
A New IP Traceback System Against Distributed
Denial-of-Service Attacks

Rafael P. Laufer1, Pedro B. Velloso1,2, Daniel de O. Cunha1,
Igor M. Moraes1, Marco D. D. Bicudo1, and Otto Carlos M. B. Duarte1

1Grupo de Teleinforḿatica e Automaç̃ao (GTA) 2Laboratoire d’Informatique de Paris 6 (LIP6)
Universidade Federal do Rio de Janeiro Université Pierre et Marie Curie - Paris VI

Rio de Janeiro, RJ, Brazil Paris, France

Abstract— On most denial-of-service (DoS) attacks, packets
with spoofed source addresses are employed in order to disguise
the true origin of the attacker. A defense strategy is to trace
attack packets back to their actual source in order to make the
attacker accountable and isolate him from the network. To date,
the proposed traceback systems require either large amounts of
storage space on router-connected devices or a sufficient number
of received attack packets. In this paper, we propose a new IP
traceback system capable of determining the source of every
packet received by the victim without storing state in the network
infrastructure. For practical purposes, a generalization of the
Bloom-filter theory is developed and evaluated. Analytical results
are presented to show the efficacy of the proposed system.

I. I NTRODUCTION

The current Internet routing infrastructure is vulnerable to
anonymous denial-of-service (DoS) attacks [1]. Such attacks
are specially designed to conceal the true identity of the
attacker in addition to making the services provided by the
victim inaccessible to users. These attacks are generally con-
ducted by sending packets to the victim at a higher rate than
they can be served, what causes the denial of legitimate service
requests. In distributed denial-of-service attacks (DDoS), the
aggregate traffic from several different sources is responsible
for disabling the services provided by the victim. Recently,
the number of distributed attacks against famous websites is
alarming and digital plagues have been specifically developed
for that purpose [1]. Although less common, denial-of-service
attacks constituted by a single packet also exist and are much
easier to be conducted [2]. In both cases, the results are
financially devastating and a solution that identifies the true
origin of attack packets becomes necessary.

Due to the datagram technique employed in the IP protocol,
the attacker can inject packets with spoofed source addresses
into the network and remain anonymous throughout the attack.
In fact, there is no entity or mechanism responsible for
verifying the authenticity of the source. Once the routing
infrastructure is exclusively based on the destination address,
packets with spoofed source addresses generally reach the
victim without difficulty. Denial-of-service attacks can also
become anonymous due to the stateless nature of IP routing.
Currently, no information about forwarded packets is stored
in routers for future queries and, as a consequence, it is not
possible to deduce the route traversed by a spoofed attack
packet.

This work has been supported by CNPq, CAPES, FAPERJ, FINEP, RNP
and FUNTTEL.

Several schemes have been proposed for defeating anony-
mous denial-of-service attacks through IP traceback. The main
purpose of IP traceback is to disclose the identity of the
attacker by tracing the attack back to its source. Stone [3]
proposed an intuitive way for tracing an ongoing attack by
observing the interface from which the attack flow comes
in every hop. Burch and Cheswick [4] described a flooding
technique for detecting from which upstream router the attack
packets come. Under another perspective, Savageet al. devel-
oped a traceback scheme where routers probabilistically insert
information about themselves in the packets routed to the
victim. After receiving enough attack packets, the victim can
reconstitute the entire route. Bellovin [5] suggested a similar
approach that employs router-generated ICMP packets instead
of inserting information directly into the routed packet. Using
high-capacity storage devices connected to routers, Snoerenet
al. [6] proposed a system capable of tracing a single IP packet
by storing digests of every routed packet in Bloom filters [7]
located at these devices.

In this paper, we introduce a new approach to the IP
traceback problem. We also propose a generalization of Bloom
filters [7] and derive its analytical expression. This generaliza-
tion arises as a solution to evasion techniques that could be
implemented if a standard Bloom filter were employed. The
proposal consists of using a generalized Bloom filter integrated
into the packet for compactly storing the address of each
traversed router. Therefore, it is possible to probabilistically
trace the complete route traversed by each individual packet.
We also show that with the generalized Bloom filter the
evasion capability is limited by system parameters. In addition,
the traceback process can be started long after the attack is
over and without any help from network operators. To date,
existing proposals that present equivalent results demand high-
capacity storage devices that must be directly connected to
routers [6].

The rest of the paper is structured in the following way. In
Section II, we introduce the proposed IP traceback system
and analyze our proposition of Bloom-filter generalization.
Analytical results are then presented in Section III, showing
the efficacy of the system. Finally, conclusions and future
research work are discussed in Section IV.

II. T HE PROPOSEDIP TRACEBACK SYSTEM

This section presents a new IP traceback technique designed
to trace the source of each individual packet. The proposal is
based on the packet-marking approach to avoid state storage

at routers. Instead of using a marking procedure as the one
suggested by Savageet al. [8], each router inserts a “signature”
into the packet, which indicates its presence on the path.
A Bloom filter [7] (for a complete understanding of Bloom
filters, refer to Appendix I) is employed to reduce the amount
of information inserted into the packet and to limit the size of
this information to a fixed value to avoid packet fragmentation.
In addition, we propose the use of a generalized Bloom filter
(Section II-A) to prevent “signature” forgery by the attacker
and therefore backtracing failures.

In order to reduce the required space on each packet and
to avoid the processing cost of appending data to packets, the
attack route is stored in a built-in Bloom filter integrated into
the packet. Hence, a static field must then be allocated in the
packet header for the Bloom filter. The marking procedure for
this case is quite simple. Just before forwarding a packet, the
router inserts the IP address of the output interface into the
filter. Upon receiving an attack packet, the victim disposes of
a filter whose elements are the routers that compose the attack
path.

To reconstruct the attack path, the following procedure
is used. Initially, the victim checks for the presence of all
neighbor routers in the Bloom filter of a received attack packet.
The router that is recognized as an element of the filter is
identified as the upstream router and is therefore integrated
into the attack path. Afterwards, this selected router receives
the Bloom filter from the victim and checks which neighbor
router is also recognized as an element of the filter, identifying
the next upstream router. This process is recursively repeated
on each upstream router to reconstruct the actual path traversed
by the packet. When a router does not recognize any neighbor
router as an element of the filter, the process stops and this
router may be considered the source of the attack.

Some advantages come from the adoption of this approach.
First, the complete route of each packet can be individually
determined. Such behavior is idealized by every IP traceback
system since it permits the identification of every source
of a distributed attack, even if it contributed with only one
packet. By enabling backtracing of a single packet, the system
becomes as scalable as it can be. Besides, no information needs
to be stored in the network infrastructure. All traceback data
is stored at the victim, who chooses to hold it or not according
to the local security policy. Another advantage is the ability
of tracing an attack long after it is over and without any help
from network operators.

On the other hand, additional processing overhead is intro-
duced during each packet routing. Moreover, the adoption of
a Bloom filter introduces false positives into the attack path.
During the reconstruction procedure, a false positive implies
the incorrect integration of a router into the attack path. If this
probability is small enough, the occurrence of false positives
does not significantly impact on the reconstruction. There
would be some concurrent routes for the same packet but the
set of possible attackers would still be reduced. Nevertheless,
since the attacker controls the initial content of the packet,
he can fill all the filter bits with 1. By saturating the filter,
every router is integrated into the attack path during the
reconstruction procedure, making impractical to distinguish

the real path.
In order to minimize misleading techniques and to make

the system less dependent of the initial state of the filter,
a generalization of the Bloom filter is here proposed. The
basic idea of the generalized Bloom filter is to employ both
hash functions that set and hash functions that reset bits. We
show that with the generalized Bloom filter the false positive
probability is reduced and it does not depend so much on
the initial condition of the filter. On the other hand, false
negatives, which do not exist in standard Bloom filters, are
now introduced with this generalization. In the next section,
the Bloom-filter generalization is described and an analysis of
the false-positive and false-negative probabilities is derived to
show the efficacy of this new approach.

A. The Generalized Bloom Filter

As the standard filter, the generalized Bloom filter is also a
data structure used to represent a setS = {s1, s2, . . . , sn}
of n elements in a compact form. It is constituted by an
array of m bits and byk0 + k1 independent hash functions
g1, g2, . . . , gk0 , h1, h2, . . . , hk1 whose outputs are uniformly
distributed over the discrete range{0, 1, . . . ,m − 1}. The
generalized filter is built in a similar way to the standard filter.
Nevertheless, the initial value of the bits of the array is not
restricted to 0 anymore. In the generalized Bloom filter, these
bits can begin with any value. For each elementsi ∈ S, the
bits corresponding to the positionsg1(si), g2(si), . . . , gk0(si)
are set to 0 and the bits corresponding to the positions
h1(si), h2(si), . . . , hk1(si) are set to 1. In the case of a
collision between a functiongi and a functionhj within the
same element, we arbitrate that the bit is always set to 0,
∀i, j. The same bit can be set to 0 or 1 several times without
restrictions. Figure 1 succinctly illustrates how an element is
inserted into a generalized Bloom filter. After inserting the
elements, membership queries can be easily made. To check
if an elementx is in S, we check if the bits of the array
corresponding to the positionsg1(x), g2(x), . . . , gk0(x) are all
set to 0 and if the bitsh1(x), h2(x), . . . , hk(x) are all set
to 1. If at least one bit is inverted, thenx 6∈ S with high
probability. In the generalized Bloom filter, it is possible that
an elementx ∈ S may not be recognized as an element of
the set, creating a false negative. Such anomaly may happen
when at least one of the bitsg1(x), g2(x), . . . , gk0(x) is set
to 1 or one of the bitsh1(x), h2(x), . . . , hk1(x) is set to 0
by another element inserted afterwards. On the other hand, if
no bit is inverted, thenx ∈ S also with high probability. This
uncertainty is explained by the fact that an elementx 6∈ S may
be recognized as an element of the set, creating a false positive.
A false positive occurs when the bitsg1(x), g2(x), . . . , gk0(x)
are all set to 0 and the bitsh1(x), h2(x), . . . , hk1(x) are all set
to 1 due to a subset of elements ofS or to the initial condition
of the bit array.

The false-positive probability of a generalized Bloom filter
is calculated in a similar way to the standard filter. Given that,
in the case of a collision, the functionsgi take precedence
over functionshj , the probabilityq0 that a specific bit is set
to 0 by an element insertion is the probability that at least
one of thek0 hash functions set the bit to 0; equivalently

si

g1(si)
...

gk0(si)

h1(si)

...

hk1(si)

½
½

½
½

½
½>

»»»»»»:

XXXXXXz
Z

Z
Z

Z
Z

Z~

1

1

0

0

1

1

0
»»»»»»:

HHHHHHjZ
Z

Z
Z

Z
Z~

³³³³³³1

6

?

m bits

Fig. 1. An element insertion into a generalized Bloom filter.

q0 = 1 − (1− 1/m)k0 ≈ (
1− e−k0/m

)
. The probability

q1 that a specific bit is set to 1 by an element insertion
is the probability that at least one of thek1 hash functions
set the bit to 1 and none of thek0 hash functions set
the bit to 0; thus,q1 =

[
1− (1− 1/m)k1

]
(1− 1/m)k0 ≈(

1− e−k1/m
)
e−k0/m. Finally, the probability that a specific

bit remains untouched (not set to 0 nor to 1) during an insertion
is just (1− q0 − q1) = (1− 1/m)k0+k1 ≈ e−(k0+k1)/m.
Since the same calculation can be made to every bit of the
array, on average, a fraction ofq0 bits is set to 0, a fraction of
q1 bits is set to 1, and a fraction of(1− q0− q1) bits remains
untouched on each element insertion. Applying this thought
to the bit array, we have on averageb0 = m.q0 bits set to 0,
b1 = m.q1 bits set to 1, and(m− b0 − b1) bits untouched on
each insertion.

Now, we can determine how the bits are distributed over the
array after all insertions. The probabilityp0(n) that a specific
bit is 0 after n insertions is the probability that the bit is
initially 0 and remains untouched by then elements, or it is
set to 0 by the(n−i)-th element and remains untouched by the
next i elements,0 ≤ i ≤ n−1. Noticing thatp0(0) represents
the probability that a specific bit is initially set to 0, we have

p0(n) = p0(0) (1− q0 − q1)
n +

n−1∑

i=0

q0 (1− q0 − q1)
i

= p0(0)e−
(k0+k1)n

m +
n−1∑

i=0

(
1− e−

k0
m

)
e−

(k0+k1)i

m

= p0(0)e−
(k0+k1)n

m +
(
1− e−

k0
m

)(
1− e−

(k0+k1)n

m

1− e−
k0+k1

m

)
. (1)

Equivalently, the probabilityp1(n) that a specific bit is 1 after
n insertions is

p1(n) =

p1(0)e−
(k0+k1)n

m +
(
1− e−

k1
m

)
e−

k0
m

(
1− e−

(k0+k1)n

m

1− e−
k0+k1

m

)
(2)

and clearlyp0(n)+p1(n) = 1. On average, a fraction ofp0(n)
bits is set to 0 and a fraction ofp1(n) bits is set to 1 aftern
insertions.

From the bit-array distribution, the probability of a false
positive can be easily calculated. Since on averageb0 bits are
set to 0 andb1 bits are set to 1 on each element insertion, the

probability of a false positivefp for the generalized Bloom
filter is calculated as follows

fp = p0(n)b0p1(n)b1 . (3)

As expected, Equation 3 is reduced to the false-positive
probability of the standard Bloom filter when its parameters
are used, that is,k0 = 0, p0(0) = 1, andp1(0) = 0. In this
case, we havep0(n) = e−k1n/m, p1(n) = 1−e−k1n/m, b0 = 0
and b1 = m(1 − e−k1/m). Noticing thatm À k1 and using
an expansion expression forb1, we get to the simplification
made for the standard filter

b1 = m(1− e−k1/m)

= m

[
1−

(
1− k1

m
+

k2
1

2m2
− · · ·

)]
≈ k1. (4)

Thus, the probability of a false positivefp is simplified to the
probability of the standard Bloom filter in Equation 13, that
is, fp =

(
1− e−k1n/m

)k1 .
The false-negative probability can be calculated if we have

the probability that an specific bit from the(n− i)-th element
is not inverted by the nexti elements,0 ≤ i ≤ n−1. Thus, the
probability p00(i) that a bit set to 0 by the(n− i)-th element
remains in 0 by the end of the followingi insertions is

p00(i) = e−
(k0+k1)i

m +
i−1∑

j=0

(
1− e−

k0
m

)
e−

(k0+k1)j

m

= e−
(k0+k1)i

m +
(
1− e−

k0
m

) (
1− e−

(k0+k1)i

m

1− e−
k0+k1

m

)
. (5)

Equivalently, the probabilityp11(i) of a bit set to 1 by the
(n− i)-th element remains in 1 by the end of the followingi
insertions is

p11(i) =

e−
(k0+k1)i

m +
(
1− e−

k1
m

)
e−

k0
m

(
1− e−

(k0+k1)i

m

1− e−
k0+k1

m

)
. (6)

We can then calculate the false-negative probabilityfn

for the (n − i)-th element by taking the complement of the
probability that none of its bits are inverted. Thus,

fn(i) = 1− p00(i)b0p11(i)b1 . (7)

As expected, Equation 7 is zero for the standard Bloom
filter. In this case,b0 = 0 andp11 = 1, so independently from
other parameters the probability of a false negative is zero. For
the last inserted element, then-th element, the false-negative
probability is also zero since no other element can invert any
of its bits. In this case,i = 0 and p00 = p11 = 1; therefore,
the probability of a false negative is also zero.

III. R ESULTS

In order to show the advantages of employing a generalized
Bloom filter to represent the attack path, we present an analyti-
cal comparison between the two versions of our scheme in this
section. We compare a simple version that uses the standard
Bloom filter and the extended version that uses the new
concept of generalized Bloom filter. The analysis comprises
three different aspects: false positives, false negatives, and
interference of the attacker.

A. False Positives
During the path reconstruction procedure, a false positive

implies the integration of an incorrect router into the attack
path. Thus, the higher the false-positive probability, the greater
the number of possible routes from which the packet may have
come, which makes harder the attacker identification.

Figure 2 shows the variation of the false-positive probability
of a generalized Bloom filterfp as a function ofp1(n),
according to Equation 3. The probabilityp1(n) can be seen
as the fraction of bits that are marked as 1 after insertingn
elements. For the standard Bloom filter (curvek0 = 0), we
can notice that the false-positive probability grows asp1(n)
increases, which is in accordance with Equation 13. The other
curves represent the generalized Bloom filter. We can observe
that forp1(n) = 0 andp1(n) = 1 the false-positive probability
equals zero. It occurs because when we are using at least one
function of each type it is required at least one bit marked as
0 and one bit marked as 1 to have a false positive. The result
for k1 = 1 and varyingk0 is not shown because it is the dual
of Figure 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
al

se
−

P
os

iti
ve

 P
ro

ba
bi

lit
y

(f p)

Final Fraction of Bits in 1 (p1(n))

k0 = 0
k0 = 1
k0 = 2
k0 = 3

Fig. 2. False-positive probability of a generalized Bloom filter as a function
of the final fraction of bits in 1, fork1 = 1.

The maximum false-positive probability of Figure 2 can
be calculated by finding out where the derivative offp with
respect top1(n) is zero. Assumingm À k0 and m À k1,
the number of bits marked as 0 and 1 by each element can be
expressed byb0 ≈ k0 and b1 ≈ k1, respectively. Therefore,
we can simplify Equation 3 by

fp = [1− p1(n)]k0 p1(n)k1 . (8)

It can be shown that the maximum of Equation 8 occurs for

p1(n) =
k1

k0 + k1
, (9)

assumingp1(n) 6= 0 andp1(n) 6= 1.
When we replace Equation 9 in Equation 8, we find the

maximum value for the false-positive probability of a gener-
alized Bloom filter, which is

fmax
p =

(
k0

k0 + k1

)k0
(

k1

k0 + k1

)k1

. (10)

Different from the standard Bloom filter, the generalized
version has a bounded false-positive probabilityfmax

p . This
value is exclusively determined byk0 and k1. This charac-
teristic can restrict the attacker interference in the traceback
process, as seen in Section III-C.

B. False Negatives
Using a generalized Bloom filter might lead to false nega-

tives during the attack-path reconstruction procedure. A false
negative means not detecting a router by which the attack
packet has passed. Therefore, just one false negative is enough
to stop the reconstruction procedure and avoid finding the
real attack path. It is worth mentioning that the attacker can
not interfere in the false-negative probability, as shown by
Equations 5, 6, and 7.

The Equation 7 shows the false negative probability for each
element(n − i), 0 ≤ i ≤ n − 1. In the traceback system,
the n-th (i = 0) element represents the closest router to the
victim and the first element (i = n − 1) is the nearest router
to the attacker. We can notice that the further the router is
from the victim the higher is the false negative probability.
Intuitively, we can think that the number of hops between a
specific router(n− i) and the victim is the number of routers
that can overwrite one of the bits it has set.

Another important observation is that an increase ink0 or
k1 increases the false-negative probability. It happens because
the more functions we use, the higher is the probability of
a router to have one of his marked bits inverted by another
router. Oppositely, increasingm leads to a lower false-negative
probability.

The false negatives are a deficiency of the generalized
Bloom filter. For instance, in the case ofk0 = 1, k1 = 1,
n = 10, andm = 100, the false-negative probability for the
first router (i = 9) achieves 15.8%.

C. Attacker’s Interference

Since the filter is integrated into the packet, the attacker may
interfere in both standard-filter and generalized-filter systems
by setting the initial condition of the filter.

In a standard Bloom filter, the false-positive probability may
reach 100% when the attacker just fills with 1 the bits of
the packet corresponding to the filter. Nevertheless, when we
use a generalized Bloom filter instead of a standard filter,
the attacker’s interference is considerably reduced. Figure 3
show how the false-positive probability of a generalized Bloom
filter is affected by the initial fraction of bits in 1,p1(0).
It can be shown that the value ofp1(0) that maximizesfp

is k1/(k0 + k1), the same value presented in Equation 9.
Figure 3(a) corroborates this result. By fixingk0 and changing
k1, the same result is achieved (not showed). Figure 3(b) shows
that as more elements are inserted into the filter, the false-
positive probability is less dependent on the initial condition
of the filter. We could get to the same result by noticing that the
parts of Equations 1 and 2 that depend on the initial condition
tend to zero asn increases. In addition, the false-positive
probability tends to its maximum value because the fractions
of bits in 0 and 1 tend tok0/(k0 + k1) and k1/(k0 + k1),
respectively, whenn increases, as Equations 11 and 12 show:

lim
n→∞

p0(n) =
1− e−

k0
m

1− e−
k0+k1

m

≈ k0

k0 + k1
, (11)

lim
n→∞

p1(n) =

(
1− e−

k1
m

)
e−

k0
m

1− e−
k0+k1

m

≈ k1

k0 + k1
. (12)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1

F
al

se
−

P
os

iti
ve

 P
ro

ba
bi

lit
y(

f
p)

Initial Fraction of Bits in 1 (p1(0))

k0 = 1
k0 = 2
k0 = 3
k0 = 4

(a) n = 10, m = 100, k1 = 1.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1

F
al

se
−

P
os

iti
ve

 P
ro

ba
bi

lit
y(

f
p)

Initial Fraction of Bits in 1 (p1(0))

n = 001
n = 025
n = 050
n = 100

(b) k0 = k1 = 1, m = 100.

Fig. 3. False-positive probability of a generalized Bloom filter as a function of the initial fraction of bits in 1.

Therefore, by adopting a generalized Bloom filter instead of
a standard Bloom filter, the maximum false-positive probabil-
ity drops at least 75%, for the worst case wherek0 = k1 = 1.

IV. CONCLUSION

In this paper, we introduce a new approach to packet-
marking IP traceback. Probabilistically, the proposed system
is able to trace an attack back to its source analyzing a single
packet. Thus, our approach is extremely scalable and fits
well to trace each source of a distributed DoS attack. When
traversing the network, each packet is marked by routers with
a “signature”. Thus, when the victim receives a packet, the
attack path can be easily identified. A Bloom filter is used
to store the router “signatures” in a compact and fixed-size
form. Nevertheless, the performance of Bloom filters is very
dependable on their initial condition, which is in control of
the attacker. Therefore, a generalization of Bloom filters is
proposed and employed in the system. We show that with the
generalized Bloom filter the misleading ability of the attacker
in the traceback procedure is drastically reduced. While for the
standard bloom filter the attacker can cause a false-positive
probability of 100%, for the generalized Bloom filter the
maximum false-positive probability is 25% and this probability
is exclusively controlled by design parameters. The tradeoff
cost is the introduction of false negatives in the system.

REFERENCES

[1] CERT Advisory CA-2003-20 W32/Blaster worm, Aug. 2003.
[2] CERT Advisory CA-1997-28 IP Denial-of-Service Attacks, Dec. 1997.
[3] R. Stone, “CenterTrack: An IP Overlay Network for Tracking DoS

Floods,” in 9th USENIX Security Symposium, Aug. 2000.
[4] H. Burch and B. Cheswick, “Tracing Anonymous Packets to their

Approximate Source,” inUSENIX LISA’00, Dec. 2000.
[5] S. M. Bellovin, M. D. Leech, and T. Taylor, “ICMP Traceback Messages,”

Internet Draft: draft-ietf-itrace-04.txt, Aug. 2003.
[6] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,

B. Schwartz, S. T. Kent, and W. T. Strayer, “Single-Packet IP Traceback,”
IEEE/ACM Transactions on Networking, vol. 10, no. 6, pp. 721–734, Dec.
2002.

[7] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 7, no. 13, pp. 442–426, July
1970.

[8] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Network Support
for IP Traceback,”IEEE/ACM Transactions on Networking, vol. 9, no. 3,
pp. 226–237, June 2001.

[9] M. Mitzenmacher, “Compressed Bloom Filters,”IEEE/ACM Transactions
on Networking, vol. 10, no. 5, pp. 604–612, Oct. 2002.

APPENDIX I
THE BLOOM FILTER

In this appendix, the Bloom filter is introduced following
the theoretical analysis of Mitzenmacher [9].

The Bloom filter [7] is a data structure used to compactly
represent a setS = {s1, s2, . . . , sn} of n elements. It is
constituted by an array ofm bits and by k independent
hash functionsh1, h2, . . . , hk whose outputs are uniformly
distributed over the discrete range{0, 1, . . . , m−1}. The filter
is built by the following rules. First, all the bits in the array are
set to 0. For each elementsi ∈ S, the bits corresponding to the
positionsh1(si), h2(si), . . . , hk(si) are set to 1. The same bit
can be set several times without restrictions. After inserting the
elements, membership queries can be easily made. To check
if an elementx is in S, we check whether the bits of the
array corresponding to the positionsh1(x), h2(x), . . . , hk(x)
are all set to 1. If at least one bit is set to 0, thenx 6∈ S for
sure. Otherwise,x ∈ S with high probability. This uncertainty
is explained by the fact that an elementx 6∈ S may be
recognized as an element of the set, creating a false positive.
Such anomaly occurs when the bitsh1(x), h2(x), . . . , hk(x)
are all set due to a subset of elements ofS.

Given that only perfectly independent and uniform hash
functions are used, the probability that a specific bit remains
in 0 after insertingn elements is(1− 1/m)kn ≈ e−kn/m.
Since the same computation can be made for every bit in the
array, on average, a fraction ofe−kn/m bits remains in 0 after
all insertions [9]. The probability of a false positivefp is the
probability that we find a bit in 1 for each of thek indicated
positions, or

fp =
(
1− e−

kn
m

)k

. (13)

It is worth mentioning that in Equation 13 it is assumed that
the mean number of collisions for each element is near zero,
which is valid whenm À k. If this condition is not satisfied,
we also need to consider the false-positive probabilities of the
cases we have1, 2, . . . , k − 1 collisions.

