
1

Reverse Update: A Consistent Policy Update
Scheme for Software Defined Networking

Diogo Menezes Ferrazani Mattos, Otto Carlos Muniz Bandeira Duarte, Guy Pujolle

Abstract—Policy and path updates are common causes of
network instability, leading to service disruptions or vulnerable
intermediate states. In this letter, we propose the Reverse Up-
date, an update scheme for Software Defined Networking that
guarantees to preserve properties of flows during the transition
time. We prove through a formal model that the proposal
achieves consistent policy updates, in which in-transit packets
are always handled in the next forwarding hops by the same
or a more recent policy. The main contributions are: (i) a
relaxation of the concept of per-packet-consistency in the data
plane of Software Defined Networking; and (ii) a policy update
scheme, proved to be consistent and efficient. A Software Defined
Networking simulator was developed and validated. The results of
our simulations show that the proposed Reverse Update scheme
is faster and has lower overhead than the current Two-Phase
Update proposed in the literature.

Index Terms—Software Defined Networking, Consistency, Pol-
icy Update, Network Security

I. INTRODUCTION

POLICY updates1 on Software Defined Networking (SDN)
can lead to network instabilities, such as, outage, perfor-

mance degradation, and inconsistent intermediate states [1],
[2]. Policy update consistency is challenging, because there is
no guarantee that the intermediate states are consistent, even
when the initial and the final network states are correct and
consistent. The transition from one network configuration to
another should occur in an install and uninstall sequence of
rules, switch after switch, to ensure that the network behaves
properly during the procedure. The assumption that each SDN
application should be responsible for its own policy update
procedure is not feasible. The network control applications
are usually error-prone when dealing with policy updates [3].
Moreover, the concept of per-packet consistency defines that
packets traversing the network are handled by just one, single
and consistent, global network configuration. Consequently,
no network packet is ever processed by a mixture of network
configurations [1].

The main proposals for updating policies in SDN are
based on two ideas, the atomic update [4] or the Two-Phase
Update [1], [5]. The atomic update considers that all network
nodes accomplish an atomic update operation. The switch

Manuscript received Freburary 06, 2016; revised March 15, 2016. This
work was supported by CNPq, CAPES, and FAPERJ.

Mattos, D.M.F., and Duarte, O.C.M.B are with Grupo de Teleinformática
e Automação, Universidade Federal do Rio de Janeiro (COPPE/UFRJ), Rio
de Janeiro, Brazil. Mattos, D.M.F., and Pujolle, G. are with Laboratoire
d’Informatique de Paris 6, Sorbonne Universities, UPMC Univ Paris 06, Paris,
France. (e-mail: menezes@gta.ufrj.br; otto@gta.ufrj.br; Guy.Pujolle@lip6.fr).

1In this letter, we the terms configuration update and policy update
interchangeably.

update process, however, cannot be performed atomically. As
a consequence, in-transit packets, which are traversing the
network while the update is being deployed, can be handled
by inconsistent intermediate configurations of the network,
forcing the update to roll back. The Two-Phase Update scheme
ensures a per-packet consistency on the network by labeling
each packet with a network configuration version tag. Hence,
when the packets arrive on the network, the ingress node tags
the packet with the current version and, then, all nodes process
the tagged packets according to their version.

In this letter, we propose the Reverse Update scheme that
guarantees a per-packet consistent policy update for Software
Defined Networking. The proposed scheme is based on the
relaxation of the per-packet consistency concept and on the
installation of policy updates in a sequence that corresponds
to the reverse path of the flows. The Reverse Update scheme
neither introduces nor stores different versions of rules in the
switches, as each switch atomically updates the previously
installed rules instead. Our proposal, when compared to the
Two-Phase update [1], also provides guarantees of consistency
without introducing overhead on the flow table and complexity
on rules composition by using wildcards. The proof of con-
sistency of the Reverse Update scheme is performed using a
formal model of Software Defined Networking. We simulate
the Reverse Update scheme over a real network topology.
Our results show that the installation overhead of the Reverse
Update scheme is close to the ideal update scheme.

II. RELATED WORKS

The OF.CPP (Consistent Packet Processing for OpenFlow)
proposal [4] argues that the SDN packet processing is error-
prone because the decision making process and the imple-
mentation of forwarding rules are not atomic. Reiblatt et
al. propose a universal per-packet consistent update scheme,
Two-Phase Update, and defines an abstract formal model for
Software Defined Networking [1]. The key idea of the Two-
Phase Update is to associate each global network configuration
with a version number and to tag all packets with a version
number that determines the single global network view under
which the packet should be handled. When a new version
of the control plane is launched, the packets must be tagged
with the new version of the configuration. The ingress edge
switch tags the packets with the most current version tag
and the egress edge switch removes the version tag when
packets leave the network domain. The tagging procedure
differentiates the entering packets, which will be processed by
the new configuration, from the in-transit packets, which are



2

processed by the preceding configuration. Luo et al. argue that
the Two-Phase Update can lead to the definition of subsets of
rules, when new and current rules are defined with overlapping
sets of wildcard fields [6].

To avoid the Two-Phase Update overhead on switch mem-
ory, McGeer proposes to buffer in-transit packets on the
controller, when deploying an update, and then reinject these
packets on other network node after concluding the update [7].
By their turn, Katta et al. propose to split the policy update
into rounds, and each round acts on a set of flows on the
network [8]. Indeed, each round performs a Two-Phase update
to a partial subset of flows. After a round, the old installed
policies are removed of the network. Both proposals reduces
the overhead on the network switches at the cost of a longer
update process, as well as a more complex update, because
both activities depend on analyzing the new policies before
performing them. McClurg et al. propose an algorithm for
searching for an order to deploy the policy update on the
network [9]. The main idea is to automatically seek for an
update order that keeps invariant specific properties during
the update procedure. This proposal focuses on path up-
dates, although it imposes a higher complexity for the update
procedure as it adds the algorithm complexity of searching
an update deployment order. Canini et al. argue that the
simultaneous updates can lead the network to inconsistent
states, and propose a transactional interface for policy updates,
which applies the update on the network if there is no conflict
with other policies [5].

III. SDN MODEL BACKGROUND

The notation used in this letter is based on the one applied
by Reitblatt et al. [1]. We consider us as an update sequence
of observable events that modifies the initial state N of the
network to the final state N ′, after an execution. The update
observable events, u in us, are messages exchanged between
controller and switches that change the network state. We
consider as network state the set of the global network view
and all flow forwarding rules. The basic structures of the model
are packets and ports. The packet pk is the network data
transmission unit. The port p represents the location on the
network where a packet waits to be processed.

The network is modeled as a packet processor, which is able
to forward packets and, in some cases, to modify the content
of the packet at each hop [1]. Therefore, packet processing is
modeled as a composition of two simple functions, to process
a packet on the switch and to move a packet on a link. The
execution of the network is represented by a switch function
S that inputs lp, representing a located packet, i.e., the tuple
containing the packet and the switch port where the packet is,
and returns a list of located packets. The return indicates the
future location of the packets on the network. Other important
definitions are the trace, t, and port queue, Q. A trace is a
list of located packets that keeps track of the sequence of
switch hops that a packet passes through. The port queue stores
packets waiting to be processed at each port on the network.
The network state, N , is a pair (Q,C), containing the port
queue, Q, and a network configuration, C. The configuration,
C, comprises a switch, S, and a topology, T , functions.

Reitblatt et al. state that two traces are equivalent if the
packets in the two traces have the same characteristics. Per-
packet consistent updates occur when the traces generated by
the network, at the time of an update, is equivalent to traces
generated either by the initial configuration before the update,
or by the final configuration after the update. In other words,
there is no trace corresponding to a transition state, mixing
two different configurations. Reitblatt et al. also consider two
other settings: one-touch and unobservable updates.

Definition: One-Touch Update. The one-touch update is an
update that does not generate traces with intermediate states,
i.e., packets are handled either by the initial configuration (C1)
or by the final configuration (C2).

Definition: Unobservable Update. The unobservable update
does not affect the set of traces generated by the network.

Definition: Two-Phase Update. It introduces the network con-
figuration version tag. Thus, the version becomes a property
of the network trace. A trace may differ one from another
just by the version tag. The configuration C is a n-version
of the network configuration if C = (S, T ) and S modify the
processed packets in any ingress port on the network changing
the packets to include the version tag set to n. The version
tag does not change in any point on the network.

As an one-touch or an unobservable update are per-packet
consistent updates, Reitblatt et al. prove that if us1 is an
unobservable update from C1 to C2 and us2 is a one-touch
update from C2 to C3, then the concatenation of us1 ++us2
is a per-packet consistent update from C1 to C3. Therefore,
Two-Phase Update is defined as a concatenation of updates.

IV. THE REVERSE UPDATE SCHEME

Reverse Update is a policy update scheme for Software
Defined Networking that ensures consistency of policy com-
mitment. The key advantage of our proposal when compared
with the Two-Phase Update is the lower overhead for config-
uring flow tables, as it does not depend on packet tagging.
The Reverse Update is based on updating flow processing and
forwarding rules in the reverse path of the already installed
flow, to assure that a flow always reaches the most current
network configuration.

We relax the concept of per-packet consistency. We assume
that a packet may be processed by more than one global
network configuration if, and only if, it is always processed
by the most recent network configuration. In other words, the
relaxed concept of per-packet consistency avoids that a packet,
which has already been processed by a recent configuration,
be processed by a previous configuration in the next hops. The
relaxed concept is important to assure that a packet is never
forwarded by unexpected network states. We guarantee this
property because every packet that reaches an already updated
switch will always be handled by the most recent network
configuration, in which the invariant properties are assured.
Moreover, the relaxed concept enables the fast deployment of
updates, as it updates even the in-transit packets.



3

Definition: Reverse Update. Let dom(ui) be the domain of
a update ui and us = [u1, . . . , uk] be a sequence of switch
updates, ordered to be committed in the reverse sense of the
flow path on the network. The the update order is given by

∀(p, pk) ∈ dom(ui), 6 ∃(p, pk) ∈ dom(uj), for i < j ≤ k.

A packet that travels from the source to the destination should
never traverse a switch that still presents a previous config-
uration state. This occurs because the configuration updates
are applied on the reverse sense, from the destination to the
source. Thus, for all:
• initial states Q;
• executions (Q,C1)

us→ ?(Q′, C2);
packets that are processed by Ci will nevermore be processed
by Cj , where j < i, according to the relaxation of the concept
of per-packet consistency. When using the Reverse Update
scheme, every packet will not be processed by a preceding
configuration state and, thus, we have the following theorem.

Theorem: If an update sequence us is a Reverse Update, then
us is a per-packet consistent update.
Proof: The proof follows the induction mechanism
over us. We first consider an update sequence
us = [u1, . . . , ui, . . . , uk]. We induct over k.
Base Case (for k = 1): In the base case, us = u1, there is only
one update to be performed. In this case, the flow path length
is one. Thus, there is just one hop on the network to apply
the update. Considering this update by itself an one-touch
update and, then, for every execution (Q,C1) → ?(Q′, C2)
that generates trace t, we have (Q,C1) → ?(Q′′, C1) or
(Q,C2) → ?(Q′′, C2) where Q′′ contains the trace t′ that is
equivalent to trace t. Therefore, according to the definition,
the base case is per-packet consistent.
Induction Hypothesis (for k = i): We assume that the update
sequence us = [u1, . . . , ui] is a Reverse Update and it is
per-packet consistent.
Induction Step (for k = i + 1): For k = i + 1, we
assume that us = [u1, . . . , ui, ui+1]. Therefore, we define
usi = [u1, . . . , ui]. We also consider:

Dom(usi) = ∪j≤idom(uj), and us = usi ++ui+1.

From Induction Hypothesis, usi is a Reverse Update and it
is per-packet consistent. Thus, we have just to prove that
the concatenation of usi with ui+1 is also a Reverse Update
that maintains per-packet consistency property. Therefore, we
check that:
• If (p, pk) ∈ Dom(usi), then (p, pk) /∈ dom(ui+1), by

the definition of Reverse Update,
• t contains (p1, pk1) and (p2, pk2),
• There is no (p, pk) ∈ Dom(usi) and, at the same time,

(p, pk) ∈ dom(ui+1),
then, for all:
• Initial state Qi,
• Executions (Qi, Ci)

ui+1→ ?(Qi+1, Ci+1)

the execution is an One-touch Update and, thus, it is per-packet
consistent. Following the Concatenation Theorem [1], as usi

is consistent and the ui+1 update is also consistent, the update
sequence us is a per-packet consistent update.

It is worth noting that the definition of a Reverse Update
is restricted to policy updates that act on disjoint and loop-
free paths on the network. Moreover, the composition of new
and old paths should be loop-free. Taking these restrictions
into consideration, Reverse Update fits well for path and
action updates on the flow paths. Moreover, when considering
switches that process packets through multiple tables, the
Reverse Update remains the same, as the processing pipeline
acts as a loop-free path inside each switch. The scheme
acts in each switch on the reverse path, updating each table
in the reverse order of packet-processing pipeline. Another
important consideration is that, as wildcard flow entries have
different granularity, policy updates can incur on the definition
of overlapping policies. Updating overlapping-policies is a
complex challenge [6]. In this paper we assume that updates
do not overlap with already defined policies.

V. SIMULATION AND RESULTS

We evaluate the proposed Reverse Update scheme by sim-
ulating an SDN. We developed a discrete event simulator
that considers the SDN model summarized in this letter and
proposed by Reitblatt et al. [1]. The simulator was written
in Python. The evaluation of the proposed scheme considers
the real topology of the National Research and Educational
Network (Rede Nacional de Ensino e Pesquisa - RNP), from
Brazil, with 31 nodes. The graph topology was obtained from
The Internet Topology Zoo2. The inter-arrival time between
new flows follows log-normal distribution, with average equals
to 7 (µ = 7) and standard deviation equals to 2 (σ = 2) [10].
The arrival of new flows happens during 900 simulation steps
and the simulation ends when all port queues of all switches
are already empty. Each flow lasts for 50 simulation steps.

Simulation of the Reverse Update (Reverse) was com-
pared to the Two-Phase Update (2-Phases) [1] and to an
Ideal Update (Ideal). The Ideal Update is only feasible
through simulation and it was introduced by comparison
purpose. The Ideal Update stops packet forwarding on the
network for accomplishing the update procedure. The Ideal
Update is similar to an atomic update [4] that always achieves
to commit updates. Update events change actions over the
flows and were held after each 300 simulation steps. New
flow arrivals were the same for all schemes.

The first experiment, shown in Figure 1(a), measures the
percentage of packets that are processed by two different
network configurations. For Ideal Update, 1% of packets is
processed by two different configurations. This means that
1% of the packets were in-transit when the network accom-
plishes configuration updates. Even though an atomic update
procedure does not introduce transitional nor inconsistent
states, in-transit packets may be processed by two different
configurations. Our Reverse Update proposal practically halves
percentage of packet processed by two different configurations
because the hop-by-hop update, from the destination to origin,
halves the effect on in-transit packets. It is worth to note that

2http://www.topology-zoo.org/.



4

0

0.5

1

1.5

2
U

p
d
a
te

d
 P

a
c
k
e
ts

 (
%

)

Reverse

2−Phases

Ideal

(a) Percentage of packets handled by
different network configurations.

0

0.2

0.4

0.6

0.8

U
p
d
a
te

d
 F

lo
w

s
 (

%
) Ideal Reverse

2−Phases

(b) Percentage flows that are affected
by the policy updates.

0

1

2

3

R
u
le

s
 (

x
1
0

5
)

ReverseIdeal

2−Phases

(c) Total number of installed rules on
the network during the simulation.

0

20

40

60

80

100

S
im

ila
ri
ty

 (
%

)

Ideal Reverse

2−Phases

(d) Similarity index of the update
schemes with the Ideal Update.

Figure 1. Effect of policy updates on packets and flows forwarded on the network. The simulation runs on a real topology of a Brazilian Research (RNP)
network. The average flow arrival interval is 1 s and the flow duration is 50 simulation steps. a) Two-Phase Update has a few packets forwarded by two
different configurations due to first-packet handling by OpenFlow controller during the update procedure; b) Ideal and Reverse Updates update the same
number of flows; c) Two-Phase Update installs the greatest number of rules; and d) Reverse Update has a similarity of 94% with Ideal Update.

the Two-Phase Update still presents a number of packets pro-
cessed by two different configurations, which is an unexpected
behavior. When a packet is the first of a flow, it does not
have a flow entry on all switches on the path and it is sent
to the controller. As our simulation adopted a naive controller
model3, if a packet reaches an already updated controller, the
new flow entry is calculated based on the updated network
configuration. This behavior is reflected by the number of
packets handled by two different configurations, even on the
Two-Phase Update scheme [1]. According to the relaxation of
the per-packet consistency concept, it is clear that the Reverse
Update has a percentage of packets affected by updates that
is very close to the Ideal Update, as shown in Figure 1(a). It
also indicates that Reverse Update has a faster reaction time
to the update when compared to the Two-Phase Update. We
also evaluated the number of affected flows by the updates,
i.e., flows that were in-transit while the updates take place on
the network. This experiment measures how fast is the update
completion. It is noticed that the Reverse Update schemes
and Ideal Update have the same number of updated flows,
Figure 1(b), while the delay for committing updates introduced
by Two-Phase Update reduces the number of flows that are
handled by the most current configuration. Another important
feature to evaluate is the number of installed rules in the
switches, as depicted in Figure 1(c). We verify that the number
of rules installed by the Two-Phase Update is almost eight
times higher than other update schemes, due to the addition
of new rules on the network-core ports on each switch, for
each flow on the network. The Reverse Update only updates
the existing rules, as well as the Ideal Update.

Finally, we evaluated, for each update scheme, the percent-
age of forwarded packets that follows the same configuration
when compared to the Ideal Update. This metric is important
to measure the update proportionality. As stated by Reitblatt
et al, a proportional update is the one in which the cost
of installing a new policy is proportional to the applied
change [1]. We consider the Ideal Update as the reference
of a proportional update scheme. According to Figure 1(d),
the Reverse Update scheme reaches up to 94% of similarity
with the Ideal Update, while the Two-Phase Update features
only 24%.

3Our naive controller does nothing to assure the consistency of the update.
All consistency warranties are assured by the evaluated update schemes.

VI. CONCLUSION

In this letter, we propose the Reverse Update scheme. The
proposed scheme updates switch policies, switch-by-switch,
on a Software Defined Networking, in the reverse sense of
flow paths. We prove that our policy update scheme is per-
packet consistent and, thus, the flow properties are preserved.
It is worth mentioning that our scheme is simple and does
not require packet tagging, which guarantees low processing
overhead and reduced number of installed rules on the core
of the network. The simulation of Reverse Update scheme in
a SDN showed that the configuration overhead is close to an
ideal update scheme. Moreover, the Reverse Update promptly
updates the rules, presenting a similarity with the Ideal Update
of 94%, which is up to four times higher when compared to
the Two-Phase Update scheme.

REFERENCES

[1] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Ab-
stractions for network update,” in Proceedings of the ACM SIGCOMM
2012. New York, USA: ACM, 2012, pp. 323–334.

[2] N. C. Fernandes, M. D. D. Moreira, I. M. Moraes, L. H. G. Ferraz,
R. S. Couto, H. E. T. Carvalho, M. E. M. Campista, L. H. M. K.
Costa, and O. C. M. B. Duarte, “Virtual networks: isolation, per-
formance, and trends,” Annals of Telecommunications - Annales des
Télécommunications, vol. 66, no. 5, pp. 339–355, 2010.

[3] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A
NICE way to test openflow applications,” in Proceedings of the USENIX
NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 127–
140.

[4] P. Perešı́ni, M. Kuzniar, N. Vasić, M. Canini, and D. Kostiū, “OF.CPP:
Consistent packet processing for openflow,” in ACM SIGCOMM -
HotSDN’13. Hong Kong, China: ACM, 2013.

[5] M. Canini, P. Kuznetsov, D. Levin, S. Schmid et al., “A distributed and
robust SDN control plane for transactional network updates,” in The
IEEE INFOCOM 2015, Apr. 2015.

[6] S. Luo, H. Yu, and L. Li, “Consistency is not easy: How to use two-phase
update for wildcard rules?” Communications Letters, IEEE, vol. 19,
no. 3, pp. 347–350, Mar. 2015.

[7] R. McGeer, “A safe, efficient update protocol for openflow networks,”
in ACM SIGCOMM - HotSDN’12. Helsinki, Finland: ACM, 2012.

[8] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in ACM SIGCOMM - HotSDN’13. Hong Kong, China: ACM, 2013.

[9] J. McClurg, H. Hojjat, P. Cerny, and N. Foster, “Efficient synthesis of
network updates,” in ACM SIGPLAN - PLDI. Portland, USA: ACM,
Jun. 2015.

[10] L. H. G. Ferraz, D. M. F. Mattos, and O. C. M. B. Duarte, “A two-
phase multipathing scheme based on genetic algorithm for data center
networking,” in IEEE GLOBECOM 2014, Dec. 2014, pp. 2270–2275.


