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Abstract—Audio samples have emerged as a trend for moni-
toring and improving decision-making in smart cities, medical
applications, and environmental event detections. This paper
proposes a Super Learner ensemble application in two scenarios:
to distinguish urban from domestic sounds, and detect abnormal
samples in industrial machines. The Super Learner combines
supervised classifiers to detect abnormal samples or determine a
class of an event from spectral features extracted from original
sounds. We study the impact on time processing and performance
of varying the number of K-folds in the cross-validation step
using the Environmental Sound Classification (ESC-50) and
Malfunctioning Industrial Machine Investigation and Inspection
(MIMII) datasets. The performance evaluation demonstrates that
RF is the best classifier in the ESC-50 dataset and SVM in the
MIMII dataset. However, the Super Learner reaches AUC and
F1-Score values near the best algorithm in the majority of cases
analyzed, representing the best tradeoff solution.

Index Terms—Industrial Internet of Things, Machine Learn-
ing, Super Learner ensemble, Smart cities

I. INTRODUCTION

Intelligent systems emerge to deal with challenges in dif-
ferent scenarios. In Industry 4.0 (I4.0) digital technologies are
adopted to integrate manufacturing systems. The addition of
digital technologies permits the management of industrial as-
sets and logistic processes. Then, sustainable solutions can be
applied to risk and safety management, product customization,
waste reduction, and energy efficiency improvement [1], [2].
In this way, intelligent systems based on machine learning
algorithms enable corrective or predictive maintenance to
ensure that products and equipment are still in pre-established
standard [3]–[5]. Nevertheless, these approaches have as their
downside the high processing power and the large volume of
data to train machine learning models.

Instead of spectrograms, spectral features can also be used
to describe audio sounds enabling other machine learning
classifiers to address the same detection task. Since these algo-
rithms are numerous, a potential approach is the combination
of them with the stacking ensemble method for performance
improvement. Thus, Van der Lan et al. propose the stacking
ensemble algorithm Super Learner, where multiple base learn-
ers are combined, and the optimal weights are selected with a
meta-learner [6]. The Super Learner algorithm adopts K-folds
cross-validation to train the base learners, store the predictions,
and use these outputs as input to the meta-learner.

This paper proposes a Super Learner ensemble to conduct
audio classification. The Super Learner combines supervised

classifiers to detect events from spectral features extracted
from sounds. To our knowledge, this is the first work to im-
plement the method using sound spectral features. We analyze
the performance of the Super Learner ensemble by combining
five well-known base learners to solve classification tasks:
AdaBoost (AB), Naive Bayes (NB), K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), and Random Forest
(RF). The idea is to construct a robust classifier to improve
the performance or, at least, decrease the need to choose the
best algorithm for each scenario. We conduct experiments
using the Malfunctioning Industrial Machine Investigation and
Inspection (MIMII) dataset [7] and Environmental Sound Clas-
sification (ESC-50) dataset [8]. The Synthetic Minority Over-
sampling technique (SMOTE) [9] is selected to circumvent
the imbalanced data in the training set. Hence, the main
contributions of this paper are summarized as follows:

• We propose a Super Learner approach using spectral
features extracted from the original datasets.

• We adopt the SMOTE to deal with imbalanced training
data using the Spectral Features extracted.

• We study the impact of changing the number of K-folds in
the cross-validation step to train and fit the Super Learner.

This work is organized as follows: Section II discusses the
related work. Section III presents our proposal using spectral
features extracted and the base learners selected. Section IV
presents the metrics computed, the applied methodology, and
experimental results comparing the performance of the Super
Learner with the base learners individually. Finally, Section V
concludes this paper and draws future directions.

II. RELATED WORK

We divide the related work into two categories. The first
one discusses the deployment of multiple models for the
classification in I4.0. The second one shows efforts using
Super Learners in other scenarios.

A. Multiple models deployment

The MIMII dataset has abnormal and normal audio sam-
ples collected from industrial machines. This data encourages
proposals for classifying the operational status of industrial
equipment by extracting information from sounds. Tama et
al. [10] extracted spectrograms and applied the convolu-
tional neural networks EfficientNEt to image classification.
These weak classifiers are combined in a weighted ensemble
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Fig. 1: The Super Learner ensemble method to combine
machine learning algorithms, i.e., the base learners.

model to improve the overall performance. Gantert et al. [11]
extracted spectral features from the original audio samples
to save the converted dataset into CSV files avoiding the
adoption of deep neural networks. Then, they could implement
a binary classification using different supervised machine
learning algorithms. The algorithms selected for reactive main-
tenance were SVM, RF, NB, and MLP. The results could
achieve higher values of AUC than the baseline work based
on deep autoencoders and Mel-spectrograms. Natesha and
Guddeti [12], on the other hand, have selected and analyzed
the classification adopting two distinctive spectral features
as input. The system was implemented with fog nodes to
reduce the response time compared with models running in
cloud servers. The algorithms selected in their work were
MLP, SVM, RF, AdaBoost, and Logistic Regression. These
papers either ensemble similar models or evaluate the best
individual performance. We combine different models in a
single ensemble using a Super Learner instead.

B. Super Learner deployment

The ensemble methods combine algorithms to construct
more powerful models. Hedeya et al. [13], for instance, adopt a
Super Learner to improve the performance of deep neural net-
works in vehicle-type classifications from surveillance frames.
The convolutional neural networks ResNet 50, Xception, and
DenseNet were selected as base learners. Wei et al. [14] use a
Super Learner to estimate the greenhouse emission in diesel-
fueled vehicles. The Super Learner is compared with model
systems adopted to predict the gas emission, decreasing the
Root Mean Square Error (RMSE) by up to 50%. Hence, the
deployment of Super Learners is often limited to scenarios
different than audio classification using spectral features.

III. SUPER LEARNER PROPOSAL FOR AUDIO
CLASSIFICATION

The Super Learner ensemble proposed to conduct audio
classification. Related work typically addresses audio classifi-
cation through the individual evaluation of multiple machine
learning models. We, instead, combine supervised classifiers
using a Super Learner. The idea is to detect abnormal samples
from spectral features from sounds of industrial machines and
urban sounds from environmental sounds.

The Super Learner algorithm is based on K-fold cross-
validation to determine the best combination of algorithms
for predictions or classifications. Figure 1 shows the Super
Learner functioning. In Step 1, the dataset is split into K
blocks, and each block has K parts. One of the K parts
is separated for validation while the remaining blocks are
used to train the base learners. The base learners are the
algorithms selected to construct the Super Learner. We selected
the supervised algorithms as follows:

• AdaBoost (AB): This ensemble method fits the copies
of classifiers, adjusting the weights in incorrect classifi-
cations. Then, the next classifier is enabled to solve the
most challenging samples. In our proposal, we adopt the
decision tree algorithm.

• Naive Bayes (NB): This probabilistic classifier is based
on Bayes’ theorem with a strong independence assump-
tion. We adopted the Gaussian Naive Bayes, i.e., the
classifier assumes that the classes follow a Gaussian
distribution.

• Support Vector Machine (SVM): This classifier is based
on data separation in classes using hyperplanes. These
hyperplanes are chosen to maximize the distance between
the nearest data.

• K-nearest neighbor (KNN): This classifier considers the
number of the K nearest samples to label a new sample.
The class is defined according to the majority class among
the K-samples selected.

• Random Forest (RF): This classifier is an ensemble
method, where multiple decision trees are used, and the
class is the one with the majority of votes.

In Step 2, the models are trained and validated until all K
parts of the blocks have been reserved as the validation set.
Step 3 in Figure 1 builds a matrix with the Z outputs of the
base learners. The predictions are stored with the real value y
of the samples. In Step 4, the matrix becomes the input of the
meta learner. The meta learner is an algorithm trained with
Z to find the optimal weights of base learners to achieve the
value y. We selected in this work the decision tree as meta
learner. In Step 5, the base algorithms are trained with the
entire dataset. Step 6 represents the outputs obtained in the
previous step. Finally, in Step 7, the Super Learner is built by
applying the weights selected by the meta learner. This is the
final step for building the Super Learner.

Once the spectrograms can be replaced by the features
extracted from the original audio datasets to describe the
sounds, image recognition algorithms can also be replaced by
algorithms with less computational requirements.

Considering the results in the related work [11], we select
the five spectral features presented as follows:

• Mel-Frequency Cepstral Coefficients (MFCC): the
MFCCs can phonetically describe the instantaneous am-
plitude of an oscillating signal. In this way, the coef-
ficients are widely used in speech recognition and are
computed as the inverse discrete cosine transform (DCT)
of the cepstrum power at each Mel frequency. Thus, the



MFCC is defined as follows:
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where Mmfcc is the number of Mel frequency bands (in
our case, Mmfcc = 20), X̃m(t) is the signal energy in
the mth Mel frequency band, and c ∈ [1 − −Mmfcc] is
the index of the cepstrum coefficient.

• Spectral Centroid (SC): the magnitude of the spectrum
center of gravity. This feature is associated with the sub-
jective brightness idea of sound intensity, where signals
with higher frequencies are perceived as clearer. The
SC is the average of frequencies present in the signal
weighted by their amplitudes:

SC =

∑M
k=1 f(k)S(k)∑M

k=1 S(k)
, (2)

where the S(k) is the spectral magnitude at frequency
bin k.

• Spectral Bandwidth (SB): spectral bandwidth calculated
considering the spectral centroid SC as follows:

SB =

√√√√ M∑
k=1

S(k)(f(k)− SC)2. (3)

• Spectral roll-off (SR): the frequency below which 85%
of the spectral magnitude is satisfying the following
relation:

SR∑
k=1

S(k) = 0.85

M∑
k=1

S(k). (4)

• Zero Crossing Rate (ZCR): The ZCR counts the number
of times an audio signal waveform crosses zero, and it is
directly computed from the time domain as:

ZCR =
1

2N

N−2∑
t=0

|sgn(x(t+ 1))− sgn(x(t))|, (5)

where sgn(x(t)) =

{
1, if x(t) ≥ 0,

−1, if x(t) < 0.

The original sample rate is preserved while the value of
each feature is the mean obtained from the original audio.

IV. PERFORMANCE EVALUATION

We use the ESC-50 and MIMII datasets to evaluate the Su-
per Learner approach to classify sound samples. The ESC-50
dataset contains 2000 audio samples with 5 seconds duration
of 50 categories. We can group the categories into 5 classes:
Animals, Natural soundscapes and water sounds, Human non-
speech sounds, Domestic sounds, and Urban sounds. We
select the Domestic and Urban sounds to obtain a binary
classification and adopt the same evaluation metrics used in
the MIMII dataset.

Audio 
dataset

Feature 
extraction

Train 
dataset

Test 
dataset

SMOTE

Data
Transformation

Model Evaluation

Data
Transformation

Model Training

Fig. 2: Description of the system implemented to train and
evaluate the Super Learner and the base learners.

The MIMII dataset contains information from four machine
types: pumps, fans, slide rails, and valves. For each machine
type, samples from four individual machines were collected,
resulting in a total of 16 for different equipment. Besides, orig-
inal audio signals were mixed with industrial noise to compose
three levels of Signal to Noise Ratio (SNR): 6 dB, 0 dB, and
−6 dB. The dataset consists of 18, 019 audio samples per SNR
with 10 seconds duration. The proportion of abnormal samples
varies between 11.5% to 26.58% per machine type.

We evaluate the binary classification considering imbal-
anced data in the test set. We use the AUC-ROC and the
F1-Score metrics to assess the proposal performance. In this
case, we do not use the accuracy metric as this could hide a
biased classifier. The AUC-ROC plots the True Positive Rate
(TPR) against the False Positive Rate (FPR). The resulting
value falls between 0 to 1, with higher values indicating better
performance.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1− Score =
2× precision× recall

precision+ recall
(8)

We also analyze the classifiers using the F1-Score. This
metric considers precision and recall in Equations 6 and 7,
respectively. The True Positive (TP) is the number of correct
classifications of class 1, the True Negative (TN) is the number
of correct classifications of class 0, and the False Negative
(FN) is the number of incorrect classifications of class 1.
Whereas lower precision values indicate more incidence of
false positives, lower recall values indicate more incidence of
false negatives. The F1-Score is a harmonic mean, aiming to
find a balance between precision and recall (Equation 8).

A. Methodology

We conduct experiments using the Librosa library [15] to
extract the spectral features from the original sounds, the
Scikit-learn to implement and evaluate the algorithms [16], and
the ML-Ensemble to build the Super Learner [17]. Figure 2



TABLE I: Hyperparameters values for base learners.

Algorithm Hyperparameter Value
AB n_estimators 50

KNN n_neighbors 5

SVM
C 1

kernel rbf
gamma scale

RF

n_estimators 100
criterion Gini

max_features sqrt
min_samples_split 2
min_samples_leaf 1

shows the methodology of this paper. After the spectral
features extraction, the dataset is split into train and test sets.
We consider the detection of urban sounds from ESC-50 and
abnormal sounds from the MIMII dataset as the interest tasks,
setting these classes as class 1 in the binary classification.

Fig. 3: Time per number of K-folds in cross-validation during
Super Learner model training in ESC-50 dataset.

Fig. 4: The AUC in the test set of the Super Learner model
vs. the number of K-Folds in the training step for the ESC-50
dataset.

We reserved 70% of the dataset as the train set and the
remaining data as the test set. To circumvent the imbalance
between classes, we use the SMOTE in the train set until
both classes have an equal number of samples. This technique
randomly selects a sample from the minority class and their
N -nearest neighbors. Then, a neighbor is chosen randomly,
and a synthetic sample is created between both samples in the
feature space. We use N equal to 5 in our experiments. In
the Data Transformation step, the standardized function from

(a) AUC.

(b) F1-Score.

Fig. 5: AUC and F1-Score comparing Super Learners and the
base learners for ESC-50 dataset.

the Scikit-learn library is applied to the samples to remove the
mean and scaling to unit variance.

In the Model Training step, the base learners and the Super
Learner are trained, and the optimal weights of the Super
Learner are obtained. The test set is used to evaluate the
performance of the models by using the selected metrics
previously explained.

The hyperparameters used for base learners are in Table I.
We adopted the default defined in the Scikit-learn library since
hyperparameter tuning is out of the scope of this paper.

B. Results

We run our experiments in Google Colab with Intel(R)
Xeon(R) CPU @ 2.20GHz and 12GB of RAM. We first
analyze the increase in training time with the number of K

Fig. 6: Time per number of K-folds in cross-validation during
Super Learner model training for the MIMII dataset.



(a) SNR = 6 dB. (b) SNR = 0 dB. (c) SNR = −6 dB.

Fig. 7: The AUC in the test set of the Super Learner model vs. the number of K-Folds in the training step for the MIMII
dataset.

folds to build the Super Learner model. Figures 3 and 6
shows that the increase of time needed to train the model is
approximately linear in both datasets. Even though this is an
offline approach, reducing this time can impact online systems
and systems that run updates from time to time.

C. ESC-50 dataset
Figure 3 evidences the impact of the K in the training time

and the Figure 4 the impact on the AUC in the test set. We
consider the AUC improvement when K = 10 low relative to
the increase in the training time. Thus, we adopt K = 3 in
next evaluations.

The error bars in the Figure 5 show the 95% confidence
interval. In Figure 5a, the AUC obtained by the Super Learner
(SL) in the test set is compared with the base learners. The
SL reaches a value near 0.85, being higher majority base
learners as AB, NB, and SVM. In Figure 5b the F1-Score
shows similar result. In both cases, RF is the best choice to
classify environmental sounds.

D. MIMII dataset
We analyze the impact on the AUC in the test set as shown

in Figure 7 to confirm the choice of K = 3 as in the ESC-50
dataset experiments. Since the valves, represented by the red
dashed line, are highlighted by the lower value, we prioritized
this equipment to choose the value of K. However, in the most
challenging SNR, SNR=−6 dB, in Figures 7b and 7c the value
obtained with K = 3 is higher, being approximately 0.75 and
0.6 simultaneously.

Figure 8 shows the AUC obtained by the Super Learner and
the base learners for the types of equipment in the different
SNRs. The NB, in this context, is used as a baseline as
this is a weak classifier. With SNR = 6 dB, except for the
valves, we observe that the SL is near the maximum value
for the metric. This is expected since most algorithms obtain
similar performance. For valves, while SL reaches 0.8, the
SVM is greater than 0.9. Nevertheless, the performance of the
ensemble method exceeds the majority of the base learners
selected. This behaviour can also be observed for valves and
slide rail in SNR = 0 dB in Figure 8b, and valve, fan, and
slide rail for SNR = −6 dB in Figure 8c.

(a) SNR = 6 dB.

(b) SNR = 0 dB.

(c) SNR = −6 dB.

Fig. 8: AUC comparing Super Learners and the base learners
for MIMII dataset.

We analyse the F1-Score in Figure 9. The SL is the best
algorithm for pumps in all the SNRs in Figures 9a, 9b, and 9c



(a) SNR = 6 dB.

(b) SNR = 0 dB.

(c) SNR = −6 dB.

Fig. 9: F1-Score comparing Super Learners and the base
learners for MIMII dataset.

reaching values higher than 0.75 in the lower SNR, and for
fan in the last two SNRs. Nevertheless, the SL increases the
AUC value obtained in most of the algorithms. Since in some
scenarios the accuracy of SVM is much higher than that of
other algorithms, SL can increase the correct classifications of
the other base learners.

V. CONCLUSION

In this paper, we propose the use of a Super Learner ensem-
ble method to sound events classification. The performance
was compared with the performance of the base learners
selected by application in related works. Our analysis shows
Super Learner reached values for AUC and F1-Score near the
best algorithm in the majority of results analyzed. Thus, the
method can be applied in other scenarios without previous
comparisons between algorithms candidates.

In future works, we will investigate the impact of tunning
the hyperparameters in base learners and change the meta
learner.
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