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Abstract—On most denial-of-service (DoS) attacks, packets Several schemes have been proposed for defeating anony-
with spoofed source addresses are employed in order to disguisemous denial-of-service attacks through IP traceback. The main
the true origin of the attacker. A defense strategy is to trace purpose of IP traceback is to disclose the identity of the

attack packets back to their actual source in order to make the . .
attacker accountable and isolate him from the network. To date, attacker by tracing the attack back to its source. Stone [3]

the proposed traceback systems require either large amounts of Proposed an intuitive way for tracing an ongoing attack by
storage space on router-connected devices or a sufficient numberobserving the interface from which the attack flow comes
of received attack packets. In this paper, we propose a new IP in every hop. Burch and Cheswick [4] described a flooding
traceback system capable of determining the source of every yacpnique for detecting from which upstream router the attack

packet received by the victim without storing state in the network .
infrastructure. For practical purposes, a generalization of the packets come. Under another perspective, Sagagé devel-

Bloom-filter theory is developed and evaluated. Analytical results OPed a traceback scheme where routers probabilistically insert

are presented to show the efficacy of the proposed system. information about themselves in the packets routed to the
victim. After receiving enough attack packets, the victim can
I. INTRODUCTION reconstitute the entire route. Bellovin [5] suggested a similar

The current Internet routing infrastructure is vulnerable @PProach that employs router-generated ICMP packets instead
anonymous denial-of-service (DoS) attacks [1]. Such attacckynser‘ung.|nformat|on dlrectly into the routed packet. Using
are specially designed to conceal the true identity of tiégh-capacity storage devices connected to routers, Sneeren
attacker in addition to making the services provided by tfd- [6] Proposed a system capable of tracing a single IP packet
victim inaccessible to users. These attacks are generally c8¥-Storing digests of every routed packet in Bloom filters [7]
ducted by sending packets to the victim at a higher rate thiggated at these devices.
they can be served, what causes the denial of legitimate servicé? this paper, we introduce a new approach to the IP
requests. In distributed denial-of-service attacks (DDoS), tH&ceback problem. We also propose a generalization of Bloom
aggregate traffic from several different sources is responsiiféers [7] and derive its analytical expression. This generaliza-
for disabling the services provided by the victim. Recentl{ion arises as a solution to evasion techniques that could be
the number of distributed attacks against famous websitesTPlemented if a standard Bloom filter were employed. The
alarming and digital plagues have been specifically developgPPosal consists of using a generalized Bloom filter integrated
for that purpose [1]. Although less common, denial-of-servidBto the packet for compactly storing the address of each
attacks constituted by a single packet also exist and are miicversed router. Therefore, it is possible to probabilistically
easier to be conducted [2]. In both cases, the results #@ce the complete route traversed by each individual packet.
financially devastating and a solution that identifies the trjd¥€ also show that with the generalized Bloom filter the
origin of attack packets becomes necessary. evasion capability is limited by system parameters. In addition,

Due to the datagram technique employed in the IP protocHT,e traceba_ck process can be started long after the attack is
the attacker can inject packets with spoofed source addresQ§d and without any help from network operators. To date,
into the network and remain anonymous throughout the atta€¥ISting proposals that present equivalent results demand high-
In fact, there is no entity or mechanism responsible f&apPacity storage devices that must be directly connected to
verifying the authenticity of the source. Once the routingPuters [6]. _ _ _
infrastructure is exclusively based on the destination address] e rest of the paper is structured in the following way. In
packets with spoofed source addresses generally reach ¥§&tion I, we introduce the proposed IP traceback system
victim without difficulty. Denial-of-service attacks can alsgnd analyze our proposition of Bloom-filter generalization.
become anonymous due to the stateless nature of IP routifigalytical results are then presented in Section Iil, showing
Currently, no information about forwarded packets is stordfe efficacy of the system. Finally, conclusions and future
in routers for future queries and, as a consequence, it is fB¢€arch work are discussed in Section IV.
possible to deduce the route traversed by a spoofed attack

II. THE PROPOSEDIP TRACEBACK SYSTEM
packet.

This section presents a new IP traceback technique designed

This work has been supported by CNPg, CAPES, FAPERJ, FINEP, R trace the source of each individual packet. The proposal is
and FUNTTEL. based on the packet-marking approach to avoid state storage



at routers. Instead of using a marking procedure as the dhe real path.
suggested by Savageal.[8], each router inserts a “signature” In order to minimize misleading techniques and to make
into the packet, which indicates its presence on the pathe system less dependent of the initial state of the filter,
A Bloom filter [7] (for a complete understanding of Blooma generalization of the Bloom filter is here proposed. The
filters, refer to Appendix I) is employed to reduce the amouiasic idea of the generalized Bloom filter is to employ both
of information inserted into the packet and to limit the size diash functions that set and hash functions that reset bits. We
this information to a fixed value to avoid packet fragmentatioshow that with the generalized Bloom filter the false positive
In addition, we propose the use of a generalized Bloom filterobability is reduced and it does not depend so much on
(Section 1I-A) to prevent “signature” forgery by the attackethe initial condition of the filter. On the other hand, false
and therefore backtracing failures. negatives, which do not exist in standard Bloom filters, are
In order to reduce the required space on each packet amlv introduced with this generalization. In the next section,
to avoid the processing cost of appending data to packets, the Bloom-filter generalization is described and an analysis of
attack route is stored in a built-in Bloom filter integrated intthe false-positive and false-negative probabilities is derived to
the packet. Hence, a static field must then be allocated in ttgow the efficacy of this new approach.
packet header for the Bloom filter. The marking procedure for
this case is quite simple. Just before forwarding a packet, fe
router inserts the IP address of the output interface into theAs the standard filter, the generalized Bloom filter is also a
filter. Upon receiving an attack packet, the victim disposes data structure used to represent a Set {s1,s2,...,5,}
a filter whose elements are the routers that compose the attatk: elements in a compact form. It is constituted by an
path. array of m bits and byk, + k; independent hash functions
To reconstruct the attack path, the following procedum®, g2, .-, gk, h1, he, ..., hi, Whose outputs are uniformly
is used. Initially, the victim checks for the presence of aflistributed over the discrete randg®,1,...,m — 1}. The
neighbor routers in the Bloom filter of a received attack packeteneralized filter is built in a similar way to the standard filter.
The router that is recognized as an element of the filter Mevertheless, the initial value of the bits of the array is not
identified as the upstream router and is therefore integratestricted to O anymore. In the generalized Bloom filter, these
into the attack path. Afterwards, this selected router receiviei$s can begin with any value. For each element S, the
the Bloom filter from the victim and checks which neighbobits corresponding to the positions(s;), g2(s:), - - -, gro (S:)
router is also recognized as an element of the filter, identifyirge set to 0 and the bits corresponding to the positions
the next upstream router. This process is recursively repeatads;), h2(s:),. .., hr, (s;) are set to 1. In the case of a
on each upstream router to reconstruct the actual path traverseltision between a functiog; and a function; within the
by the packet. When a router does not recognize any neighlsame element, we arbitrate that the bit is always set to O,
router as an element of the filter, the process stops and tttisj. The same bit can be set to 0 or 1 several times without
router may be considered the source of the attack. restrictions. Figure 1 succinctly illustrates how an element is
Some advantages come from the adoption of this approagtserted into a generalized Bloom filter. After inserting the
First, the complete route of each packet can be individuakgfements, membership queries can be easily made. To check
determined. Such behavior is idealized by every IP tracebaélan elementz is in S, we check if the bits of the array
system since it permits the identification of every souragmrresponding to the positions(z), g2(z), ..., gi, (z) are all
of a distributed attack, even if it contributed with only oneset to 0 and if the bitsh (x), ha(x), ..., hi(z) are all set
packet. By enabling backtracing of a single packet, the systéon1. If at least one bit is inverted, then ¢ S with high
becomes as scalable as it can be. Besides, no information ngeddability. In the generalized Bloom filter, it is possible that
to be stored in the network infrastructure. All traceback datm elementz € S may not be recognized as an element of
is stored at the victim, who chooses to hold it or not accordirie set, creating a false negative. Such anomaly may happen
to the local security policy. Another advantage is the abilitwhen at least one of the bitg (x), g2(x), ..., gk, () IS set
of tracing an attack long after it is over and without any helf 1 or one of the bitsh(x), ha(x),..., hg, (x) is set to O
from network operators. by another element inserted afterwards. On the other hand, if
On the other hand, additional processing overhead is intme bit is inverted, ther: € S also with high probability. This
duced during each packet routing. Moreover, the adoption wficertainty is explained by the fact that an elemegt S may
a Bloom filter introduces false positives into the attack pathe recognized as an element of the set, creating a false positive.
During the reconstruction procedure, a false positive impliésfalse positive occurs when the bigs(x), g2 (), . . ., gk, (x)
the incorrect integration of a router into the attack path. If thiare all set to 0 and the bits (), ha(z), .. ., hi, (x) are all set
probability is small enough, the occurrence of false positivés 1 due to a subset of elements$br to the initial condition
does not significantly impact on the reconstruction. Therd the bit array.
would be some concurrent routes for the same packet but th@he false-positive probability of a generalized Bloom filter
set of possible attackers would still be reduced. Neverthelesscalculated in a similar way to the standard filter. Given that,
since the attacker controls the initial content of the packet, the case of a collision, the functiong take precedence
he can fill all the filter bits with 1. By saturating the filter,over functionsh;, the probabilityq, that a specific bit is set
every router is integrated into the attack path during the O by an element insertion is the probability that at least
reconstruction procedure, making impractical to distinguigine of thek, hash functions set the bit to 0; equivalently
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probability of a false positivef, for the generalized Bloom
filter is calculated as follows

fp = po(n)*p1(n)". 3)

As expected, Equation 3 is reduced to the false-positive
m bits  probability of the standard Bloom filter when its parameters
are used, that isgy = 0, po(0) = 1, andp;1(0) = 0. In this
case, we havgy(n) = e ¥/ pi(n) = 1—e F1n/™ by =0
andb; = m(1 — e *1/™). Noticing thatm > k; and using

an expansion expression féy, we get to the simplification
made for the standard filter
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Fig. 1. An element insertion into a generalized Bloom filter. b = m(l € )
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o = 1—(1-1/m)" ~ (1—e*/™). The probability
g1 that a specific bit is set to 1 by an element insertion - T
is the probability that at least one of thg hash functions Thus, the probability of a false positivg is simplified to the
set the bit to 1 and none of thé, hash functions set probability of the standard Bloom filter in Equation 13, that
the bit to 0; thus,q = [1 —(1- 1/m)’“1} (1—1/m)f ~ 18 fp=(1—eh" - .
The false-negative probability can be calculated if we have
the probability that an specific bit from tHe — i)-th element
ot inverted by the nextelements) < ¢ < n—1. Thus, the
robability poo (¢) that a bit set to 0 by thén — i)-th element
ains in 0 by the end of the followinginsertions is

efkrln/m)kl

is just (1—qgo—q1) = (1—1/m)*™™ ~ e=(kothk)/m
Since the same calculation can be made to every bit of t
array, on average, a fraction gf bits is set to 0, a fraction of
q1 bits is set to 1, and a fraction @t — go — ¢1) bits remains (ko+k1)i ko (kotk1)j
untouched on each element insertion. Applying this thought?oo(i) = e~ + > (1 - e_ﬁ) e

i—1

to the bit array, we have on averagg= m.q, bits set to 0, 7=0 o
by = m.qy bits set to 1, andm — by — by) bits untouched on _ Gegtkpi gy (1= e R
each insertion. =e m (1 —¢€ ’") e (5)

Now, we can determine how the bits are distributed over the
array after all insertions. The probability(n) that a specific Equivalently, the probability;; (i) of a bit set to 1 by the
bit is O after n insertions is the probability that the bit is(n —)-th element remains in 1 by the end of the following
initially 0 and remains untouched by theelements, or it is insertions is
set to 0 by thén—i)-th element and remains untouched by the -
next: elementsp < i < n— 1. Noticing thatp,(0) represents (i) = oy
the probability that a specific bit is initially set to 0, we have e_w n (1 _ e_ﬂ) e‘m (1 — e—°ml> ©

m m m

kotky
n—1 ‘ 1—e "
po(n) =po(0) (1 — g0 — @1)" + z_: g0 (1 =90 —q) We can then calculate the false-negative probabifity
o =0 for the (n — i)-th element by taking the complement of the
_ po(o)e_““otn& n Z (1 _ 6_’;‘79> o~ oti)t probability that none of its bits are inverted. Thus,
=0 Fa(@) =1 = poo(i)*p11(4)". (1)

_ (kgtky)n kg ] _ o fotkn | |
=po(0)e m  + (1 —e ) —m— |- (1) As expected, Equation 7 is zero for the standard Bloom
Equivalently, the probability; (n) that a specific bit is 1 after Other parameters the probability of a false negative is zero. For

n insertions is the last inserted element, theth element, the false-negative
probability is also zero since no other element can invert any
pi(n) = of its bits. In this case; = 0 andpgy = p11 = 1; therefore,
~ (kg+kpn .1 . .
 (kgtkpn N kg [1l—em the probability of a false negative is also zero.
O L P Ill. RESULTS
—e m

In order to show the advantages of employing a generalized
and clearlypo(n)+pi1(n) = 1. On average, a fraction @h(n)  Bloom filter to represent the attack path, we present an analyti-
bits is set to 0 and a fraction @f; (n) bits is set to 1 after  cal comparison between the two versions of our scheme in this
insertions. section. We compare a simple version that uses the standard

From the bit-array distribution, the probability of a falsesjoom filter and the extended version that uses the new
positive can be easily calculated. Since on avetageits are concept of generalized Bloom filter. The analysis comprises
set to 0 andy; bits are set to 1 on each element insertion, thiree different aspects: false positives, false negatives, and

interference of the attacker.



A. False Positives B. False Negatives
During the path reconstruction procedure, a false positiveUsing a generalized Bloom filter might lead to false nega-
implies the integration of an incorrect router into the attadives during the attack-path reconstruction procedure. A false
path. Thus, the higher the false-positive probability, the greateggative means not detecting a router by which the attack
the number of possible routes from which the packet may hagacket has passed. Therefore, just one false negative is enough
come, which makes harder the attacker identification. to stop the reconstruction procedure and avoid finding the
Figure 2 shows the variation of the false-positive probabilityeal attack path. It is worth mentioning that the attacker can
of a generalized Bloom filterf, as a function ofp;(n), not interfere in the false-negative probability, as shown by
according to Equation 3. The probabilipf (n) can be seen Equations 5, 6, and 7.
as the fraction of bits that are marked as 1 after inserting The Equation 7 shows the false negative probability for each
elements. For the standard Bloom filter (cukie = 0), we element(n — i), 0 < ¢ < n — 1. In the traceback system,
can notice that the false-positive probability growsga¢n) the n-th (i = 0) element represents the closest router to the
increases, which is in accordance with Equation 13. The othéctim and the first elementi = n — 1) is the nearest router
curves represent the generalized Bloom filter. We can obsetwethe attacker. We can notice that the further the router is
that forp; (n) = 0 andp; (n) = 1 the false-positive probability from the victim the higher is the false negative probability.
equals zero. It occurs because when we are using at least naitively, we can think that the number of hops between a
function of each type it is required at least one bit marked gpecific router(n —4) and the victim is the number of routers
0 and one bit marked as 1 to have a false positive. The reghifit can overwrite one of the bits it has set.
for k; = 1 and varyingk, is not shown because it is the dual Another important observation is that an increasé:jnor

of Figure 2. k1 increases the false-negative probability. It happens because
1 _ ‘ ‘ ‘ the more functions we use, the higher is the probability of
— k=0 . .
2 o Kzl a router to have one of his marked bits inverted by another
% 08f o i9=3 router. Oppositely, increasing leads to a lower false-negative
2 ol probability.
S The false negatives are a deficiency of the generalized
i?, 04l | Bloom filter. For instance, in the case &f = 1, k1 = 1,
t,f n = 10, andm = 100, the false-negative probability for the
2 o2t e S first router ¢ = 9) achieves 15.8%.
& B85 0 o A e, g
0 : : 000 btrag o C. Attacker’s Interference
0 0.2 0.4 0.6 0.8 1 _ T .
Final Fraction of Bits in 1 (n)) Since the filter is integrated into the packet, the attacker may

interfere in both standard-filter and generalized-filter systems
Fig. 2. False-positive probability of a generalized Bloom filter as a functioBy setting the initial condition of the filter.
of the final fra(,:t'on of bits in 1, fo#f',l_ =t - ] In a standard Bloom filter, the false-positive probability may
The maximum false-positive probability of Figure 2 caReach 1009% when the attacker just fills with 1 the bits of
be calculated by finding out where the derivative fofwith  he packet corresponding to the filter. Nevertheless, when we
respect top;(n) is zero. Assumingn > ko andm > ki, yse a generalized Bloom filter instead of a standard filter,
the number of bits marked as 0 and 1 by each element caniig aitacker's interference is considerably reduced. Figure 3
expressed by ~ ko and b, ~ ki, respectively. Therefore, ghoy how the false-positive probability of a generalized Bloom
we can simplify Equation 3 by filter is affected by the initial fraction of bits in 1y (0).
ko i It can be shown that the value @f (0) that maximizesf,
fo=[1=pi(n)]"™° p1(n)"™. ®) s ki /(ko + k1), the same value presented in Equation 9.
It can be shown that the maximum of Equation 8 occurs fofigure 3(a) corroborates this result. By fixihg and changing
2 k1, the same result is achieved (not showed). Figure 3(b) shows
p1(n) = L (9) that as more elements are inserted into the filter, the false-
ko + K positive probability is less dependent on the initial condition
assumingp (n) # 0 andpi(n) # 1. of the filter. We could get to the same result by noticing that the
When we replace Equation 9 in Equation 8, we find thearts of Equations 1 and 2 that depend on the initial condition
maximum value for the false-positive probability of a genetend to zero as: increases. In addition, the false-positive

alized Bloom filter, which is probability tends to its maximum value because the fractions
ko ko ky k1 of bits in 0 and 1 tend td@‘o/(k‘o + kl) and kl/(k’o + kl),
fp = (ko n k1> <k:0 n k:1> (10) respectively, whem increases, as Equations 11 and 12 show:
Different from the standard Bloom filter, the generalized lim po(n) = 1—e o ~ ko (11)
version has a bounded false-positive probabilffy**. This oo t? ] -t ko + ki’
value is exclusively determined by and k;. This charac- Ck1\ ko
teristic can restrict the attacker interference in the traceback . B (1 e ) e k1
im p1(n) = (12)

process, as seen in Section III-C. n—00 ] o—oth ko + ki
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Fig. 3. False-positive probability of a generalized Bloom filter as a function of the initial fraction of bits in 1.

Therefore, by adopting a generalized Bloom filter instead of APPENDIXI
a standard Bloom filter, the maximum false-positive probabil- THE BLOOM FILTER

ity drops at least 75%, for the worst case whege= k1 = 1. | this appendix, the Bloom filter is introduced following
IV. CONCLUSION the theoretical analysis of Mitzenmacher [9].

In this paper, we introduce a new approach to packet-The Bloom filter [7] is a data structure used to compactly
marking IP traceback. Probabilistically, the proposed systdigpresent a seb = {si,ss,...,s,} of n elements. It is
is able to trace an attack back to its source analyzing a sin§Rnstituted by an array ofn bits and byk independent
packet. Thus, our approach is extremely scalable and fgsh functionshy, hs,. .., hy whose outputs are uniformly
well to trace each source of a distributed DoS attack. Whélistributed over the discrete range, 1,...,m—1}. The filter
traversing the network, each packet is marked by routers wighbuilt by the following rules. First, all the bits in the array are
a “signature”. Thus, when the victim receives a packet, ti%€t to 0. For each elemesit€ S, the bits corresponding to the
attack path can be easily identified. A Bloom filter is useBOSitionshy(s;), ha(s:),. .., hx(s;) are set to 1. The same bit
to store the router “signatures” in a compact and fixed-si£&n be set several times without restrictions. After inserting the
form. Nevertheless, the performance of Bloom filters is ve§lements, membership queries can be easily made. To check
dependable on their initial condition, which is in control off an elementz is in S, we check whether the bits of the
the attacker. Therefore, a generalization of Bloom filters &fray corresponding to the positiohs(z), ha(z), ..., hx(z)
proposed and employed in the system. We show that with tAee all set to 1. If at least one bit is set to O, thegt S for
generalized Bloom filter the misleading ability of the attackeure. Otherwisey € S with high probability. This uncertainty
in the traceback procedure is drastically reduced. While for tife €xplained by the fact that an element¢ S may be
standard bloom filter the attacker can cause a false-positi@§0gnized as an element of the set, creating a false positive.
probability of 100%, for the generalized Bloom filter theSuch anomaly occurs when the bits(z), h2(2), ..., hi(z)
maximum false-positive probability is 25% and this probabilitpre all set due to a subset of elementsSof
is exclusively controlled by design parameters. The tradeoffGiven that only perfectly independent and uniform hash
cost is the introduction of false negatives in the system. functions are used, the probability that a sEecific bit remains
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