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Abstract

The current Internet architecture allows malicious nodes
to disguise their origin during denial-of-service attacks
with IP spoofing. A well-known solution to identify
these nodes is IP traceback. In this paper, we intro-
duce and analyze a light-weight single-packet IP trace-
back system that does not store any data in the network
core. The proposed system relies on a novel data struc-
ture called Generalized Bloom Filter, which is tamper
resistant. In addition, an efficient improved path recon-
struction procedure is introduced and evaluated. Ana-
lytical and simulation results are presented to show the
effectiveness of the proposed scheme. The simulations
are performed in an Internet-based scenario and the re-
sults show that the proposed system locates the real at-
tack path with high accuracy.

1 Introduction

Denial-of-service (DoS) attacks are currently the fifth
major cause of financial loss due to cybercrime [13].
Originally, these attacks were launched using one or a
small number of hosts to flood the victim with spoofed
service requests. The goal was to deplete its resources
with bogus traffic, leaving no bandwidth for legitimate
traffic. These attacks, however, require that the attacking
hosts send a huge volume of traffic towards the victim,
which could be easily traced using simple traffic analysis
techniques [4, 26]. Currently, distributed DoS (DDoS)
attacks composed of 1.5 million computers are already a
reality [15]. If a large enough number of hosts is used to
disable a common victim, each attacking host may gen-
erate only a tiny amount of traffic. The aggregate traffic
is then responsible for wasting the victim’s resources and
disabling its services. This strategy makes it much harder
to trace the true generators of traffic and still keeps the
anonymity of the attackers.

Another particular attack that also challenges currently
available defense techniques is thesingle-packetDoS at-
tack [6, 7, 9, 12, 27]. Instead of flooding the victim with
lots of service requests, such attacks are based on specific
vulnerabilities triggered by a carefully crafted packet.
As a result, they are much easier to be conducted than
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flooding-based attacks, since only one packet must be
generated to deny the victim’s service. Therefore, ideal
defense techniques must be effective against both small-
flow and single-packet attacks.

One defense approach is to inhibit DoS attacks from
even happening. These incidents only happen because it
is possible for attackers to hurt the victims and still re-
main anonymous. For instance, distributed DoS attacks
are usually conducted using multiple “zombie” machines
remotely controlled by the attacker. Zombies rely on
spoofed source addresses to properly disguise their true
origin [8]. Spoofed source addresses add an extra layer
of protection for the attacker without any additional cost.
If, however, the network is capable of tracing each packet
back to its true source, zombies can be easily identified.
Other techniques, such as stepping-stone detection [29],
must then be applied to actually identify the computer
used to launch the attack. Once the network can trace
each packet back to its true originator, attacks can no
longer be conducted anonymously and legal actions can
finally be taken.

We address in this paper the identification of com-
puters that directly generate attack traffic, regarded as
the IP traceback problem [22]. Tracing an attack back
to its source is essential in any kind of attack that uses
spoofing techniques. Single-packet attacks, however,
are very hard to trace and most of the proposed trace-
back schemes assume that attacks are composed of large
flows [2,4,11,20,22,26]. The basic idea of such schemes
is to encode path information in the attack packets them-
selves to allow the victim to identify the generators
of traffic. They take advantage of large flows to dis-
tribute the path information among the different packets
of the flow and therefore reduce the per-packet overhead.
These schemes, however, perform poorly in small-scale
distributed attacks [24] and can not trace single-packet
DoS attacks, since the path information is divided among
different packets.

In order to trace a single packet, we must choose from
two basic options. We can either have each packet car-
rying the complete information about its path or have
each router storing information about every forwarded
packet [23, 26]. The tradeoff here is to have either addi-
tional overhead in the packet header or to keep per-packet
state at routers.

The main challenge is to design a single-packet IP
traceback scheme that is suitable forhigh-speednet-
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works. In order to fulfill the requirements of these net-
works, practical traceback schemes must meet two ba-
sic criteria. First, little processing overhead should be
added to routers. Increasing the per-packet processing
time directly affects the router throughput and, therefore,
it should be kept as low as possible. Secondly, no infor-
mation must be stored in the network core [10]. As the
speed of the network increases, the volume of auditing
data may become too large to be stored even for a small
time period. As a consequence, network routers should
not keep any per-packet state. Our proposal deals with
both problems in a clever way.

In this paper, we present a light-weight and stateless
approach to the IP traceback problem. Our proposal has
the advantage of tracing an attack by extracting the path
information from asingle packetwithoutany statein the
network core. In our proposal, the additional process-
ing overhead for routers is composed of only two bit-
wise logical operations. The proposal consists of using
a Bloom Filter [3] integrated into the packet header to
store the IP addresses of traversed routers in a compact
form. Later, the victim initiates a path reconstruction
procedure to identify the actual attack source. In order
to prevent the attacker from interfering with the tracing,
we propose a generalization of Bloom Filters and use it in
the packet header to store the traversed routers. The key
idea of the so-called Generalized Bloom Filters (GBF)
is to use hash functions that also reset bits during ele-
ment insertions. The tradeoff cost is that false negatives
are introduced with the proposed generalization. A false
negative in the path reconstruction procedure means not
detecting a router actually traversed by the packet.

In a companion paper [17], we sketched the initial
idea of our design and primary results were derived.
In this paper, we extend our previous work by provid-
ing a detailed analytical and simulation-based evaluation
of the Generalized Bloom Filter, showing that both the
false-positive and false-negative probabilities are upper
bounded. In addition, we also propose in this paper an
improved path reconstruction procedure that eliminates
the false negatives introduced by the Generalized Bloom
Filter. Finally, we show that we locate the attacker with
very high accuracy during simulations in an Internet-
based topology and that no false negatives happen with
the proposed reconstruction procedure.

This paper is organized as follows. Section 2 explains
the IP traceback problem and the basic assumptions. The
proposed IP traceback system is then introduced in Sec-
tion 3. The analysis of our generalization of Bloom Fil-
ters is explained in Section 4. Analytical and simulation
results of the Generalized Bloom Filter are presented in
Section 5. The improved reconstruction procedure is in-
troduced in Section 6. We present simulation results of
the new reconstruction procedure in an Internet-based
topology in Section 7. Section 8 presents the related
work and conclusions are finally presented in Section 9.

2 IP Traceback

In this section, we briefly explain the definition of the
IP traceback problem as introduced by Savageet al. [22]
and outline the basic assumptions of our design.

2.1 Definitions

Figure 1 shows an example network as seen from a vic-
tim V . Every attackerAi is a leaf node that generates
attack traffic towards the victim, denoted by the dotted
line. Internal nodesRi represent routers along a path
between the victimV and an attackerAi. The set of
routersRi is also referred as theupstream routersfrom
V throughout this paper. Anattack pathis an ordered
list of routers between an attackerAi and the victimV .
For example, in Figure 1 there is one attack path denoted
as (R5, R2, R1). By grafting together the attack paths
of every attacker, anattack graphis composed. Addi-
tionally, a router is named afalse positiveif it is in the
reconstructed attack graph but it is not in the actual at-
tack graph. Similarly, a router is named afalse negative
if it is not in the reconstructed attack graph but it is in the
real attack graph.

1R

6R

5R

2R

4R

3R

1A 3A
2A

V

Figure 1: Network as seen from the victimV .

According to the definition, the exact traceback prob-
lem is to accurately determine the attack path from a
given attacker to the victim. The exact traceback prob-
lem, however, is a hard problem [22] and therefore a
more restricted problem is also postulated. The approx-
imate traceback problem is defined as finding an attack
path that contains the actual attack path as a suffix. For
instance,(R6, R5, R2, R1) is a valid solution to the ap-
proximate traceback problem since it contains the actual
attack path(R5, R2, R1) as a suffix. Further, a solution
is named robust if the attacker cannot prevent the victim
from finding out an attack path with the actual attack path
as a suffix.
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2.2 Assumptions

Some basic assumptions are made prior to the design of
the traceback system in order to establish practical guide-
lines and constraints:

1. attacks may consist of a single packet;

2. attackers may generate arbitrary packets;

3. attackers are aware of the traceback scheme;

4. attackers may act together;

5. routers may be compromised, but not frequently;

6. routers are resource constrained;

7. packet size should not grow as the packet traverses
the network.

Previous and existing single-packet DoS attacks rein-
force the first assumption [9, 12, 27]. We have covered
the different ways of conducting single-packet attacks in
Section 1. We emphasize here that single-packet attacks
are a real threat and harder to trace than flooding attacks.

Assumptions 2-5 reflect potential capabilities of mo-
tivated attackers. First, experienced attackers are able
to inject arbitrary packets into the network. Therefore,
tracing systems should never rely on the initial content
of packets. Secondly, the security of traceback systems
must not depend on its nondisclosure. In fact, these sys-
tems should be open in order to achieve wide deploy-
ment. Third, multiple attackers with common goals may
cooperate in DDoS attacks to achieve better results. Al-
ternatively, one router may have under its control a large
network of zombies which can be activated at any given
time to attack a common victim. Finally, the attacker
may gain access to routers by several means, but we as-
sume this is not a frequent event. If it happens, however,
the router break-in should be addressed immediately af-
ter detection to enable the complete traceback of the at-
tack path.

Assumption 6 deals with router capabilities. We as-
sume that the network infrastructure is resource con-
strained and unable to maintain per-packet state. In fact,
we let the storage activity optionally to the victim while
keeping low per-packet processing overhead on routers.

The final assumption that packets should not grow
when traversing the network is needed to avoid frag-
mentation and additional processing overhead. Packet
fragmentation affects network performance because ad-
ditional overhead is required on the router performing the
fragmentation and on the subsequent routers that carry
the extra packages. Measurement evidence indicates that
one significant cause of fragmentations is the insertion
of the additional 40-byte tunneling header [5]. In addi-
tion, appending data to packets in flight is a resource-
consuming process to routers. Ideal traceback systems
therefore should not increase the packet size as it tra-
verses the network.

3 Node Digesting

In this section, we present our stateless single-packet IP
traceback system. The proposal is based on a packet-
marking technique to avoid storing state at routers. In
summary, each node inserts a mark into routed packets
to notify the victim of its presence on the path. Upon re-
ceiving an attack packet, the victim uses the node-made
markings to reconstruct the entire path. Route auditing is
performed by inserting only thedigestsof IP addresses
into the packets rather than IP addresses themselves. A
built-in Bloom Filter [3] is used to reduce the required
per-packet space and fix the size of the information in-
serted into the packet. The size limitation is important
to avoid both the appending processing overhead and
packet fragmentation. We also introduce the so-called
Generalized Bloom Filter to prevent the attacker from
forging node digests and causing backtracing failures.

The packet-marking procedure for this scheme is quite
simple. Just before forwarding a packet, the router in-
serts the IP address of its output interface into the Bloom
Filter of the packet. One important advantage of this
marking procedure is its low additional processing over-
head. In fact, no hash calculations need to be made on a
per-packet basis. The hashes of the IP addresses of every
router interface may be calculated in advance and stored
in a series of so-called “mask” registers. These registers
can be seen as Bloom Filters with only one element in-
serted: the IP address of the interface. When a packet is
about to be forwarded, the filter of the packet is simply
updated by taking the result of a bitwise OR of itself and
the output-interface “mask” register.

To reconstruct the attack path, the following procedure
is performed. First, the victim tests the membership of
all neighbor routers in the Bloom Filter of the received
attack packet. The one recognized by the filter is identi-
fied as the upstream router and integrated into the attack
path. Then, this upstream router receives the respective
Bloom Filter from the victim to continue the reconstruc-
tion procedure. It then checks which neighbor router
is also recognized by the filter, identifying the next up-
stream router. This procedure is recursively repeated on
each router to reconstruct the actual path traversed by the
packet. When no neighbor router is recognized, the pro-
cedure stops and the router performing the tests is con-
sidered the source of the attack. Figure 2 depicts a path
reconstruction procedure starting at a victimV towards
an attackerA. First, the attacker sends a packet to the
victim that traverses the path(R5, R4, R2, R1). Upon
receiving the attack packet, the victim initiates the re-
construction procedure by testingR1 against the filter of
the received packet (1). SinceR1 passes the test, it re-
ceives the filter fromV and continues the reconstruction
procedure. Accordingly,R1 tests the membership ofR2

andR3 in the received filter (2). Since onlyR2 is rec-
ognized, the filter is sent toR2 which performs the same
test with its neighborR4 (3). The routerR4 is also rec-
ognized and it checks the membership ofR3 andR5 (4),
but onlyR5 is a legitimate element. Finally,R5 tests the
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membership ofR7 in the filter (5). A negative response
is returned and the reconstruction procedure is complete.

1R

2R

3R

6R

7R
4R

5R

V

A
(2)

(4)

(5)(1) (3)

(2)

(4)

Figure 2: Example of the path reconstruction procedure.

Remarkable advantages come from the adoption of
this approach. First, the complete route of each packet
can beindividually determined. This is the goal of an
IP traceback system since it allows the system to be as
scalable as possible and to identify each source of a dis-
tributed or single-packet attack. Additionally, the pro-
posed stateless approach guarantees thatno information
at all is stored in the network infrastructure. All trace-
back data is stored at the victim, who chooses to hold it
or not according to the local security policy. Moreover,
the proposed system not only avoids the appending pro-
cessing overhead and packet fragmentation, but also in-
troduces very low additional overhead to the forwarding
procedure. In fact, only a per-packet bitwise OR opera-
tion is needed. Another advantage is the ability of tracing
an attack long after it is over and without any help from
network operators. The whole reconstruction procedure
can be fully automated and independent of manual inter-
vention.

On the other hand, this approach suffers the same
drawbacks of other approaches [2, 11, 22–24]. First, as
with any traceback system, routers are required to co-
operate in packet marking. If few routers do not mark
the packets, gaps in the reconstructed route are likely to
occur and the attack source might not be found. Tech-
niques such as expanding-ring search, however, could be
employed in the reconstruction procedure to overcome
this issue at the cost of a few additional false positives.
Further, the attacker himself is not identified by the sys-
tem; in fact, only the router closest to the attacker is ex-
posed. After identifying the attacking router, further ef-
forts are required to reveal the interface from which the
attack traffic comes. Finally, the adoption of a Bloom Fil-
ter introduces false positives into the attack path. During
the reconstruction procedure, a false positive implies the
incorrect integration of a router into the attack path. If
this probability is small enough, the occurrence of false
positives does not significantly impact on the reconstruc-
tion. There would be some concurrent routes for the
same packet but the number of possible attackers would
still be small. Nevertheless, since the attacker controls
the initial content of the packet, he can fill all the filter
bits with 1. By saturating the filter, every router is inte-
grated into the attack path during the reconstruction pro-
cedure, making impossible to distinguish the real path.

Therefore, in order to minimize misleading techniques
and to make the system less dependent on the initial
content of the filter, we propose a generalization of the
Bloom Filter. The basic idea of the so-called General-
ized Bloom Filter (GBF) is to employ both hash func-
tions that set and hash functions that reset bits. We show
that with the GBF the false-positive probability is upper
bounded and it does not depend on the initial condition
of the filter. On the other hand, false negatives, which do
not exist in standard Bloom Filters, are now introduced
with this generalization. We note however that the false-
negative probability of the GBF is also upper bounded
and do not depend on the initial content of the filter. In
Section 4, the GBF is described and an analysis of the
false-positive and false-negative probabilities is derived
to show the effectiveness of this new approach.

4 The Generalized Bloom Filter

The Generalized Bloom Filter (GBF) is a data structure
used to represent a setS = {s1, s2, . . . , sn} of n el-
ements in a compact form. It is constituted by an ar-
ray of m bits and byk0 + k1 independent hash func-
tions g1, g2, . . . , gk0

, h1, h2, . . . , hk1
whose outputs are

uniformly distributed over the range{0, 1, . . . , m − 1}.
The GBF is built in a similar way to the standard filter.
Nevertheless, the initial value of the bits of the array is
not restricted to 0 anymore. In the GBF, these bits can be-
gin with any value. For each elementsi ∈ S, the bits cor-
responding to the positionsg1(si), g2(si), . . . , gk0

(si)
are reset and the bits corresponding to the positions
h1(si), h2(si), . . . , hk1

(si) are set. In the case of a col-
lision between a functiongi and a functionhj within the
same element, we arbitrate that the bit is always reset.
The same bit can be set or reset several times without
restrictions. After inserting the elements, membership
queries can be easily made. To check if an elementx is
in S, we check if the bits of the array corresponding to
the positionsg1(x), g2(x), . . . , gk0

(x) are all reset and if
the bitsh1(x), h2(x), . . . , hk1

(x) are all set. If at least
one bit is inverted, thenx 6∈ S with high probability. In
the GBF, it is possible that an elementx ∈ S may not
be recognized as an element of the set, creating a false
negative. Such anomaly happens when at least one of
the bitsg1(x), g2(x), . . . , gk0

(x) is set or one of the bits
h1(x), h2(x), . . . , hk1

(x) is reset by another element in-
serted afterwards. On the other hand, if no bit is inverted,
thenx ∈ S also with high probability. In fact, an ele-
mentx 6∈ S may be recognized as an element of the set,
creating a false positive. A false positive occurs when
the bitsg1(x), g2(x), . . . , gk0

(x) are all reset and the bits
h1(x), h2(x), . . . , hk1

(x) are all set due to other actually
inserted elements or to the initial condition of the array.

4.1 False Positives

The false-positive probability of a GBF is calculated in a
similar way to the standard filter. Nevertheless, we need
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first to calculate the probability of a bit being set or reset
by each element insertion. Given that in a collision the
functionsgi always take precedence over the functions
hj , the probabilityq0 that a specific bit is reset by an
element insertion is the probability that at least one of
thek0 hash functions reset the bit. Accordingly,q0 is

q0 =

[

1 −

(

1 −
1

m

)k0

]

≈
(

1 − e−k0/m
)

. (1)

The probabilityq1 that a specific bit is set by an element
insertion is the probability that at least one of thek1 hash
functions set the bit and none of thek0 hash functions
reset the bit. Thus,q1 is defined as

q1 =

[

1 −

(

1 −
1

m

)k1

]

(

1 −
1

m

)k0

≈
(

1 − e−k1/m
)

e−k0/m. (2)

Finally, the probability that a specific bit remains un-
touched (i.e., not set nor reset) during an insertion is then

(1 − q0 − q1) =

(

1 −
1

m

)k0+k1

≈ e−(k0+k1)/m. (3)

Since the same calculation can be made for every bit in
the array, on average, a fraction ofq0 bits is reset, a frac-
tion of q1 bits is set, and a fraction of(1 − q0 − q1) bits
remains untouched on each element insertion. For an ar-
ray of m bits, we have on averageb0 = m.q0 bits reset,
b1 = m.q1 bits set, and(m− b0 − b1) bits untouched on
each insertion.

From these probabilities, the distribution of bits over
the bit array can be determined. The probabilityp that a
specific bit is 0 aftern insertions is calculated from the
probabilities ofn + 1 mutually exclusive events. The
first event is when the bit is initially 0 and remains un-
touched by then elements. Ifp0 represents the proba-
bility that a specific bit is initially reset, the probability
of such event isp0 (1 − q0 − q1)

n. The nextn events
are those where the bit is reset by the(n − i)-th element
and remains untouched by the followingi elements, for
0 ≤ i ≤ n − 1. The probability of each one of these
events isq0 (1 − q0 − q1)

i. Accordingly, we have

p = p0 (1 − q0 − q1)
n

+

n−1
∑

i=0

q0 (1 − q0 − q1)
i

= p0 (1 − q0 − q1)
n +

q0

q0 + q1
[1 − (1 − q0 − q1)

n].

(4)

Since the same computation can be made for every bit in
the array, on average, a fraction ofp bits is reset and a
fraction of(1 − p) bits is set aftern insertions.

From the bit-array distribution, the probability of a
false positive can be easily calculated. Since on average

b0 bits are reset andb1 bits are set on each element inser-
tion, the probability of a false positivefp for the GBF is
calculated as

fp = p b0(1 − p)b1 . (5)

4.2 False Negatives

False positives happen for external elements with the
same probability for each checked element. On the other
hand, false negatives occur only forinserted elements
with a different probability for each element. One fac-
tor that directly affects the false-negative probability is
the insertion order. For instance, first inserted elements
have higher chances of being false negatives than last in-
serted elements. It happens because the first elements
have more elements inserted after them, and therefore
the probability of inverting one of their marked bits is
higher.

The false-negative probability can be calculated if we
have the probability that a specific bit from the(n− i)-th
element is not inverted by the subsequenti elements, for
0 ≤ i ≤ n−1. The probabilityp00(n− i) that a bit reset
by the(n − i)-th element remains in 0 by the end of the
following i insertions is calculated from the probabilities
of i + 1 mutually exclusive events. The first event is
when the bit remains untouched by all of the subsequent
i insertions; it happens with probability(1 − q0 − q1)

i.
The otheri events are those where the bit is reset by the
(n − j)-th element and remains untouched throughout
the followingj insertions, for0 ≤ j ≤ i − 1. Therefore,
p00(n − i) is defined as

p00(n − i) = (1 − q0 − q1)
i
+

i−1
∑

j=0

q0 (1 − q0 − q1)
j

= (1 − q0 − q1)
i
+

q0

q0 + q1

[

1 − (1 − q0 − q1)
i
]

.(6)

In the same way, the probabilityp11(n − i) that a bit set
by the(n − i)-th element remains in 1 by the end of the
following i insertions is

p11(n − i) = (1 − q0 − q1)
i
+

i−1
∑

j=0

q1 (1 − q0 − q1)
j

= (1 − q0 − q1)
i +

q1

q0 + q1

[

1 − (1 − q0 − q1)
i
]

.(7)

From Equations (6) and (7), the false-negative prob-
ability of the inserted elements can be calculated. The
false-negative probabilityfn(n− i) of the(n− i)-th ele-
ment is calculated by taking the complement of the prob-
ability that none of its bits are inverted. Accordingly, this
probability is

fn(n − i) = 1 − p00(n − i)b0p11(n − i)b1 . (8)
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4.3 Application

In the proposed IP traceback system, the elements in-
serted into the packet GBF are in fact the IP addresses of
traversed routers. Therefore, the number of elementsn
represents the number of routers traversed by the attack
packet. Moreover, the size of the bit arraym is precisely
the number of bits allocated in the packet header for the
GBF. Further,k0 andk1 are the number of hash functions
that reset and set bits on each hop, respectively. These
hash functions must be the same on every router to al-
low path reconstruction later. At last,p0 represents the
initial fraction of bits reset in the GBF. This parameter
is in control of the attacker, who is responsible for creat-
ing the attack packet and setting the initial content of the
filter.

The previous router implementation slightly changes
with the adoption of a GBF. Bits now are set and reset
and therefore a single bitwise OR operation is not enough
to update the filter. Instead, we need a bitwise OR opera-
tion followed by a bitwise AND operation to set and reset
the indicated bits, respectively. Accordingly, two “mask”
registers are required per router interface. To configure
the “mask” registers, the interface IP address is used as
the input of the hash functions. The first register is filled
with zeros and the bits indicated by the functionshj are
set; the second register is filled with ones and the bits
indicated by the functionsgi are reset. When the packet
is about to be forwarded, its GBF field is initially up-
dated with the result of a bitwise OR of itself and the
first output-interface register. A bitwise AND operation
of itself and the second output-interface register follows
to complete the update.

The order of the operations is a result of the adopted
priority. In fact, if one decides to give precedence to the
functionshj over the functionsgi, the bitwise AND op-
eration must be done before the bitwise OR operation.

5 Results

In order to analyze the behavior of the GBF, we imple-
mented a simulator using C++ [16]. The simulator is
based on a class called GBF that contains the methods
for inserting and checking elements in a bit array. For
each simulation round, we select new hash functions, set
the bit array to a given initial condition, and insert the
elements into the filter. After the insertions, member-
ship queries of external elements and inserted elements
are performed to respectively measure the false-positive
and false-negative rates. For the independent and ran-
dom hash functions assumed in Section 4, we used in our
simulations a universal class of hash functions [21]. This
class is defined as follows. Let the elements be integers
drawn from a universeS = {1, 2, . . . , z − 1}, and let the
output range of the hash functions be{0, 1, . . . , m− 1}.
The classH of hash transformationshc,d which map an
elementx ∈ S into the respective range is

H = {hc,d(·) | 0 < c < z, 0 ≤ d < z}, (9)

where

hc,d(x) = [(cx + d) mod z] mod m. (10)

The numbersc andd are integers within the interval de-
fined by Equation (9). For each hash function,c andd
are arbitrarily chosen. The integerz is defined as a large
prime.

Additionally, to show the advantages of the GBF over
the standard filter, we also present an analytical compar-
ison between the two versions of the filter in this section.
Our goal is to demonstrate the necessity and advantages
of the GBF over the standard filter for representing the
traversed route. The analysis includes two different met-
rics: false positives and false negatives.

We must emphasize that the simulation results were
extremely close to the analytical results, which corrob-
orates the analytical expressions derived in the previous
section. In our simulations, for a 95% confidence level,
the largest confidence interval obtained was only 0.003.
It means that, besides matching the analytical results, the
simulation results have also a very small variance. Since
this confidence interval is too small, it is not presented in
the following graphs. In this section, all graphs present
simulation results as discrete points and analytical results
as continuous curves.

5.1 Upper-bounded False Positives

During the path reconstruction procedure, a false posi-
tive implies the integration of an incorrect router into the
attack path. As the false-positive probability increases,
inaccurate routers and reconstructed paths are identified.
Accordingly, false positives difficult distinguishing the
attacker from other innocent routers. Moreover, they also
add unnecessary processing overhead in false-positive
routers. Therefore, a low false-positive probability is de-
sired.

First, we note that Equations (4) and (5) can be sim-
plified if we assume thatm ≫ k0 andm ≫ k1. This
assumption is quite reasonable since usually the size of
the filter is much larger than the number of hash func-
tions used. In this case, we can rewrite Equation (4) as
follows

p = p0 (1 − q0 − q1)
n

+
k0

k0 + k1
[1 − (1 − q0 − q1)

n
] .

(11)
In addition, we can also rewriteb0 ≈ k0 and b1 ≈ k1.
Accordingly, the simplified probability of a false positive
using these assumptions is

fp ≈ p k0(1 − p)k1 . (12)

Figure 3 shows the false-positive probability of a GBF
fp as a function of(1 − p), according to Equations (11),
(12), and our simulation results. The probability(1 − p)
can also be seen as the fraction of bits set after inserting
n elements. For the standard Bloom filter, we can see
that the false-positive probability increases with(1 − p).
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A clear tradeoff between the distribution of bits and the
false-positive probability can be noticed in the curves
representing the GBF. This tradeoff can be understood
by observing that, on average,k0 bits reset andk1 bits
set are required to cause a false positive. If, however,
(1− p) is low, it is easy to find a bit reset but it is hard to
find a bit set. On the other hand, if(1 − p) is high, it is
easy to find a bit set and difficult to find a bit reset.
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By differentiating Equation (12) with respect top, it is
easy to check that the maximum false-positive probabil-
ity of a GBF is reached when

p =
k0

k0 + k1
, (13)

and it can be shown that this is indeed a global maxi-
mum. The maximum false-positive probabilityFp is de-
termined by substituting the result of Equation (13) back
into Equation (12)

Fp =

(

k0

k0 + k1

)k0
(

k1

k0 + k1

)k1

. (14)

Different from the standard Bloom Filter, the GBF
has a bounded false-positive probabilityFp exclusively
determined by the number of hash functions used,k0

andk1. For instance, when using as few hash functions
ask0 = k1 = 2 we have a maximum false-positive prob-
ability of only 6.3%. If we increase the number of hash
functions tok0 = k1 = 3, the maximum false-positive
probability drops to 1.6%. This probability can be further
reduced if a larger number of hash functions is used. The
tradeoff cost is an increase in the false-negative probabil-
ity, as explained in the next subsection.

The inherent property of having an upper bound in the
false-positive probability is exactly what we want. Since
this upper bound does not depend on the fraction of bits
set in the array, there is no way that an attacker can gen-
erate filters with false-positive rates higher thanFp. The
effect of this simple attack can be successful mitigated

just by using a GBF instead of a standard filter in the
packet header to register the traversed routers.

5.2 Upper-bounded False Negatives

When using a GBF in the traceback system, false nega-
tives might occur during the path reconstruction proce-
dure. A false negative implies not detecting an actually
traversed router. It is worth mentioning, however, that
the attacker do not interfere with the false-negative prob-
ability, according to Equations (6), (7) and (8). It can be
seen that the termp0 do not appear on these equations.

Figure 4 shows the false-negative probability for each
element(n − i), for 0 ≤ i ≤ n − 1, according to Equa-
tion (8) and our simulation results, using the parameters
k1 = 1, m = 1280 andn = 10. According to our previ-
ous definitions, Element 1 represents the first inserted el-
ement and Element 10 is the last inserted element. First,
we can notice that the false-negative probability always
equals zero for the standard Bloom Filter, as expected.
Since the original Bloom Filter does not use hash func-
tions to reset bits, it is impossible to have false negatives.
For the GBF, however, we can notice that elements in-
serted first have higher false-negative probabilities. It
happens because first elements have more elements in-
serted after them and, as a consequence, the probability
of inverting their bit markings is higher. Another im-
portant observation is that the false-negative probability
increases withk0. It happens because the more func-
tions we use, the higher is the probability of an element
to have one of its marked bits inverted by a subsequent
element. The result is similar ifk1 increases instead (not
shown). Accordingly, the number of hash functions used
in the GBF has a dual effect. On one hand, increasing
the number of hash functions reduces the false-positive
probability, as shown in Section 5.1. On the other hand,
it increases the false-negative probability.
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inserted element, usingk1 = 1, m = 1280, n = 10.

According to Figure 4, the false-negative probability
is a monotonically decreasing function of the number of
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inserted elements. In fact, this behavior is always true
and it can be analytically proven if we observe that, for
two elementsx andy with x inserted beforey, we have
p00(x) ≤ p00(y) and p11(x) ≤ p11(y). From Equa-
tion (8), it is trivial to check then thatfn(x) ≥ fn(y) is
always true. Therefore, we can derive an upper bound
on the false-negative probability of a GBF. Letfn(0) be
the false-negative probability of an hypothetical element
inserted prior to then elements of a given set. Follow-
ing our previous result, we can say that the inequality
fn(0) ≥ fn(1) ≥ fn(2) ≥ . . . ≥ fn(n) always holds.
Accordingly, we can define the maximum false-negative
probability of a GBF asfn(0). An advantage in doing
so is that we can represent the maximum false-negative
probability as a function of onlyk0, k1, and them/n
ratio.

Assumingm ≫ k0 and m ≫ k1, we first rewrite
Equations (6) and (7) for the hypothetical element 0 as

p00(0) =

= (1 − q0 − q1)
n

+
k0

k0 + k1
[1 − (1 − q0 − q1)

n
]

= e−(k0+k1)n/m +
k0

k0 + k1

(

1 − e−(k0+k1)n/m
)

,

(15)

p11(0) =

= (1 − q0 − q1)
n

+
k1

k0 + k1
[1 − (1 − q0 − q1)

n
]

= e−(k0+k1)n/m +
k1

k0 + k1

(

1 − e−(k0+k1)n/m
)

.

(16)

Substituting Equations (15) and (16) back into (8), and
noticing thatb0 ≈ k0 andb1 ≈ k1, the maximum false-
negative probabilityFn is defined as

Fn = fn(0) ≈ 1 − p00(0)k0p11(0)k1 . (17)

According to Equations (15), (16), and (17),Fn is
uniquely defined byk0, k1, and them/n ratio. There-
fore, the system designer may first arbitrate the desired
maximum false-positive probability of the GBF by defin-
ing bothk0 andk1. The desired maximum false-negative
probability may then be achieved by adjusting them/n
ratio. Lower false-negative probabilities, however, are
achieved at the cost of using more bits per element.

Figure 5 depicts the maximum false-negative proba-
bility of a GBF as a function of them/n ratio, according
to Equation (17) and simulation results. From the figure,
we can see that increasingm/n leads to a lower false-
negative probability. It occurs because by increasing the
number of bits per element we increase the output range
of the hash functions, decreasing the probability of a bit
overwriting.

According to the results mentioned so far, the GBF is
capable of representing a set with limited false positives
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Figure 5: False-negative probability of a GBF as a func-
tion of the number of bits per element, usingk1 = 1.

and limited false negatives, regardless of the state of the
bit array. For instance, when usingk0 = k1 = 2 and
m/n = 128 bits per element, the GBF yields no more
than 6.3% false positives and no more than 6.0% false
negatives. If lower rates are desired, we can usek0 = 2,
k1 = 3, andm/n = 256 bits per element. In this case,
we have a maximum false-positive probability of 3.5%
and a maximum false-negative probability of 4.6%. False
negatives can be further reduced if we usek0 =2, k1 =3,
andm/n = 512 bits per element. In that case, we get a
maximum false-negative probability of only 2.3%. The
value of these parameters can be further increased as long
as we are willing to reduce the false-positive and false-
negative probabilities.

6 Improved Reconstruction Procedure

While using a GBF limits the action of the attacker in
generating false positives, it also introduces false nega-
tives in the path reconstruction procedure. A false neg-
ative means not detecting a router actually traversed by
the attack packet. For instance, let routerR4 be a false
negative during the reconstruction procedure depicted in
Figure 2. That is,R4 is not recognized as an element
of the filter during the membership test made byR2 (2).
In that case, routersR3 andR5 are not even checked (3)
sinceR4 was not integrated into the attack path. As a
consequence, routerR5 is not integrated into the attack
path either. Therefore, just one false negative is enough
to stop the reconstruction procedure and avoid finding
the real attack path.

One way to solve this problem is to increase the size
of the GBF until we get a reasonable maximum false-
negative probability. The problem with this approach is
that the filter size may become so large that it is better to
carry the IP addresses themselves instead of a compact
GBF. We take a different approach that takes advantage
of the GBF while still reducing the header overhead.
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6.1 Overview

To address the high false-negative rates, we introduce an
improved reconstruction procedure that eliminates false
negatives at the cost of a higher false-positive probabil-
ity. The proposed procedure is based on the following
reasoning. During the network traversal of the attack
packet, subsequent routers might invert bit markings of
previous routers and cause false negatives. In the pre-
vious example, during the traversal of the attack packet
through the path (R5, R4, R2, R1), eitherR1 or R2 in-
verts a bit previously marked byR4. As a consequence,
the GBF received by the victim does not recognizeR4

during the reconstruction procedure. To avoid this draw-
back, we propose that along with the GBF each router
sends additional information to upstream routers during
the reconstruction. This information summarizes the bit
markings made by the router itself and by downstream
routers in the reconstruction procedure. Therefore, it is
now possible to know whether a downstream router in-
verted a bit marked by an upstream router.

Figure 6 depicts the improved reconstruction proce-
dure. For simplicity, letk0 = k1 = 1. First, the vic-
tim V recognizesR1 in the GBF of the received attack
packet and, therefore,V sends the GBF toR1 (1). Along
with the GBF,V also sends two other bit arrays of the
same size,m0 andm1, initialized to all zeros as shown
in (a). RouterR1 then updatesm0 andm1 according
to the interface from which the reconstruction request
comes. Accordingly, the bits reset by that interface dur-
ing the packet-marking procedure are set to 1 inm0 and
the bits set by that interface during the marking proce-
dure are set to 1 inm1. The updated arrays are found in
(b). Later on,R1 performs membership tests with each of
its neighbors. The neighbor checking procedure slightly
changes due to the additional information passed. When-
ever a neighbor fails the test,R1 does not directly dis-
card the neighbor. Instead,R1 checks first if it inverted
a bit marking of this neighbor during the traversal of the
packet through the network. To accomplish this check-
ing, the additional bit arrays are inspected. Accordingly,
R1 checks if the inverted bits of this neighbor are set in
eitherm0 or m1, depending if the neighbor’s bit is 1 or 0,
respectively. If the neighbor’s inverted bits were over-
written, the neighbor is integrated into the attack path
and discarded otherwise. In the sequence, routerR1 rec-
ognizesR2. RouterR1 then sends the GBF along with
the two updated bit arrays toR2 (2). In its turn, router
R2 updates these arrays according to the interface from
which the request comes, as shown in (c). After that,
routerR2 tests the membership ofR4 in the GBF. In this
case, a bit ofR4 is inverted: a bit that should be 0 is
in fact 1. Nevertheless, this bit is also set inm1, which
means that it was overwritten by eitherR1 or R2 dur-
ing the traversal of the packet. Therefore, routerR4 is
no longer a false negative and it is integrated into the at-
tack path. RouterR2 then sends the GBF and the two
additional bit arrays indicating the bit markings made by
itself and byR1 (3). Next, routerR4 performs the same

procedure with its neighborR5 (4). We can see in (d) the
bit arrays updated byR4. In this case, it is easy to see
the bit that is set in bothm0 andm1 was reset byR4 and
overwritten later byR2 during the traversal of the packet
through the network.

1R
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7R
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5R

V

m0

m1

GBF 0 0 1 1 10

0 1 0 0 00
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0 0 1 1 10
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1 1 0 1 00
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0 0 0 0 00

0 0 0 0 00

(c)(a) (b) (d)

R3

R6

A

(1)
(2)

(3)
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Figure 6: The improved reconstruction procedure.

An important advantage of the improved reconstruc-
tion procedure is that false negatives do not happen any-
more. Since overwritten bits now can be checked at each
hop, actually traversed routers are always integrated into
the attack path. Therefore, the actual attack path isal-
wayspresent in the reconstructed attack graph. On the
other hand, the false-positive probability increases as a
router is tested further from the victim and closer to
the attacker. It happens because the fraction of bits set
in m0 andm1 increases with the number of integrated
routers. Accordingly, upstream routers are recognized
as components of the attack path with higher probabil-
ity. With an increasing false-positive probability, other
routers are also identified as possible attacking routers
and it is harder to distinguish the actual one. Nonethe-
less, simulation results presented in Section 7 show that
such identifications is possible with well-chosen system
parameters.

6.2 False Positives

The false-positive probability of the improved recon-
struction procedure is calculated in a direct fashion.
First, we calculate the probability that a specific bit is
set inm0 at a particular router during the reconstruction.
Note that a bit being set at a router does not necessar-
ily mean being set by that router. Either a downstream
router or even the router itself can set the bit. This event
happens with probabilityq0 since setting a bit inm0 is
equivalent to resetting a bit in the GBF. Therefore, the
probabilitys0(i) that a specific bit ofm0 is set at a router
i hops away from the victim is the probability that at least
one downstream router or the router itself set the bit. Ac-
cordingly, the probabilitys0(i) is

s0(i) = 1 − (1 − q0)
i
. (18)

Likewise, the probabilitys1(i) that a specific bit ofm1

is set at a specific routeri hops away from the victim is
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the probability that at least one downstream router or the
router itself set the bit. The probability of such event is
q1 since setting a bit inm1 is equivalent to setting a bit
in the GBF. Therefore, the probabilitys1(i) is

s1(i) = 1 − (1 − q1)
i . (19)

Since the same calculation can be made to every bit of
both arrays, on average, a fraction ofs0(i) bits is set in
m0 and a fraction ofs1(i) bits is set inm1 at a routeri
hops away from the victim.

Accordingly, a bit is interpreted as zero in the mem-
bership tests of this router if the bit is reset in the GBF or
if it is set in bothm1 and the GBF. Therefore, the fraction
t0(i) of bits that are interpreted as zero in the member-
ship tests made by a specific routeri hops away from the
victim is

t0(i) = p + (1 − p)s1(i). (20)

Similarly, the fractiont1(i) of bits interpreted as one is

t1(i) = (1 − p) + p.s0(i). (21)

From Equations (20) and (21), the probability of a
false positivefp(i) for a specific routeri hops away from
the victim in the improved reconstruction procedure is
calculated as

fp(i) = t0(i)
b0t1(i)

b1 , (22)

whereb0 andb1 are respectively the average number of
bits reset and bits set needed for a false positive to occur,
as described in Section 4.

6.3 Analytical Results

Figure 7 depicts the false-positive probability of a GBF
as a function ofi, according to Equation (22). For ev-
ery curve, the worst-case initial fraction of bits set is as-
sumed. The worst value for the initial condition is calcu-
lated in the companion paper [17], where we show that it
happens when

p0 =
k0

k0 + k1
. (23)

For simplicity, letk = k0 = k1. It can be seen that
increasing the number of hash functions is beneficial un-
til a certain value. In fact, for each size of bit array, an
optimal value fork0 andk1 exists. The corresponding
tradeoff is that a larger number of hash functions implies
a larger fraction of bits set inm0 andm1 on every hop
and, therefore, a higher false-positive probability. On the
other hand, when using more hash functions, it is more
likely that we find an inverted bit in the GBF that is not
set inm0 nor inm1 and, therefore, a lower false-positive
probability is expected.

Figure 8 shows the false-positive probability of a GBF
as a function ofi, for different initial conditions of the fil-
ter. Accordingly, the action of the attacker increasing the
false-positive probability is also limited. This constraint
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tion of the distance from the victim, in hops, form =
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is caused by the same reasons that limited the attacker in
the regular reconstruction procedure. For a false positive
to occur, we need both bits reset and bits set and, if they
are proportionally distributed as Equation (13) states, the
false-positive probability increases.
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7 Simulation Results

In order to analyze the behavior of the improved recon-
struction procedure in a Internet-based topology, we de-
veloped a C++ simulator [16]. Additionally, we used the
nem[19] topology generator, which is based on Internet
map sampling. Thenemgenerator randomly extracts a
sub-graph of a network map, keeping its original prop-
erties, such as node degree, mean distance, mean eccen-
tricity, and topology diameter. Magoni and Pansiot [19]
show that the topologies generated bynemrespect the
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power laws established on real Internet maps. Our topol-
ogy is sampled from a real Internet map and consists of
10,000 routers. Once generated the topology, we arbi-
trarily choose an attacker from a set of border routers.
This reflects the assumption that the core routers are not
compromised and that the attacker is more likely to be in
a local network out of the main Internet backbone. We
then define a random loop-free attack path starting in the
chosen border router. Next, we simulate the transmission
of an attack packet by marking a GBF according to the
routers that compose the attack path. The initial content
of the GBF is always set to the worst case according to
Equation (23). Once the GBF is properly marked, the
reconstruction procedure starts at the victim. Two re-
construction procedures are used. The first is the regu-
lar procedure in which only the GBF is used during the
neighbor membership tests. The second is the improved
reconstruction procedure described in Section 6. For ev-
ery measured point, we calculated the confidence interval
for a 95% confidence level, represented by vertical bars.

Figure 9 shows the simulation results of the regular
path reconstruction procedure for a typical path with 15
routers. In the figure, the length of the reconstructed path
is shown as a function of the number of hash functions
used in the GBF. For simplicity, we consider the same
number of hash functions that set and reset bits; accord-
ingly, k = k0 = k1. From the results, it can be seen
that the regular reconstruction procedure presents a re-
constructed path much smaller than the original path. For
attack paths of 15 routers, only 7 routers were approxi-
mately traced. This behavior is a result of having false
negatives in the reconstruction procedure. In the case of a
false negative, an actually traversed router is ignored and
the reconstruction procedure is prematurely interrupted.
To reduce the probability of a false negative, however, a
significant increase in the size of the filter is necessary,
which increases the per-packet overhead. Additionally
from Figure 9, it can also be seen that by increasingk
the size of the reconstructed path decreases. It happens
because the false-negative probability increases with the
number of hash functions. Accordingly, the probability
of interrupting the reconstruction procedure at a router
closer to the victim is even higher.

The improved reconstruction procedure of Section 6
do not present false negatives and, as a consequence, the
actual attack path is always found. Nevertheless, other
paths leading to innocent routers are also found due to
false positives. Therefore, in order to evaluate the per-
formance of the proposed procedure, the mean number of
traced attackers is used as metric. In theory, the path re-
construction procedure should lead to only one attacker,
the actual one.

Figure 10 shows the mean number of attackers traced
by the improved reconstruction procedure as a function
of the number of hash functions used. From the figure, it
can be realized that the number of traced attackers is re-
duced to less than four for the 192-bit filter. Further, this
number is very close to the ideal case, where only the real
attack path is found, if larger filter sizes are employed.
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In addition, a tradeoff between the number of hash func-
tions and the number of traced attackers can be noticed in
Figure 10. We can see that for small values ofk the num-
ber of attackers is large. The same happens if the value
of k is too large. Such tradeoff is a direct result of having
false positives in the reconstruction procedure. With few
hash functions, few bits set and reset need to be found
for a false positive to occur. On the other hand, with too
many hash functions, the fraction of bits set inm0 and
m1 increases on each hop of the reconstructed path and
causes a higher false-positive probability. In both cases,
a larger number of false positives leads to more routers
being recognized as components of the attack path and,
as a consequence, a higher number of traced attackers.
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The number of traced attackers as a function of the
length of the attack path is seen in Figure 11. It can
be noticed that the number of traced attackers increases
with the length of the attack path. It happens because the
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false-positive probability increases as routers are tested
further from the victim. As a consequence, more routers
are recognized as components of the attack path and
more attackers are found. With only 192 bits, we get
only 3.5 candidate attackers. Using only 192 bits instead
of 480 bits represents a space saving of 60% in the packet
header if we were to store the complete route. We can
still find a number of traced attackers closer to unity de-
pending on the filter size.
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Figure 12 shows the mean number of traced attackers
as a function of them/n ratio of the GBF, for different
path lengths. In this figure, we see how header overhead
can be traded off for accuracy. The improved reconstruc-
tion procedure always traces the real attacker even for
long paths, but the accuracy decreases as we use fewer
bits per element. It happens because false positives in-
crease as we reduce the filter size. According to Internet
statistics [14], the distribution of path lengths has a mean
value of 15.3 and a standard deviation of 4.2. Supposing
a gaussian distribution, the probability of a path length
being less than or equal to 24 is approximately 98%. As
a result, we can see from the curve wheren = 24 that the
system can trace 98% of Internet routes with an accuracy
of 5.3 using only 12 bits per element; that is, 62.5% less
header overhead than if we were to save a 32-bit IPv4 ad-
dress and 90.6% less if we were to save an 128-bit IPv6
address. If we use more bits, we can even improve the
accuracy of the reconstruction procedure. For a given
m/n ratio, we can also see that smaller routes benefit
from higher accuracy levels.

8 Related Work

Savageet al. [22] introduce an auditing-based system,
where the required traceback information is located at
the victim. In summary, routers overload the Identifica-
tion field of the IP header to notify the victim of their
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Figure 12: Candidate attackers traced by the improved
reconstruction procedure as a function of the number of
bits per element.

presence in the attack path. Every router probabilisti-
cally inserts partial information about itself in the packets
routed to the victim. After receiving enough attack pack-
ets, the victim can reconstruct the entire route. To reduce
router overhead and required per-packet space, sampling
and encoding techniques are employed. Although inno-
vative, this proposal requires high computational effort
during reconstruction and generates several false posi-
tives even in small-scale distributed attacks [24].

Bellovin [2] proposes a similar system for IP trace-
back. Whenever routing a packet, routers probabilisti-
cally send to the victim an ICMP packet with informa-
tion about themselves and their adjacent routers. For a
long packet flow, the victim can use the received data
to reconstruct the attack path. Nevertheless, since au-
diting information is sent in additional router-generated
packets, the attacker can send spoofed ICMP packets to
disrupt path reconstruction. Therefore, messages must
be authenticated to avoid spoofing. In this case, a public-
key infrastructure is necessary for victims to authenticate
the out-of-band packets sent by the routers.

Dean et al. [11] considers probabilistic and algebraic
techniques to trace IP packets. Their basic idea is that
each packet carries a result of a well-known polynomial,
whose unknown variables are the router IP addresses.
If the victim receives enough packets from the same
route, an equation system can be derived and solved with
unique solution. Different from the system proposed by
Savageet al. [22], however, this system presents no er-
ror detection code to reduce the probability of acciden-
tally deriving an equation system by combining equa-
tions from different paths. As a consequence, even more
false positives are expected to occur for small-scale dis-
tributed attacks.

Yaaret al.[28] propose a path identification scheme to
filter DoS packets. The basic idea is that routers mark the
forwarded packets with a very small “signature” of 1 or 2
bits. As the packets traverse the network, a common sig-
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nature is marked on the packets that take the same path.
It is worthy noticing that classifying packets with regard
to their traversed paths and identifying the real source
of a packet are two completely different problems. Al-
though effective in distinguishing packets that take the
same path, this system was not designed to trace pack-
ets back to their origin. As a result, all the victim can
do is only filter the attack traffic and wait for the attack
to cease. Additionally, since upstream routers can not be
identified, filtering can only be made at the victim or at
the nearby routers. As a consequence, network resources
are wasted to unnecessarily carry the attack traffic to-
wards the victim.

Another approach consists of storing auditing infor-
mation in the network infrastructure. The simplest way
to collect auditing trails is to log every traversed packet
in routers [26]. Although quite simple, this approach re-
quires excessive resources for both data storage and data
mining. For instance, storing every packet of a satu-
rated OC-24 (1.244 Gbps) link requires the exorbitant
amount of 9.3 GB per minute or, equivalently, 13.4 TB
per day. In addition, a compromised router may cause
privacy problems since it contains information about ev-
ery routed packet.

An alternative to reduce the amount of stored infor-
mation is to use Bloom Filters [3]. Recently, these fil-
ters have been widely used in computer networks [1,25].
Snoerenet al.[23] propose a scheme that traces an attack
from a single IP packet. In addition, the backtracing is
done without storing all routed traffic. Instead, routers
store only packetdigestsin Bloom Filters. Periodically,
saturated filters are stored for future queries and replaced
by new ones. To later determine if a packet traversed the
router, its filter is simply checked. A recursive proce-
dure is executed by each router to reconstruct the packet
path to its true origin. The only disadvantage of such
system is to keep state in the network core. Improve-
ments proposed by Liet al. [18] drastically reduce the
space required for data storage in the core even though
the capability of tracing a single packet is compromised.

Most of the above-mentioned packet marking schemes
rely on overloading the limited 16-bit Identification field
of the IP header to carry path information. Although
these systems impose no additional overhead to packets,
they are not able to trace single-packet attacks. In order
to determine the source of a single packet without storage
in the network core, the whole path information must be
contained in the packet itself. As a result, it is unlikely
that only 16 bits are enough to accurately identify the
packet’s source. Our approach is different since it allows
tracing a single packet back to its source and does not
require per-packet state in the network core. The trade-
off cost is the additional per-packet overhead required to
carry the complete path information.

9 Conclusion

In this paper, we present an innovative approach to
packet-marking IP traceback that is convenient for high-

speed networks. The proposed system is able to trace
an attack back to its approximate source by analyzing a
single packet. Thus, our approach scales and fits well to
trace sources of distributed DoS attacks. Additionally,
our scheme is said to be stateless since no traceback in-
formation is storaged in the network infrastructure.

When traversing the network, packets are marked with
node digests instead of full IP addresses. Upon receiving
a packet, the victim disposes of a representation of the
entire attack path. We introduced the Generalized Bloom
Filter (GBF) to store the IP address of traversed routers.
We show that the false-positive probability of a GBF is
upper bounded and this bound depends uniquely on the
number of hash functions used,k0 andk1. For instance,
by using as few hash functions ask0 = k1 = 3, the max-
imum false-positive probability of a GBF is only 1.6%.
The tradeoff cost is the introduction of false negatives.
False negatives are harmful because they may prema-
turely interrupt the reconstruction procedure. Nonethe-
less, we show in this paper that the effect of false neg-
atives is also upper bounded and depends only on the
number of hash functions,k0 andk1, and on them/n ra-
tio. As a result, the designer may first arbitrate the max-
imum false-positive probability accepted and fixk0 and
k1. The maximum false-negative probability can then be
achieved by tuningm/n value.

An improved reconstruction procedure is also intro-
duced to eliminate false negatives at the cost of a little
increase in false positives. Through simulations, our im-
proved reconstruction procedure is proven to be both ef-
fective and accurate in an Internet-based topology. A few
interesting tradeoffs could be observed with the simu-
lation results of the improved reconstruction procedure.
First, we show that there is an optimal number of hash
functions that minimizes the false-positive probability
and therefore the mean number of traced attackers. Be-
sides, there is an interesting relation between the size
of the filter and the size of the route being traced. For
larger routes or higher accuracy, a larger filter is needed
whereas for smaller routes or lower accuracy a smaller
filter is enough.
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