme with the centralized and the full distributed
approaches. Our proposal instantiates more controllers as there are peak arrivals of flows on the network.
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Figure 3. Comparison of the average load on the controllers: our dynamic controller provisioning scheme with the centralized and the full distributed approaches.
Our proposal presents the same average load on the controllers as the full distributed approach, but our proposal uses half of the controllers.

All used topologies are available at The Internet Topology
Zoo3. The topologies are from the RNP (National Research
Network) in Brazil, with 30 nodes; the GEANT network in
Europe, with 40 nodes; and the AT&T MPLS network in the
U.S., with 25 nodes.

The network load was simulated as flows arriving to the
network. Each flow is modeled as a stream of packets that lasts
for 50 simulation steps on the network. The source and the
destination of the flows are randomly chosen on the network.
The inter-arrival time between new flows follows a log-normal
distribution. The average of the inter-arrival distribution varies
between 6 and 7 (µ ∈ [6, 7]) and the standard deviation equals
to 2 (σ = 2) [10]. The arrival of new flows happens during
1200 simulation steps and the simulation ends when all port
queues of all switches are already empty. The network load
for each topology is shown in Figure 1. The network load
is modeled as follows. On the first 600 simulation steps, the
average of inter-arrival time is set to µ = 6. On the next
following 300 steps, the network load decreases, as the average
inter-arrival time increases, µ = 7. Finally, at the last part
of the simulation, the network load increases again, having
the average inter-arrival time set to µ = 6.5. The changing
average of the flow inter-arrival time simulates the changes
on the network load, such as the variation of the load that a

3Available at http://www.topology-zoo.org/.

network experiences during a day.

In the proposed scheme, the monitoring interval is defined
as a simulation step and the sliding window is implemented
as the last 50 measures of the controller load profile. The
optimization algorithm runs after every 10 simulation steps.

Our simulations compare three network control architec-
ture. The first control architecture is a centralized control,
labeled as Centralized, in which the network counts
with just one single controller. The second control archi-
tecture is the full distributed architecture, labeled as Full
Distributed, in which all nodes act as both as a for-
warding device and as a controller. In this architecture each
node hosts its own controller. The third architecture is our
proposed scheme, labeled as Dynamic Proposal, in which
the number of controllers and the mapping between switch
and controller are dynamic. The main idea of our evaluation
is to compare our proposal with the two extreme cases. The
centralized scenario stands for the scenario with the minimum
number of controller nodes, just one. The full distributed
scenario stands for the case that the average load on the
controller is minimal, but the number of controllers is maximal.

Our first experiment measures the number of instantiated
controllers in each topology by each control approach. It is
worth to highlight that our proposed scheme varies the number
of installed controllers from one up to half of the network



nodes, shown in Figure 2. This result was the same in all
topologies. When there is a utilization peak, the proposed
scheme instantiates the greatest number of controllers to re-
spond to the demand, up to 50% of the network nodes. After
the utilization peak, the number of instantiated controllers is
reduced up to one single controller, when the load is minimal
on the network.

Our second experiment evaluates the average load on the
controllers for each control approach, shown Figure 3. The
results reveal that our scheme achieves a similar average
load on the controllers as the full distributed control. The
proposed scheme, however, reduces at up to one the number
of active controllers. Comparing the case of the RNP topology,
we observe on Figures 1(a), 2(a) and 3(a) that, although
the proposed scheme instantiates a maximum number of 15
controllers, our proposal always keeps a minimum average
controller usage, similarly to the full distributed approach. The
average load achieved by our proposal is up to 13x lower
than the centralized approach. Comparing the behavior of the
proposed scheme on the AT&T topology, Figures 1(c), 2(c)
and 3(c), it is possible to check that the number of instantiated
controllers changes in function of the variation of the network
load, while the proposal keeps a fair share of the load between
all instantiated controllers. The GEANT network case shows
the greatest number of changes on the number of installed
controllers, Figures 1(b), 2(b) and 3(b). The network load is
approximately the same in all topologies, as in all cases the
number of arriving flows is almost the same. In the GEANT
network, as it has the greatest number of nodes, it is the
topology where the load is the most distributed. Therefore, our
scheme is always changing the controller placement to respond
to a change in the pattern of the network-traffic location.

It is worth noting that dynamic controller provisioning is
not enough to ensure the fair share of the load. The results
shown in Figure 3 reveal that the proposed dynamic placement
heuristic finds the best location for instantiating the new
controllers, as well as it also acts to optimize the location of
previous controllers. If the network is initialized with a not well
located controller, as the controller pool increases and shrinks,
the badly located controllers are banned of the controller pool.
As an effect, after some time, the chosen network controllers
are just the best located controllers.

VI. CONCLUSION

Dynamically provisioning network controllers for Software
Defined Networking on demand is important to enhance
the network responsiveness. The provisioning scheme has
to reason about the suitable number of controllers and the
appropriate location of them according to the network load.
We proposed an efficient controller-provisioning scheme that
profiles the number of network requests on each controller and
forecasts overloads and underloads on the network. The load
forecasting is achieved by a Markov chain, which calculates
the probability of a controller being in an overload or an
underload state. The ideal number of switches controlled by
each controller is derived from the probability of the controller
being in an overload state. Moreover, we introduced a simple
placement algorithm that instantiates a new controller into the
available node that has the highest betweeness centrality on the
network. We simulated our proposal into different real network

topologies. Our results show that we achieve a reduction into
the number of controllers in use, instantiating only one single
controller when there is a minimal load on the network, as
well as we reduce up to 13x the average controller overload
when compared to a centralized controller.
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