
Towards a Real-time System based on Regression
Model to Evaluate Driver’s Attention
Thiago K. Lago1, Ernesto Rodrı́guez González1, and Miguel Elias M. Campista1

1GTA-PEE/COPPE-DEL/Poli – Universidade Federal do Rio de Janeiro (UFRJ) – Rio de Janeiro, Brazil

thiagokoster@poli.ufrj.br, {ernesto, miguel}@gta.ufrj.br

Abstract—The use of mobile devices while driving is one of
the major causes of accidents. Thus, this paper aims to create
a real-time system to alert drivers of inattention moments,
and thus reduce the number of traffic accidents. For this, we
use computer vision algorithms to determine the driver’s gaze
direction which, together with vehicle data such as speed and
acceleration, infer whether the driver is distracted. The key
idea is to calibrate the drive’s head rotation thresholds as a
function of vehicle speed and acceleration. If the vehicle is at
low speed or low acceleration, the head rotation can be more
pronounced. In addition to head rotation, we also use blind eye
detection as a criterion for determining distraction. The system
uses a temporal sliding window procedure to prevent oscillations
between inattention and attention states. The implementation
is based on hardware and software architectures composed of
cost-effective and open source libraries. Experimental results in
controlled and real environments show accurate results and quick
detection time.

Index Terms—Computer vision, Safe driving, IoT.

I. INTRODUCTION

The popularization of smartphones and the consequent
increase in the number of available applications bring a
permanent source of distraction for users, including those
driving vehicles. For drivers, the use of smartphones can
drastically impact the response time to unexpected events and,
consequently, the chances of an accident [1]. In 2019, 8.7% of
all people killed in motor vehicle traffic crashes were caused
by driver distraction in the United States. This accounts for
3,142 deaths according to the last report released by NHTSA
(National Highway Traffic Safety Administration) [2]. These
alarming numbers show the importance of safeguarding drivers
against distractions.

An alternative to inhibit the use of smartphones while
driving is the development of systems able to detect drivers’
distractions while in traffic. To handle that, image processing
algorithms are typically deployed along with data obtained
from the vehicle and the surrounding environment. The system
must provide a reliable and fast decision, which depends on
many factors, such as the camera, the available sensors, and
the computer on which the assessment is carried out.

This paper proposes a system to alert driver’s distractions by
detecting the head orientation along with data concerning the

This work was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. It
was also supported by CNPq, FAPERJ Grants E-26/211.144/2019 and E-
26/202.689/2018, and FAPESP Grant 15/24494-8.

vehicle acceleration and speed. We, however, do not consider
that the driver is distracted when looking down if the car is
stopped or when quickly taking a look at the side mirror. To
accomplish that, we compare the driver’s head rotation angle
according to yaw and pitch axes with predetermined maximum
thresholds, computed considering regressive models based also
on vehicle speed and acceleration. Similarly, we also take into
account blind eye detection to infer driver’s distraction. To
avoid fast changes between distraction and attentive status
and false alarms, we use counters to only infer distraction
after a certain number of consecutive frames using a sliding
window approach. We build a prototype composed of a laptop
containing an external camera and a Raspberry Pi to collect
the additional data. The system software is implemented in
Python using a modular approach, which uses open-source
libraries and has many configuration possibilities for finer-
grained customization. The proposed system also logs all the
data collected in a file for offline analysis and audition. We
conduct experiments in two scenarios: a controlled and real
one. The obtained results show that the system operates as
expected, quickly and consistently inferring distractions even
if part of the input parameters are missing.

This paper is organized as follows. Section II presents the
related work. Section III presents the hardware and software
architectures as well as implementation details. The experi-
mental results are presented in Section IV. Finally, Section V
concludes this work and raises possible future directions.

II. RELATED WORK

There are currently different approaches to infer driver’s
attention as a consequence of the number of existing distrac-
tion sources. These sources can be detected by physiological,
behavioral, and/or visual changes. Approaches based on phys-
iological changes, on the one hand, focus on the driver to ob-
serve data such as heartbeat, brain activity, and eye condition
to detect drowsiness. Approaches based on behavioral changes,
on the other hand, focus on the vehicle and, as a consequence,
uses the data from the vehicle such, as braking, acceleration,
and sharp turns to detect user’s inattention moments. Finally,
approaches based on visual changes focus on information from
the interior and exterior of the vehicle obtained with cameras
and, as a consequence, can identify smartphone use, drivers
with off-road gazing direction, traffic light running, and off-
lane vehicle detection, for example.



Wang et al. [3] use data from electroencephalography during
the operation of the vehicle to detect whether the driver is per-
forming a task other than driving and, therefore, is distracted.
This is an example of a physiological study for detecting
drivers’ attention. The approach has an accuracy of 90%, but
it requires on-body devices, which may find resistance among
users. As an example of a behavioral approach, there is the
application proposed by Khanda-kar et al. [4]. This application
monitors vehicle data and controls the use of smartphones. The
system monitors driver’s behavior such as smartphone use,
braking, and abrupt lane changes. This system, however, only
monitors and restricts the use of the smartphone and does not
alert the user in case of distraction. Furthermore, Khanda-kar
et al. use equipment in compliance with the OBD-2 standard
to obtain data and vehicle diagnosis. In Brazil, for instance,
this type of standard may be only partially available as the
national standard, OBDBr-2, is taking place.

Today, there are many approaches to estimate gaze direction
using drivers’ head orientation [5]. This is a known problem
from computer vision with several applications in different
areas. For example, in psychological analysis [6], the head
pose and movement can be used to infer patient depression;
while in industrial scenarios, the head pose of a construction
equipment operator can be used to identify blind spots and
consequently avoid struck-by accidents [7]. Even though the
utilization of eye tracking is intuitive for gaze direction de-
tection, Lex Fridman et al. [8] show that the improvement
over a head-orientation-based system is on average, of 5.4%.
As a consequence, the complexity added to the system may
not justify its implementation. The system proposed by Lamia
and Hoque [9] uses head and eye orientation to determine
the driver’s attention. This is then an example of the visual
approach. The system classifies the user as distracted if the
angle of the driver’s gaze direction exceeds a fixed thresh-
old for a certain interval of time. In this case, the authors
achieve 92% accuracy for detecting distraction. This approach,
although efficient, proposes a fixed threshold, which may not
be suitable for dynamic scenarios.

Craye et al. [10] propose a system mixing physiological,
behavioral, and visual approaches. It uses heart rate, pedal
position and steering wheel, and audio and video to determine
the driver’s attention in a simulator. Therefore, it covers all
source, physiological, behavioral, and visual. Another inter-
esting feature is the choice of a modular architecture, which
uses three independent modules, visual, auditory, and signal.
With this hybrid system, the authors could achieve a precision
for detecting fatigue and distraction of 98.4% and 90.5%,
respectively. Despite the remarkable precision, the system
depends on invasive sensors, which may not be comfortable
for drivers (oximeter CMS-50E). In addition, the system does
not analyze distraction and fatigue in real-time. The authors
explain that they have left this feature for future work.

In this paper, we are particularly interested in smartphone
utilization as an important source of distraction. Smartphones
contribute to the number of casualties in vehicular scenarios
as drivers interact more and more with applications while

driving [2]. Our proposal fits into the visual, behavioral,
and physiological approaches, becoming a hybrid system.
The inference of attention is made in real-time so that it is
possible to alert distracted drivers. Also, the visual analysis is
complemented by behavioral data, such as vehicle speed and
acceleration.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

In this section, we present the hardware and the software
architecture of the proposed system and the corresponding
implementation details.

A. Hardware architecture

The proposed system is mainly composed of a set of
input sensors, including a fixed camera, and a processing
unit with enough memory. This processing unit must have
enough computational power to process images in real-time.
This is no longer an issue as more and more electronic devices
are being embedded in vehicles. Also, additional information
from the vehicle must be obtained from embedded or external
sensors, e.g., location and speed from GPS and acceleration.
The system output is a log file, an HTML file containing the
vehicle trajectory, and, if desired, a video file with frames
processed by the system. Therefore, the system must have
persistent storage to save files for offline analysis. The use
of a screen to watch the video output is optional.

Another requirement is an energy power supply that can be
found within the car. Figure 1 illustrates the proposed system.
In our prototype, the data is collected using a webcam and
a Raspberry Pi, both connected to a laptop. The Rasperry Pi
has an MPU-6050 accelerometer and a GPS u-blox EVK-5
connected. We use USB communication with the GPS and the
I2C (Inter-Integrated Circuit) protocol with the accelerometer.

Proposed
System

Input sensors

Accelerometer

GPS

Camera

Output files

Log file

Vehicular
trajectory

Recorded
video

Power
source

Fig. 1: Proposed system overview with a power source, a set
of input sensors, and the produced files as output.

B. Software architecture

The system design is based on a modular architecture for
maintenance, debugging, reuse, and update simplicity. There-
fore, the system programming is separated into self-contained
modules that implement different functionalities. The system
contains a total of nine modules: the Main Module and the
auxiliary modules called Video, Facial, Severity, Reception,
Publication, Log, Notification, and Alert Module. Because
the Log, Video, and Severity modules are asynchronous, they



are implemented as different threads from the main one. The
system has also configuration files for user customization.

Figure 2 illustrates the relationship between system mod-
ules, where configurable modules have a gear figure at the top
right. Also, different colors denote the corresponding threads
in which each module is instantiated. Dashed arrows denote
communication between modules installed at different devices,
whereas continuous arrows denote communication involving
modules implemented at the same device. The individual
description of each module is presented next.

Main Module

Facial Module

Video Module Severity
Module

Reception
Module

Publication
Module

Log Module Notification
Module

Alert Module

Configurable
Modules

Fig. 2: Relationship diagram between system modules.

Main Module: The main function of this module is the
orchestration of all auxiliary ones. Therefore, it runs the
main program flow, transfers information from one module to
another, as shown in Figure 2, and initializes the system. Using
a configuration file, the user determines whether the system
output will be persistently stored. If so, the Main Module
records information such as head orientation, vehicle speed,
and video frames. At the end of the system execution, the
main module traces the vehicle trajectory on a digital map
and records the result in an HTML file for later visualization.

The workflow conducted by the Main Module is the fol-
lowing. It first receives a frame from the Video Module and
then conducts face recognition using facial landmark points
obtained with the Dlib library [11]. Yet, the Main Module
obtains thresholds regarding maximum head rotation angles
from the Severity Module, which also considers data from
additional input sensors. All the obtained data is sent to the
Facial Module to have the estimated driver’s head orientation
and the driver’s attention state received back. The Main
Module sends to the Log Module all the received data from
the additional input sensors and the information regarding the
driver’s head orientation. Finally, it sends as well the driver’s
attention state to the Notification Module.

Facial Module: This module estimates the driver’s head
orientation. To this end, the module receives facial land-
mark points extracted from video frames to compute the
corresponding head rotation angles. If the estimated driver’s
head orientation continuously exceeds the maximum rotation
angles, as determined by the Severity Module, the driver is
considered distracted. The Facial Module also implements
driver’s blind eye detection using the EAR (Eye Aspect Ratio)
metric [12], which also receives landmark points from video

frames. Hence, we assign a distracted state to a driver who
has blind eyes or is not looking ahead. This state is obtained
by the Main Module and sent to the Alert Module using the
Notification Module.

In more detail, the Facial Module receives from the Severity
Module the facial landmark points. After that, it computes the
rotation matrix, the EAR, and the rotation angles according
to the longitudinal (yaw) and transverse (pitch) axes. The
Severity Module uses these parameters to update implemented
counters that are also used to infer distraction (explained
shortly). The Main Module can then obtain the head orien-
tation, eyes status, and the driver state (distracted or not) from
the Facial Module using public methods.

As mentioned, the angles of interest for the system are those
computed considering the driver’s head rotation according to
yaw and pitch axes. The sagittal axis is not used as the
corresponding rotation is not considered a distraction (gaze
direction can still be ahead). To compute the head pose,
three coordinate systems are used: space, camera, and image
coordinates. Computing rotation and translation, it is possible
to transform a point in the 3D space into a point in the
camera coordinate system. These points are then projected
onto the image coordinate system, which is obtained with
Dlib, using camera configuration parameters. Among the
camera configuration parameters, we have the camera focal
distance, the image optical center, and the radial distortion
parameters, which are approximated herein to avoid camera
calibration.

To obtain the landmark points from the driver’s face at
the space coordinate system, we use a generic 3D model
of a human face, available to download at the TurboSquid
website [13]. The nose is considered the system origin, the
points of interest are then identified, and their coordinates are
manually obtained. The process to acquire the coordinates is
conducted using the 3D Blender software. Thus, the points ob-
tained from the space coordinate system, the points computed
by Dlib and the camera parameters allow the computation
of the driver’s head rotation angles using the Levenberg-
Marquardt optimization method [14]. This method returns the
rotation and the translation vectors. The function Rodrigues
from the OpenCV library is then used to convert the rotation
vector into the desired rotation matrix.

Driver’s distraction is computed considering the head di-
rection angles and the average EAR value of both eyes. If
the rotation angles are above predefined thresholds or if the
EAR is below a predefined threshold after a certain number
of consecutive frames, the driver is considered distracted. The
EAR is computed using six landmark points from each driver’s
eye. The number of consecutive frames a driver is considered
distracted is controlled using counters, one for each rotation
angle and another for the blind eyes. We use a sliding window
approach that updates all the proposed counters whenever
a new video frame arrives. Hence, a driver is considered
distracted if one of these counters reaches a value above the
corresponding tolerated threshold. It is worth mentioning, that
these counters are decremented at each frame the driver is



attentive. We understand that alerts must not be triggered on
a per-frame basis to smooth the system reaction and avoid
false alerts, which would be cumbersome for the driver. The
thresholds are predefined at the Severity Module and can be
configured according to the driver’s preferences.

Video Module: The system can analyze previously prere-
corded videos in addition to the real-time video streaming
from the camera. This additional functionality is implemented
for offline analysis of videos, e.g., for auditions. Thus, the
system can infer driver attention using a video recorded by a
different source or a video recorded by the system itself. The
Video Module determines the video input using a configurable
parameter.

The OpenCV library is used to capture the video input as
well. Each option, prerecorded video or real-time streaming,
requires a different implementation. For the former one, the
OpenCV library blocks the system I/O, which is implemented
as a separated thread using a buffer to avoid negative impact
on the system performance. Instead of reading from the file,
the frame is read from the buffer. For the latter option, the
frames are directly obtained from the camera.

Severity Module: The Severity Module correlates the user’s
behavior (collected from the additional input sensors) with
his attention when driving the vehicle. It can be understood,
therefore, that the Severity Module is responsible for the
system intelligence. For example, when driving at low speed, a
driver has a maximum allowed angle for head rotation greater
than the angle of another driver at a higher speed. As the speed
increases, the permitted angle decreases because the driver
must be more attentive. The parameters used by the Facial
Module are generated from the Severity Module. Therefore,
this module has as its main functionality the contextualization
of the driver’s attention status, using data from the Reception
Module, and the definition of tolerable thresholds used by
the Face Module. Also, this module implements the counters
explained at the Facial Module.

The Severity Module computes the thresholds used for the
driver’s head rotation angle; one threshold for the yaw and
another for the pitch axis, at its initialization. In addition,
we consider that the threshold is different during the day
and at night. Hence, there are four thresholds in total. These
thresholds are not computed as a single value, but as curves
considering different speeds and accelerations. We first plot 2D
curves taking into account a 5th-degree polynomial regression
model to fit different (speed, angle) points predetermined at
the configuration file. Hence, we adopt an exponential decay
empirically computed at preliminary tests to also consider
the acceleration dimension. Each 3D surface then defines
the maximum angle a driver can rotate its head considering
a single axis and one period of the day. We assume that
at night, with less luminosity, it is more important to be
more conservative and, therefore, use smaller thresholds. Also,
we use pre-configured points, as they do not need previous
training and can be customized for each driver. Figures 3(a)
and 3(b) illustrate, respectively, the curve obtained for the

yaw axis during the day and the corresponding surface after
considering the acceleration dimension.

Configured point
Curve

Yaw - daytime

Speed

(a)

80

60

40

20

0

Angle

0 20 40 60 80100120

0.4
0.2

0.0

Yaw - daytime

Speed

Acceleration

1.0
0.8

0.6

(b)

Fig. 3: Head rotation threshold at the yaw axis during the day.
(a) Curve considering the vehicular speed. (b) Surface also
considering the vehicular acceleration.

The Severity Module initializes an instance of the Reception
Module to request updated data from the input sensors. These
data are obtained using periodic remote procedure calls with
an interval also predefined at the configuration file. Finally,
the module uses the skyfield library to determine if this is
day or night. The thresholds are sent to the Main Module. For
resilience, if the connection to a sensor fails, standard values
are used.

Reception Module: This module is instantiated by the
Severity Module and its goal is to receive messages con-
taining data coming from the additional input sensors. To
accomplish that, it executes remote procedure calls to ob-
tain the data from the input sensors. The data payload
received is forwarded to the Severity Module, which fur-
ther computes the thresholds for the driver’s head rota-
tion angle. The data payload contains a five-tuple com-
posed of 〈latitude; longitude; speed; y-axis
acceleration; z-axis acceleration〉. By simply
changing the tuple, this implementation permits the addition
of new input sensors without affecting the system. Also, the
communication is conducted in separate threads, which does
not affect the main system performance.

We use asynchronous communication using a pub/sub ap-
proach. Hence, the Reception Module consumes the data
produced by the input sensors using message queues, one to
request and another to receive the corresponding data. The
proposed system uses the RabbitMQ, which provides an API
containing procedures for remote procedure calls. Also, the
implementation of a new input sensor (i.e., a new publisher)
requires only a new publisher and a new queue. The Reception
Module has a timeout parameter to cancel pending calls. Thus,
if the RabbitMQ or the Publication Module are unavailable,
a timeout exception is triggered to be further handled by the
Severity Module.

Publication Module: This module is the interface between
the system and the additional sensors. The Publication Module
is responsible to receive the data from the input sensors and
create the message to be sent to the Reception Module. This



module, in our experiments, obtains the data from the GPS
and the accelerometer.

Log Module: This module records the vehicle status, such
as speed, position, and acceleration, received from the Main
Module. In addition, it registers the driver’s status, such as
inferred head orientation, EAR, and whether the driver is
considered distracted. The log is periodically written taking
into account a configurable time interval for offline analysis.
In addition, the Log Module is implemented asynchronously
in a different thread so as not to impact the main system
performance.

Notification Module: This module sends the driver’s status,
distracted or attentive, to the Alert Module. To accomplish that,
the implementation follows also a pub/sub approach. The Noti-
fication module publishes the driver’s status to be consumed by
the Alert Module. This, besides being asynchronous, simplifies
the addition of new modules, such as one that could kill an
application in the driver’s smartphone.

Alert Module: This module receives the driver’s status from
the Notification Module. If the driver is distracted, this mod-
ule must give an alert. The importance of the alert is to
keep drivers informed about their driving conditions and,
consequently, to become more attentive to possible accidents.
Whenever the driver is considered distracted, a led is turned
on and a beep sound is emitted. This module runs inside
the Raspberry Pi, independently from the Publication Module,
consuming driver’s information from the Notification Module.

IV. EXPERIMENTAL RESULTS

We first conduct preliminary experiments to validate the
system operation in a controlled scenario and then we conduct
experiments in a real scenario.

A. Preliminary results

This experiment first evaluates the Facial Module without
sensors and then with the support of additional input sensors.

Without input sensors: We start these experiments using
default threshold values for the driver’s head rotation angle.
Figure 4 shows the Facial Module operation, without addi-
tional sensors. We use as default values for the yaw and pitch
axis threshold, respectively, 25° and 5°. When these limits are
reached, the module infers that the driver is possibly distracted.
In Figure 4(a), the system could infer that the driver is possibly
distracted as he is looking right with an angle of 34:98°, while
in Figure 4(b) the system could infer that the driver is possibly
distracted as he is looking down with an angle of −15:80°. It
is worth mentioning that positive and negative angles denote,
respectively, up or down head direction or right or left. The
comparison to the thresholds must consider absolute values.

Figure 5 shows that the current driver status, distracted and
not distracted, changes along the time according to events
on the yaw and pitch axis. Note that the system infers that
the driver is distracted sometime after the system goes above
the yaw superior limit. Similarly, the same behavior happens
when the system moves below the yaw superior limit and,

(a) Looking right (EAR = 0:31, yaw
= 34:98°, pitch = 4:61°).

(b) Looking down (EAR = 0:28, yaw
= �20:65°, pitch = �15:80°).

Fig. 4: Facial Module evaluation using default values.

afterward, when it goes below the pitch inferior limit. This
happens because the proposed system considers counters, used
to avoid premature conclusions.

Fig. 5: Driver’s distraction detection using pitch and yaw axis.

With input sensors: Considering the input sensors, the pitch
and yaw thresholds must also vary as a function of the speed
and the acceleration. In this experiment, the speed is increased
by 5 km/h and the acceleration by 0:1 m/s2 per second.
Figures 6(a) and 6(b) show the surface generated to compute
the maximum head direction rotation at the yaw and pitch axis
using pre-configured points at the configuration file.

Calculated surface for yaw

(a) Surface that delimits yaw axis
rotation.

Calculated surface for pitch

(b) Surface that delimits pitch axis
rotation.

Fig. 6: Surfaces used in the experiment using data from
vehicular speed and acceleration.

Figure7 shows that the thresholds for the driver’s head di-
rection angles are influenced by the speed and the acceleration.


