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Abstract—The optimization of urban traffic lights is a relevant
problem. With the increasing occupation of urban pathways
comes mobility deterioration: increasing delays, traffic jams and
other consequential losses. Its relevance led to several proposals
on traffic light optimization; the majority of them only consider
vehicular traffic, to the detriment of pedestrians. Nonetheless,
the longer pedestrians wait to cross, the riskier their behavior
becomes, since they become more impatient. We tackle this
problem through the optimization of traffic lights considering
the average delays of both pedestrians and vehicles, by using
microscopic traffic simulations. The problem is modeled on
the basis of reference works of the area, and solved by an
Evolution Strategy (ES). Several constraint handling methods
are compared, including one proposed in this work, Two-Level
Ranking (TLR), that aims to quickly find feasible solutions,
which is important for real-time execution. The ES was able
to find solutions that keep the pedestrian delays within the limits
given by related work. Furthermore, in the evaluated scenario,
a solution that satisfies the constraints is found, in average, at
approximately 18.6 seconds with TLR, which is shorter than what
other methods yield, allowing real-time operation.

Index Terms—Traffic light optimization, evolution strategies,
intelligent transportation systems.

I. INTRODUCTION

The increasing amount of vehicles used daily in urban
environments overloads pathways, leading to traffic jams, and
economical, environmental and health-related consequences.
The study conducted by INRIX Research, with data obtained
from more than 200 cities, indicates severe losses of capital
and time due to traffic jams [1]. For example, the United
States freight transport sector loses US$ 74.5 billion per year
due to traffic congestion. This problem is influenced by
urban traffic lights, which regulate the traffic of vehicles and
pedestrians. Therefore, their optimization has attracted the
attention of academia, industry and governments, which pur-
sue solutions for decades [2]–[5]. Most proposed approaches
optimize vehicle-related metrics, such as mean travel time,
fuel consumption, and pollutant emissions [6]. While these
metrics are indeed important, the satisfaction of pedestrians is
hardly considered. This is a limitation: the longer pedestrians
have to wait, the more impatient they become, leading to
riskier behaviors to cross faster and increasing the risk of
accidents [7]–[9].

Related works employ analytical models and simulations,
divided into microscopic, macroscopic, and mesoscopic ap-
proaches. Microscopic ones represent the individual behavior
of each vehicle and pedestrian, with theoretical mobility

models. Macroscopic models approximate the urban traffic
dynamics by using fluid dynamics theory. Mesoscopic meth-
ods are intermediary solutions. Macroscopic models have, in
general, lower execution times, albeit being less accurate.
Microscopic ones offer greater accuracy at the cost of longer
processing times. Therefore, a difficulty for solutions that
employ microscopic approaches is reducing the optimization
procedure time, in order to make it compatible with real-time
operation for dynamic scenarios.

The problem we consider is the optimization of the allo-
cation of times for traffic lights placed at intersections, in
order to speed up the flow of vehicles and pedestrians. There
are two ways of handling pedestrians at an intersection [10].
Two-Way Crossing (TWC) allows pedestrians and vehicles to
simultaneously cross the pathways, as long as their trajectories
do not conflict. Exclusive Pedestrian Phase (EPP) isolates
vehicles from pedestrians, concentrating all the pedestrian
traffic on one phase, which reduces the risk of accidents but
tends to increase delays for both vehicles and pedestrians [11].

In this context, we implement an approach for traffic
light optimization that considers the conflicting pedestrian
and vehicle interests, using traffic simulations executed in
the SUMO framework [12]. The problem is modeled as an
optimization one, following traffic guidelines and green time
threshold values obtained from related work [2], [7]–[11]. This
model was used to solve the problem through an Evolution
Strategy (ES) [13]. With this configuration, fitness evaluations
(FEs) are microscopic traffic simulations, imposing a great
computational cost. Thus, the ES employed here has received
several adjustments, aiming to reduce the execution time and
amounts of fitness evaluations and generations required to find
an interesting solution, and to avoid premature convergence.
Different constraint handling methods are compared to our
proposal, Two-Level Ranking (TLR), which aims to quickly
find feasible solutions. In the tested scenarios, TLR has been
able to find solutions that satisfy the restrictions. Neverthe-
less, there are important performance differences between the
techniques.TLR achieved the lowest execution time, finding
a feasible solution on 18.6 s on average. Additionally, opti-
mizing for pedestrian and vehicle traffic has reduced pollutant
emissions and fuel consumption.

This work is organized as follows. Section II presents
related work. Section III describes the problem modeling. Sec-
tion IV discusses the adopted Evolution Strategy and relevant
implementation decisions. Section V presents the evaluation



scenario and the obtained results. Finally, Section VI con-
cludes the paper and presents future work.

II. RELATED WORK

Yang and Benekohal [2], [10] consider traffic light op-
timization for one intersection. They minimize the sum of
average delays of each type of user of the urban pathways
– vehicles or pedestrians. The weight given to the pedestrian
average delay (called K) was varied between 0 and 3, with
integer values. The phase durations attributed to the traffic
lights were also integers and individually set to each lane of
each street. Moreover, the optimization decides if an exclusive
pedestrian phase (EPP) is added. The authors employ a Genetic
Algorithm (GA) for the optimization. In order to verify which
factors made an EPP an interesting choice, they have evaluated
several configurations, varying K, the sizes of the queues at the
beginning of the simulations, the amount of lanes in each di-
rection, and the traffic density. The results indicate that higher
K values discourage using EPPs, given that pedestrians already
receive a more important role in the objective function. The
authors conclude that EPP is more suitable for intense flows
of pedestrians and vehicles that are perpendicular. The main
shortcomings of this work are: the usage of integer variables
for optimization, affecting its precision; the absence of other
meta-heuristics or variations of the GA for comparison; and
the small scenario with one intersection.

Gao et al. [14] perform an optimization which minimizes
the total delays of pedestrians and vehicles. The authors have
designed a macroscopic model for the movements of these
individuals, which depends on two considerations: the propor-
tions of vehicles and pedestrians that head to each direction at
every street are known; and EPPs are disregarded. The model
considers operation in time slots of an arbitrary duration. This
modeling allows allocating predefined phases for time slots
in the future. Two meta-heuristics are evaluated, and a local
search mechanism was turned on and off in different runs of
both algorithms, making a total of four candidates. To solve the
problem for two optimization objectives, the authors employ
the concept of Pareto dominance [15] to find the best solutions:
for those, improving the value of one objective worsens the
value of the other, and vice-versa. Nevertheless, the usage of
time slots and a macroscopic approach limit the precision of
the approach proposed by this work.

Although Ishaque and Noland [11] do not focus on traffic
light optimization, they bring important observations. The
authors have conducted microscopic traffic simulations, in-
volving several types of vehicles and pedestrians. The eval-
uation scenario was composed of four intersections. In the
experiments, the vehicle flow and the cycle durations at inter-
sections were varied, and the duration of phases that involve
pedestrians was kept constant. The adoption of one or two
EPPs was also considered. Delays for each vehicle type and
the pedestrian delays were analyzed, in order to seek measures
that reduce them. The authors conclude that raising the cycle
duration increases the vehicle throughput, until a limit value
of 90 s. Considering only passenger cars, a 72 s cycle duration

minimizes the delay. For pedestrians, however, the delay is
minimized with a 45 s duration, indicating a conflict of interest
between pedestrians and vehicles. The authors also observe
that giving a weight of 2 to the pedestrian delay and putting
more importance on vehicles that carry more passengers – such
as buses and taxis – can shift the best configuration, so that
its cycle duration assumes values ranging between 60 s and
72 s, representing a better compromise among the different
interests in the scenario. This study simplifies, however, the
behavior of pedestrians, considering that they always follow
the traffic rules and that pedestrians do not interact with each
other. As such, there is no limit on the number of pedestrians
simultaneously crossing the street, which is unrealistic.

Vallyon et al. [7] evaluate interactions between pedestrians
and traffic lights. They observe the behaviors of pedestrians
in a New Zealand scenario, followed by the conduction of
surveys with some of them, and conduct an evaluation through
microscopic simulations and optimization. The observation of
pedestrians and the surveys led to the conclusion that, the
more populated a city is and the more traffic jams occur there,
the greater the delay pedestrians suffer during commuting.
They also tend to cross more often at red or blinking red
lights, increasing risks. The evaluation via simulation and
optimization considers six scenarios, with varying amounts
of intersections. It was observed that optimizing by the per-
person delay – assuming that each passenger car carries 1.4
people in average – leads to significant improvements of the
pedestrian delays, ranging between 26% and 45%, in relation
to the standard phase durations. The vehicular delay, with
this optimization, has slightly increased in some scenarios,
although it was reduced in others. Other measures, such as
merging phases that allow similar vehicular movements or
increasing the cycle durations, have also led to additional
improvements for most scenarios.

The mentioned related work discusses several important
characteristics of the problem. Nevertheless, each work has
some limitations, discussed on their paragraphs. Our proposal
aims to fill this gap by providing an optimization framework
which operates with real values for the green times instead of
integer values or time slots of arbitrary duration, which allows
finer adjustments. Furthermore, our work contributes to the
state of the art on optimization with microscopic simulations,
by proposing a constraint handling method that finds feasible
solutions in less time than other alternatives.

III. PROBLEM MODELING

The problem we model is the optimization of traffic light
timing schedules at intersections, to improve the traversal
of land vehicles and pedestrians. The operation of traffic
lights is characterized by the phases, the movements that they
allow and their durations. Thus, the goal is: given queues
of vehicles and pedestrians at approaches of one or more
intersections, make those individuals leave the region as soon
as possible. To simplify the problem, the phase orders for
each intersection and the permissions given by each phase
are immutable, excluding the combinatorial aspect from the



optimization problem. Furthermore, no other vehicle or pedes-
trian enters the region of interest during the experiments.
The objective function considers the delays of vehicles and
pedestrians. Other relevant metrics are the amount of executed
simulations and the run time for the optimization, so that it
is possible to assess the viability of applying this approach to
real-time traffic light control. The evaluated scenario assumes
an exclusive pedestrian phase (EPP). Employing information
extracted from related work [2], [7]–[11], we have designed
the following optimization problem, considering TWC:

minimize f(Tg,1, ..., Tg,i) = D̄car + 2 D̄ped, i ∈ [1, Nd] (1)
s.t. Qcar,i, Qped,i, Qx ∈ Z+, i ∈ [1, Nd] (2)

0 ≤ maxNped

j=0 Dped,j ≤ 60 s (3)

0 <

Nd∑
i=1

(Tg,i + Ty,i + Tendped,i) ≤ 90 s (4)

3.2 +
lcw,i
Vped

+ 0.27 maxNd
i=1(Qp,i) ≤ Tg,i (5)

1 ≤ Tg,i (6)

Dx, Tx ∈ R+. (7)

In this model, D̄car =
∑Nveh

j=1
Dcar,j

Nveh
and D̄ped =∑Nped

j=1
Dped,j

Nped
correspond, respectively, to the mean delays of

vehicles and pedestrians, produced by the traffic simulations.
Nveh and Nped are the amounts of vehicles and pedestrians in
the simulation and Tg,i is the green time for traffic light i. Nd
is the amount of approaches in the intersection, which means
the amount of streets which converge to it. Ty,i is the yellow
time for traffic light i; it is assumed to be equal to 3 s – a value
frequently used in the related work [2], [10], [11], Tendped,i is
the duration in which the flashing red light for pedestrians is
active, warning them that their phase is ending, employed in
order to guarantee all pedestrians are on sidewalks. This value
is assumed to be 5 s, duration given by SUMO in function of
the intersection dimensions. maxNped

j=0 Dped,j corresponds to
the longest delay seen by a pedestrian during the simulation.
Qcar,i, Qped,i are the sizes of vehicle and pedestrian queues
in the direction i; those are conditions given by the traffic
simulation configuration; lcw,i represents the length of the
crosswalk for direction i; and Vped represents the speed of
a walking pedestrian, equal to 1.2 m/s [10].

The objective function (Eq. 1) is the sum of the mean
pedestrian and vehicle delays. D̄ped receives weight 2, which
is considered a good balance between pedestrians and vehi-
cles [2], [10], [11]. Eq. 3 sets an upper bound for the maximum
pedestrian delay – 60 s –, conceived by studies which aimed to
produce a traffic safety manual for Germany [9]. This value is
justified by information from other works. According to [11],
pedestrians feel impatient after waiting 30 s. Furthermore, em-
pirical observations [7], [8] suggest that, the longer pedestrians
wait, the riskier their behavior becomes. Eq. 4 restricts the
duration of a cycle. Cycles over 90 s should be avoided; this
is a conclusion derived from the restriction over the maximum
pedestrian delay [9]. Eq. 5 is the minimal green time for phases

which allow the crossing of pedestrians, extracted from [10]
and originated from the American Highway Capacity Manual
(http://www.trb.org/publications/hcm6e.aspx). Eq. 6 sets an
arbitrary minimum value for the green time of any traffic
light; this is meant to prevent “frozen” simulations, in which
the green time is zero for a direction with queued vehicles,
preventing its conclusion. Eqs. 4, 5 and 6 are related to
decision variables. Nevertheless, Eq. 3 concerns a simulation
result – the maximum pedestrian delay. For cases in which an
exclusive pedestrian phase is used, this model was adapted to:

min f(Tg,1, ..., Tg,i, Tped) = D̄car + 2 D̄ped, i ∈ [1, Nd] (8)
s.t. Qcar,i, Qped,i, Qx ∈ Z+, i ∈ [1, Nd] (9)

0 ≤ maxNped

j=0 Dped,j ≤ 60 s (10)

0 <

Nd∑
i=1

(Tg,i + Ty,i) + Tped + Tendped ≤ 90 s (11)

3.2 +
lcw,i
Vped

+ 0.27 maxNd
i=1(Qp,i) ≤ Tped (12)

1 ≤ Tg,i (13)

Dx, Tx ∈ R+. (14)

An additional variable in this model, Tped, is related to
the duration of the EPP. Also, Tendped, present at Eq. 11,
does not have a direction index anymore: there is only one
transition between a phase involving pedestrians and phases
involving vehicles, differently from the TWC model. For
multiple intersections, each additional intersection adds, to the
decision variables, green times relative to their approaches
with traffic lights, and additional cycle duration restrictions
– 1 per additional intersection –, green times for pedestrians
– 1 per phase that involves pedestrians in the additional
intersection – and green times for any direction – 1 per
approach. New intersections also add new queues on each
approach.

IV. EMPLOYED META-HEURISTIC

Genetic Algorithms (GAs) are one of the most employed
meta-heuristics for traffic light optimization [2], [4]–[6].
Nonetheless, Evolution Strategies (ESs) [13] were more ef-
ficient in initial evaluations; therefore they were chosen for
the experiments. ESs are evolutionary algorithms which are
similar to GAs, using crossover, mutation and survivor se-
lection mechanisms. Nevertheless, they do not employ parent
selection mechanisms, generating offspring from any pair of
parents with equal probability, disregarding their fitness in this
step. This provides larger variability.

The decision variables – green times – are coded as real
values. This is different from what is performed in a part of
the related work, which employs integer variables, offering less
precise adjustments. The population is initialized randomly,
using uniform distributions. It is typical for ESs to generate
more offspring (λ) than the amount of parents (µ – also
the population size). This, coupled with generational survivor
selection mechanisms – that exclude the parents – accelerates



the search and allows efficient exploration in promising re-
gions. A recommended proportion is the value 7 [15], which
was employed here – we have used µ = 20 and λ = 140.
Elitism is also employed, preserving the best individual from
each generation, avoiding its loss by mutation, crossover or
survivor selection. In order to generate offspring, the BLX-
α crossover [16] was chosen. Given two parents p1 e p2, a
child c is generated as follows:

c = p1 + β(p2 − p1), (15)

where β ∈ U(−α, 1 + α): it is generated from a uniform
distribution. α was set to 0.5 and the crossover probability to
0.8. Each operation generates one child.

Another feature which improves ESs performances are mu-
tations with self-adaptive parameters. We employ a modified
creep mutation [13]. It chooses, at each generation, the best
parameter values, which depend on the objective function. A
creep mutation adds perturbations over each decision variable,
originated from a standard distribution; their mean values were
kept as 0. The standard deviations for each dimension i, σi, are
modified every generation. Standard deviations also compose
individuals genotypes and undergo changes by the crossover
procedure. Since those values are selected through survivor
selection, the method is self-adaptive. Before the mutation
step, they are also modified:

σ′i = σi × eτ
′N(0,1)+τNi(0,1), (16)

where σi is the standard deviation for dimension i, σ′i is its
next value, τ ′ is the global learning rate, which adjusts the
perturbations for every dimension, τ is the individual learning
rate, which adjusts the perturbations for a specific dimension,
N(0, 1) is a standard perturbation that assumes the same value
for every dimension, and Ni(0, 1) is an individual standard
perturbation that applies to a specific dimension. With the
computed standard deviation values, the variables of the new
individual are mutated as follows:

x′i = xi + σ′i ×Ni(0, 1). (17)

The adopted values for τ ′ e τ are, respectively, 1/
√

(2n)
and 1/

√
(2
√

(n)) [13]. To avoid too small step sizes or too
large ones, which could stagnate the algorithm, step sizes are
confined between the bounds ε0 = 10−5 and εi,max – equal
to 60% of the search space length of variable i. Since the
step sizes have the tendency to reduce over the algorithm
execution, a high initial value for every variable was chosen,
for broader exploration at the first generations: εi,max. The
mutation probability is 100%, given that the mutation is self-
adaptive. We evaluate four constraint handling methods:

1) Penalty Method [15]: uses a penalty term based on
the violations, calculated in function of the distance from
the feasible region. Given decision variables x, an objective
function f(x), a restriction in the form g(x) ≤ 0, and another
restriction in the form h(x) = 0, a new objective function
f2(x) is created from the violations:

f2(x) = f(x) + kP (x), (18)

P (x) = max(0, g(x)) +max(0, (|h(x)| − ε)), (19)

which considers a linear scaling for the violation. More
restrictions require additional penalty terms. We have used the
value 3 for the weight k. This method was used alongside
a generational survivor selection, preserving only the best
offspring – it does not preserve the parents, with the exception
of the individual preserved by elitism.

2) TS-R [17]: a modification of the tournament selection
mechanism for survivor selection, which selects pairs of ran-
dom individuals and preserves the best one in the pair for the
next generation. It has three pairwise comparison rules:
• if the pair is composed of two feasible individuals, select

the one with the best objective function value;
• if it is composed by a feasible and an infeasible individ-

ual, select the feasible one;
• if it is composed by two infeasible individuals, select the

one with the lowest violation.
3) Stochastic Ranking [18]: specific for ESs. Performs

survivor selection by using a ranking to select the individuals
for the next population. The ranking only considers offspring
and is ordered similarly to the bubble-sort algorithm, swapping
adjacent individuals positions following a criterion to create
an ordered list. The procedure iterates through the list for
N iterations. The criterion for swapping is stochastic: it has
a probability Pf of being a comparison by fitness and a
probability 1 − Pf of being by violation. If both individ-
uals are feasible, the comparison will be by fitness. Since
Pf is typically lower than 1, this algorithm aims to keep
a balanced proportion of feasible and infeasible solutions,
to achieve solution quality without losing information from
infeasible solutions. The parameters used are the same as [18]:
Pf = 0.45 and N = λ = 140.

4) TLR (Two-Level Ranking): we propose an alternate
ranking scheme for this problem. Given that ESs have high
selective pressure, objective function evaluations are traffic
simulations and that there is a restriction which depends on a
simulation, TLR aims to quickly minimize the violations and
fill the population with feasible solutions, in order to have a
faster response for real-time scenarios. It works as follows:
• The λ children of a given generation are split into two

lists: one contains N feasible solutions; the other contains
the λ−N infeasible ones;

• Both lists are sorted: the feasible solutions list is sorted
by fitness (for minimization, ascending order of fitness
values); the infeasible solution one is ordered by violation
(ascending order of violation);

• Both sorted lists are used to compose the population of
the next generation, of size µ < λ. First, it is filled with
the feasible solution list. If there are remaining slots, they
are filled with the infeasible solution list.

For every constraint handling method, to further reduce
the computational cost of the optimization, simulations were
parallelized. Furthermore, elitism is guided by fitness if the
penalty method is employed. Otherwise, a mechanism similar
to TLR is used: the best feasible individual is added to the



Figure 1: Evaluation scenario (Figure produced by SUMO).

elite if any exists; otherwise the unfeasible one with the lowest
violation composes the elite.

V. PERFORMANCE EVALUATION

Fig. 1 presents the simulation scenario. It is comparable in
scale to related work: it has four intersections, each having four
approaches with two-way traffic and sidewalks. The horizontal
street at Fig. 1 has two lanes for vehicles for each direction,
while the vertical ones only have one per direction. At every
street, vehicles are allowed to go straight, turn left or turn
right. Each intersection has four traffic lights, which follow
the same phase sequence:
• For the directions east, south, west and north, one at a

time, in this order:
– Green – adjustable duration – then yellow – 3 s – for

vehicles approaching from this direction;
• Exclusive Pedestrian Phase (EPP) – adjustable duration;
• No movements allowed (all-red phase) – 5 s.
EPP, as previously mentioned, interrupts all vehicle traffic.

The all-red phase is used to clear the pathways of all pedestri-
ans before allowing vehicles to move. Using EPPs increases
the number of decision variables by 1 per intersection, in
relation to TWC. Each intersection has 5 adjustable durations.
Given that the scenario has four intersections, there is a total
of 20 decision variables to adjust and 29 restrictions: 1 for
the pedestrian maximum delay, 4 for the cycle durations, 20
for the minimal green time for vehicles and 4 for the minimal
green time related to exclusive pedestrian phases.

Twenty-four vehicles enter the intersections from the hori-
zontal street and 48 arrive from the vertical ones, for a total of
72 vehicles; their movements are uniformly distributed among
the possible directions. Each vertical street has between 4 to
6 pedestrians, resulting in a total of 42. Their movements are
also uniformly distributed among the possible directions.

As mentioned in Section IV, four constraint handling meth-
ods are evaluated: the penalty method – with weight k = 3
–, TS-R [17], Stochastic Ranking [18] and the proposed
TLR. Each algorithm configuration is tested for 25 rounds.
The stopping criteria for the rounds are the execution of
5000 FEs (Fitness Evaluations), which corresponds to 5000
traffic simulations, and the execution of 2100 FEs without
any improvements on the objective function value. Given
that the number of children generated at each generation (λ)
is 140, 2100 FEs correspond to the evaluation steps of 15
generations, provided that all children are feasible. SUMO
simulations employ several random components. To make

them deterministic, avoiding influences from these random
factors on the performance of ESs, the seed 23423 was used
for its random number generator. Simulations complete when
all vehicles and pedestrians fulfill their routes.

Tables I and II compare the performance of the four
constraint handling methods. TS-R shows the worst overall
results. It has the worst values for the best, worst, mean, and
median values of the fitness, as well as the largest standard
deviation for it, which indicates less consistency. Among the
Penalty Method, TLR and SR, the difference in fitness value
statistics is smaller, except for the standard deviation, where
SR is closer to TS-R. Penalty, TLR, and SR have found the
same values for the pedestrian delay statistics; those are higher
than TS-R’s, suggesting that better solutions cannot further
reduce pedestrian delays without increasing vehicle delay. TS-
R was the only method which did not find a feasible solution
in all 25 rounds: no feasible solution was found at 7 of them.
It also had the longest average run time. Regarding the time
to find the first feasible solution, TLR yields significantly
lower values for all statistics, suggesting it is an interesting
option for optimizing traffic lights in real time or handling
dynamic scenarios. Typical cycle durations for urban scenarios
are between 60 s and 90 s1, meaning that our approach would
have spare time to enhance its feasible solutions in such
environments before a new cycle starts.

Fig. 2 presents the evolution of the feasibility ratios – ratio
of feasible solutions in the population – for the best rounds
with each constraint handling method, over three metrics: fit-
ness evaluations, generations, and execution time. This figure
helps explaining the longer average execution time for TS-
R: it has used a significantly higher amount of generations
to fulfill the stopping criteria, which can be explained by the
lower feasibility ratios it maintains during the entire execution.
TS-R does not evaluate infeasible individuals and, since it
maintains lower feasibility ratios, it runs for more generations.
Nevertheless, the lower feasibility ratios do not allow the ES
to leverage the parallel distribution of traffic simulations and
harm the optimization. TS-R has lower feasibility ratios due to
the random pair compositions of tournament selections, which
can discard feasible solutions, whereas the other methods pri-
oritize lowering the violations of the solutions they encounter.
TLR and SR show similar evolution curves, however TLR
finds the first feasible solution earlier, keeps a 100% feasibility
ratio for longer, converges earlier and has a shorter execution
time than SR. Penalty Method evolves differently, maintaining
intermediate ratios during its execution. Figs. 3 and 4 compare
the median and worst rounds, over the progress in fitness
evaluations. They show similar tendencies, in comparison to
Fig. 2, indicating these behaviors are consistent. Fig. 5 shows,
for median rounds, the evolution of the fitness of the best
solution. This value starts higher for the Penalty method, since
its objective function has a violation term and random initial
solutions. TS-R converges prematurely to a worse solution.

1https://nacto.org/publication/urban-street-design-guide/intersection-design-
elements/traffic-signals/signal-cycle-lengths/



Method Best Fitness D̄mean,car D̄mean,ped Dmax,ped Worst Fitness Mean Fitness Median Fitness Fitness St. Dev.
Penalty 168 122.94 22.53 59.76 195.97 179.245 178.171 7.353
TS-R 176.63 137.37 19.63 50.76 236.81 194.959 191.11 14.621
TLR 166.5 121.44 22.53 59.76 192.87 174.404 172.38 5.647
SR 167.28 122.22 22.53 59.76 221.81 178.792 174.38 12.453

Table I: For the tested constraint handling methods, fitness statistics and obtained delays – in seconds – of their best solutions.

Method Feasible Rounds Avg. Run Duration t1st,mean (s) t1st,median (s) t1st,stddev (s)
Penalty 100% 41 min 5 s 114.611 91.896 52.589
TS-R 72% 55 min 27 s 171.309 110.187 198.429
TLR 100% 36 min 41 s 18.663 14.045 14.538
SR 100% 40 min 55 s 56.939 49.424 36.326

Table II: From left to right: proportions of feasible rounds, average run durations and statistics (means, medians and standard
deviations) of the necessary time for reaching the first feasible solution, for each constraint handling method.
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Figure 2: Evolution of feasibility ratios for each constraint handling method over the optimization process, for the best rounds.
Three measures of the optimization progress are given: FEs, generations and execution time.

0 1000 2000 3000 4000 5000
FEs

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as
ib
ilit

y 
Ra

tio

Feasibility Ratio (Median Rounds)

Penalty
TS-R
TLR
SR

Figure 3: Evolution of feasibility ratios over the optimization
process, for the median rounds with each method.

The other methods have similar final fitness values, although
SR and TLR improve fitness faster.

Fig. 6 shows another noteworthy result: although our pro-
posal does not optimize for pollutant emissions or fuel con-
sumption, these metrics have also been reduced. The chart
shows the evolution of CO emissions from the best solution
at each optimization step, for the best rounds of the four
constraint handling methods. All methods find solutions that
reduce emissions, in relation to the initial set of solutions
– random solutions. TLR and SR present quicker reductions
along the optimization. TLR has a slight advantage over SR
during some moments of the optimization and for the final
solution. We have also obtained the results for CO2, partic-
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Figure 4: Evolution of feasibility ratios over the optimization
process, for the worst rounds with each method.

ulate matters (PMx), nitrogen oxides (NOx), hydrocarbons
and fuel consumption. They produce the same curves as CO
but at different scales, thus are omitted here. The reductions
in emissions and fuel consumption are a consequence of the
minimization of the mean delay for vehicles.

VI. CONCLUSION

This work has proposed a framework for traffic light
optimization, considering the conflict of interests between
pedestrians and vehicles. Our proposal encompasses modeling
an optimization problem and solving it through an Evolution
Strategy (ES), a meta-heuristic. Microscopic traffic simulations
are used to evaluate a given solution, by the mean pedestrian
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Figure 5: Evolution of fitness for the ES with each constraint
handling method over the optimization process, for the median
round with every constraint handling method.
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Figure 6: Evolution of carbon monoxide emissions during the
optimization process, for the best rounds.

delay and mean vehicle delay values they yield. Given that
the optimization problem has restrictions, we evaluate four
constraint handling methods, including our proposal, TLR. The
proposed optimization framework was able to find solutions
that satisfy the constraints defined at the optimization problem,
which were formulated based on data from related work.
Notwithstanding, the methods have significant performance
differences. TLR and SR achieved similar results for most
metrics – notably best solution fitness, mean and median
fitness. Nonetheless, TLR has a noteworthy advantage over
all other methods: the required time to find the first feasible
solution is significantly lower: the mean over all 25 rounds
is 18.663 s, and the median is 14.045 s. These values are
relevant to consider a real-time implementation or for handling
dynamic scenarios, because they allow more frequent updates
on the traffic light policy. Another interesting result from
our proposal is the reduction of pollutant emissions and fuel
consumption, which is a consequence of reducing the mean
vehicle delay. In future work, we will expand the analysis
with different topologies and traffic demands, optimize the
phase sequence – a combinatorial optimization problem which
was not handled by our proposal – and design a mathematical
model that can approximate traffic simulation results, which
would produce a significant optimization speed up.
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