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Abstract—Federated learning is an approach to training ma-
chine learning models without the dependency on centralized
data, ensuring privacy and security for data owners. This
approach can be helpful in applications based on medical data,
such as electrocardiograms used to identify arrhythmias. This
work analyses the feasibility of federated learning in a distributed
model of arrhythmia detection based on Convolutional Neural
Networks (CNNs). We employ a model based on implementations
present in the literature, using its centralized and distributed
versions trained on the MIT-BIH dataset. Our results show
that the distributed model achieves a recall of 83.14% and a
precision of 58.47% in the ideal scenario. Considering a non-
independent and non-identically distributed (non-IID) scenario,
the model achieves a recall of 85.1% and a precision of 57.34%.
For comparison, the centralized model achieves a recall of 82.01%
and a precision of 53.03%. Consequently, these results indicate
that federated learning is a feasible option for developing a
distributed model for arrhythmia detection.

I. INTRODUCTION

Machine learning models, especially deep learning ones,
generally require a large amount of data to perform well [1].
However, the data can be sensitive or private, such as medical
or personal data. Hence, data owners resist providing their data
for training and improving machine learning models [2].

Traditionally, machine learning employs centralized tech-
niques in which client data is sent to a central server. The
server uses the data to train a model. These centralized models
have access to all client data, which can be a problem in
the case of private and sensitive data. Distributed learning
techniques can help solve this problem. In this case, client data
is not sent directly to the central server. In general, each client
performs computations locally, and only the result of these
computations is sent to the server. In this context, Ramage et
al. proposed Federated Learning [3]. This approach keeps data
distributed across client devices and uses a shared model that
aggregates information on a centralized server. In federated
learning, each client receives the current version of the global
model parameters from the server and improves them locally
using its own data for training. Then, the clients send the
local model’s parameters to the server, which aggregates them,
generates a shared global model and send its parameters again
to the clients. This procedure is performed for several rounds
to increase model performance while keeping data privacy.

The detection of cardiac arrhythmias is an area that can
benefit from federated learning [4], [5]. An arrhythmia is
a change in heart rate that can indicate conditions such as

myocardial infarction, ventricular tachycardia, and atrial fib-
rillation. Usually observed by highly specialized professionals,
these changes can be identified through neural networks [6],
[7]. As medical data is private, federated learning can ensure
the security and privacy of the data provided by clients
while providing a global model that can be used to detect
arrhythmias efficiently.

With the adoption of federated learning, data may not be
independent and identically distributed (non-IID) among the
clients. For example, considering each client is a hospital in a
given country, the proportion of patients with arrhythmia may
be different among their populations. The scenario in which
the data is non-IID presents a challenge for using federated
learning. In this case, there may be a performance loss if
the parameter aggregation algorithm does not consider the
difference in data distribution between clients [5], [8].

This work seeks to analyze the feasibility of federated
learning applied to an arrhythmia detection model in electro-
cardiograms. Therefore, the main advantages and challenges
of using such an approach are analyzed, exploring different
scenarios of data distribution among clients, emphasizing good
practices for working with such data in a federated scenario.

The model for arrhythmia detection utilized in this work was
developed based on convolutional neural networks (CNNs)
models presented in the literature [6], [7], [9] based on the
recommendations of the Association for the Advancement
of Medical Instrumentation (AAMI) for the development of
computational models for arrhythmia classification [10].

The MIT-BIH Arrhythmia Database (MIT-BIH Arrhythmia
Database) [11] was used for training and evaluating the model,
and a new division of the dataset was proposed, in order to
avoid data from the same patient being used for training and
testing at the same time.

In the ideal case, where the data is independent and identi-
cally distributed (IID), the model based on federated learning
showed recall of 83.14% and a precision of 58.47%. In the
non-IID scenario, the recall was 85.1% and the precision was
53.03%. The centralized model, used for comparison, showed
recall of 82.01% and a precision of 57.34%. It should be noted
that the model proposed in this paper considers ideal network
conditions, in which all clients are always available to the
server and no communication failures occur.

This paper is organized as follows. Section II gives an
overview on federated learning. Section III reviews related



work. Then, Section IV introduces the methodology, while
Section V presents the obtained results. Finally, Section VI
presents the conclusion and next steps.

II. FEDERATED LEARNING

One of the most used algorithms for federated learning is
Federated Averaging, which is an extension of a federated
version of SGD (Stochastic Gradient Descent) called Federated
SGD [2]. In Federated SGD, a fraction C of clients is
selected in each round of communication. Each selected k
client computes the gradient, ∇θJ(θ), from the loss function
J(θ) [2]. Each client sends this computed gradient to the
central server, which aggregates them through the equation:

wt+1 = wt − α

K∑
k=1

nk

n
∇Jk(wt), (1)

where w represents the model parameters, n is the size of the
whole dataset, K is the number of selected clients, nk is the
size of the client-k’s local dataset, and α is the learning rate.

An equivalent way of updating the parameters is achieved
with the clients performing a SGD (or GD) step and the server
aggregating the results via a weighted average [2]:

wt+1 =

K∑
k=1

nk

n
wk

t+1, (2)

where

wk
t+1 = wt − α∇Jk(wt). (3)

With the aggregation algorithm written this way, it is possible
to perform more than one training step locally before sending
the weights to the server [2]. This algorithm is called Feder-
ated Averaging (FedAvg) and has three main parameters: the
fraction of clients selected at each round C; the number of
local epochs E; and the size B of the minibatch, used for
updating the client parameters.

III. RELATED WORK

With the dissemination of the first public arrhythmia
databases, such as MIT-BIH, several works started to be
developed [11]. However, as observed by Luz et al., many
of these works use data from the same patient in the training
and in the test sets at the same time [12]. This is inconsistent
with real-world situations, since data from new patients would
never have been seen by a detector. Many of the works done
this way have accuracy above 95% [13]. Chazal et al. [14]
proposes a split in the dataset to separate patients for training
and test, resulting in a more realistic scenario.

Many works on arrhythmia classification or detection, use
Convolutional Neural Networks (CNNs) [6], [7], [15]. Hannun
et al. [7], for example, proposes a network of 34 layers,
three of which are convolutional ones. The authors collected
64,121 electrocardiogram recordings from 29,163 patients. A
committee of cardiologists performed annotations on each

recording. The authors split the dataset so that no intersection
of patients occurred between the training and test sets. And,
for evaluation, another committee of cardiologists classified
the beats, to serve as a comparison for the classifier results.
The proposed model obtained an accuracy of 80.9% and
outperformed the independent cardiologists (75.1%).

Due to the advantages of federated learning for medical
data, some works incorporate it into the task of arrhythmia
classification. In the proposal of Sakib et al. [4], the devices
on edge nodes receive individual client data, perform local
training and share the parameters with the central server and
the other edge nodes. The authors split the MIT-BIH dataset in
a way that no intersection occurs between the training and test
data. The case of non-IID data among clients is not explored.

Gao et al. [9] perform an evaluation of federated learning
applied to Internet of Things (IoT) devices. The evaluation
uses a one-dimensional CNN and the arrhythmia detection
problem as a case study. In the paper, IID and non-IID cases
are evaluated. Meanwhile, the data is divided into the test and
training sets in a randomized manner. This division does not
necessarily guarantee that the patients in the training set are
different from those in the test set.

Zhang et al. [5] proposes a strategy to optimize federated
learning for non-IID data. In this strategy, a fraction of client
data is shared with the server to form a global data distribution.
The server performs training rounds and sends the updated
weights to the clients. From their local data, the clients repeat
the same process and send the updated weights to the server.
This strategy, according to the authors, does not hurt the
privacy of federated learning because the server is considered
a trusted entity [5]. However, since a fraction of clients’
data is shared with the central server, privacy is partially lost
concerning the server, reducing one of the main advantages of
using federated learning.

Ma et al. [8] propose a federated learning technique com-
bined with feature alignment. In their proposal, the local
training uses a feature alignment module, in which CNNs are
used to extract the features from the global model and the
local model. The final model for each client is generated in a
way that minimizes the distance between the global and local
features. Overall, the technique aims to decrease the impact
of the differences between the local and global datasets.

Raza et al. [16], use transfer learning and Explainable Ar-
tificial Intelligence to build a model that ensures data privacy
and security in the IoT context. The model consists of two
modules: the federated learning module and the Explainable
AI module. CNNs are used in the federated module to classify
electrocardiogram data. This module uses transfer learning as
a way to optimize the learning process. Then, the Explainable
AI module is used to facilitate the interpretation of the
classifier results and expedite physician decision-making. The
authors use Raspberry Pi devices for testing with the MIT-
BIH database and highlight the impact of data unbalance on
the classification problem [16].

Our work differs from the others by analyzing the feasi-



bility of federated learning for arrhythmia detection with no
intersection between training and test sets and considering the
non-IID case. Also, we employ a public database. Hence, a
new division of MIT-BIH is proposed to avoid the intersection
of patients in the test and training sets. Table I summarizes the
difference between this work and the others in the literature.

TABLE I
RELATED WORK INVOLVING FEDERATED LEARNING

Paper Public Database

Training and
Test sets
with no
intersection

Non-IID
Experiment

Sakib et al. [4] Yes Yes No
Gao et al. [9] Yes No Yes

Zhang et al. [5] Not informed No Yes
Ma et al. [8] No Not informed Yes

Raza et al. [16] Yes No No
This work. Yes Yes Yes

IV. METHODOLOGY

This work uses the MIT-BIH Arrhythmia Database [11],
developed with electrocardiogram data from 47 patients, col-
lected between 1975 and 1979. The dataset has 48 recordings
of approximately 30 minutes, sampled at 360 Hz. From these
recordings, 23 were generated by randomly choosing patient
samples collected at Boston’s Beth Israel Hospital, to provide
waveforms that routinely appear in clinical examinations.
These 23 recordings are provided in files numbered 100 to
124. The other 25 recordings were generated by choosing
patients from the hospital whose samples contain clinically
rare but important arrhythmia phenomena and are provided in
files numbered 200 through 234. The beats in each recording
were found by detecting the R-peaks of the QRS complex [17].
The QRS complex is a combination of 3 deflections present
in an ordinary ECG that allows you to graphically identify
abnormalities in the ECG. The R-peak is the point with the
maximum amplitude of the QRS complex. Each peak was
classified by two cardiologists.

AAMI developed a standard [10] for experiments involving
the classification of arrhythmias by computer models. This
standard aims to provide a “common ground” for different
works in the field and also aims to minimize errors and
biases. In this standard, it is recommended to use the MIT-BIH
database, excluding 4 recordings that have problems in the
representation of the beats. In addition, AAMI recommends
that training and testing sets be created in such a way that
samples from the same patient are not used simultaneously
for training and testing [10].

In this work, beat signals are divided into two classes.
Class “0” represents the beats considered normal and class “1”
represents arrhythmias. The dataset is extremely unbalanced
since about 90% of the beats belong to the “0” class. For each
recording, the beats were represented using a 2-second window
centered on each R-peak. The beat signals were passed through

a low-pass filter to remove unwanted noise above 60 Hz. Each
signal was normalized using min-max normalization.

Chazal et al. [14] propose to split the dataset into the DS1
and DS2 sets. This division uses data from one patient only
for training or testing (i.e. never both simultaneously). Also,
it takes into account the distribution of the classes, trying to
maintain a balance between sets DS1 and DS2.

The split proposed by Chazal et. al [14] has 54% of the
data in DS1, used for training, and 46% of the data in DS2,
used for testing. To increase the amount of data available for
training, we propose splitting the dataset into the DS3 and
DS4 sets. Table II presents the sets DS3 and DS4 and their
associated files, according to the numbering of MIT-BIH. This
proposed split seeks to replace DS1 and DS2 so that 75% of
the dataset is used for training and the rest for testing. As with
the splif from Chazal et al., the recordings are arranged into
sets DS3 and DS4 to keep the distribution of classes close to
the distribution of the original dataset.

TABLE II
RECORDINGS PRESENT IN DS3 AND DS4 SETS.

DS3 DS4
100 103 101 106 108 109 105 114 116 124
112 115 118 111 113 117 200 203 209 213
121 123 119 122 201 205 214 222 231 234
207 208 215 220 223 230
202 210 212 232 233 228
219 221

Since the dataset is extremely unbalanced between classes
“0” and “1” the technique of random oversampling was applied
to the class 1 samples of the training set (DS3) to circumvent
the unbalancing problem.

The neural network proposed in this paper has two one-
dimensional convolutional layers with kernel of size 21, plus
leaky RELU activation layers, dropout layers, pooling layers of
size two, a batch normalization layer and two fully connected
layers. The dropout and the batch normalization layers are
used as a form of regularization. L1 regularization and the
weight decay parameter are also used. The loss function is
cross entropy combined with a sigmoid layer. The optimizer
is SGD with a 0.9 momentum [18]. The learning rate, chosen
after empirical tests, is 0.01. The centralized model serves as
the basis for comparisons of the results of the distributed cases.
Local training was performed for 100 epochs and with batches
of sizes 16, 128 and 512.

The experiments with distributed models are divided into
two cases. In the ideal case (IID), all clients have the same
data distribution. In the other case, the clients have different
data distributions from each other (non-IID). For the IID case,
the data from the DS3 set was distributed equally among the
clients so that they all had the same distribution. For the
non-IID case, the beats from the DS3 set were distributed
among the clients by patients so that each client has a
different distribution of data. In both scenarios, the tests are
implemented using five independent clients that communicate
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Fig. 1. Recall for the centralized model.

with a central server considering optimal network conditions.
The clients perform training for 10 local epochs and send

the obtained parameters to the server. Each iteration of this
process is called a communication round. In all cases, 100
communication rounds are performed between clients and the
server. We employ the federated learning algorithm FedAvg,
available through the Flower [19] library. All experiments use
Python [20], with the libraries PyTorch [21], Scikit-learn [22],
Pandas [23], Numpy [24], and Flower.

V. RESULTS

Table III shows the recall and precision values obtained for
each batch size for the centralized model. The results show that
the performance improves as the size of the batch increases.
This effect is observed in other works involving CNNs [25].
However, an increase in the size of the batch results in a longer
training time. Thus, it is necessary to use the most suitable
batch be used for the available computational infrastructure.

TABLE III
RESULTS FOR THE CENTRALIZED MODEL.

Batch Recall Precision
16 80.37% 43.37%
128 80.29% 58.03%
512 82.01% 57.34%

Figure 1 presents the recall obtained over the epochs, for
the centralized model. The precision curves present similar
behavior and have been omitted for conciseness. Each curve
represents the results obtained for a different batch size “B”.
The figure shows that a smaller batch results in more noise in
the obtained recall. This behavior is expected in SGD, since,
for a smaller batch, there is more noise in the computation and
more steps are required to minimize the cost function. Even for
the largest batches, the result obtained is noisy and the model
has difficulty reaching convergence. It can be explained by the
large unbalance between the classes of the problem.

Figure 2 presents the recall results obtained with ten local
epochs per client for the distributed model in the IID case. We
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Fig. 2. Recall for the distributed IID case.
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Fig. 3. Precision for the distributed IID case.

also plot the recall with a batch of size 512 from Table III for
comparison. The figure shows that the recall values with the
larger batches are better than that the ones with the centralized
model. This behavior indicates that a side-effect of federated
learning can be to improve the model’s performance. This
indicates that federated learning may result in a regularizing
effect due to the aggregation of the weights.

Figure 3 exposes the precision or the IID case. We also plot
the centralized value for a batch size of 512, from Table III,
as a reference. Comparing this figure with Figure 2, we can
note a tradeoff between recall and precision. This tradeoff
is more evident in the larger batches. Note that, different
from the centralized model, a large batch size leads to a
drop in precision as the number of rounds increases. One
explanation for this effect is that a larger batch size may
require adjustments to the learning rate to perform as expected.
This effect may indicate that there is a given number of
rounds that results in the best model performance. Hence, an
interesting research direction is to propose a federated learning
algorithm to explore this tradeoff.

For the scenario in which the data is non-IID, the recall,
precision results are displayed in Figures 4 and 5, respectively.



0 20 40 60 80 100
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0
Re

ca
ll

B=16
B=128
B=512
Centralized

Fig. 4. Recall for the distributed non-IID case.
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Fig. 5. Precision for the distributed non-IID case.

The effects observed in the ideal scenario occur with greater
intensity in this scenario: noise is larger with smaller batch
size and there is a tradeoff between recall and precision.
Thus, despite the better results for recall, the precision drops
dramatically when compared to the IID case. This behavior
can be explained by the fact that the non-identical distribution
between clients causes the parameters not to converge to the
optimal values. This behavior occurs since the aggregation
algorithm, FedAvg, does not take into account how far the
distribution of a client is from the overall distribution of the
data. Furthermore, the oversampling of the minority class has
a negative effect compared to the centralized case and the IID
federated scenario. Since some clients do not have enough
arrhythmia samples compared to the global data, oversampling
on these clients results in a local model that suffers from
overfitting and that undermines the global model.

Figures 6 and 7 show the recall and precision results for
the original and the reduced oversampling rate, with a batch
size of 512. The original rate replicates the minority samples
by a factor of 9, while the reduced rate replicates by a factor
of 4. The behavior observed in this experiment indicates that
adaptations to the local model may be needed to ensure the
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Fig. 6. Recall for the distributed non-IID case with a 512 batch size, using
different oversampling rates.
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Fig. 7. Precision for the distributed non-IID case with a 512 batch size,
using different oversampling rates.

best result from the global model considering the balance
between recall and precision. In a scenario in which the global
statistics of the problem are known, such as the problem of the
incidence of arrhythmias in a population, these small changes
to the local model are feasible because one has a priori
knowledge of the statistics of the global data, even without
direct access to the data itself.

VI. CONCLUSIONS

In this work, we have analyzed the feasibility of a dis-
tributed model for arrhythmia detection using federated learn-
ing. We have performed experiments with the MIT-BIH dataset
to consider the ideal case where the data is IID and the more
realistic case with non-IID data. The centralized model was
used as a reference for comparisons.

With the results presented in this paper, it is possible
to conclude that it is feasible to develop a computational
model based on federated learning for the identification of
arrhythmias in electrocardiograms. In the ideal scenario, the
distributed model has presented compatible and even better
results than the centralized model. This indicates that, in some



cases, federated learning can have the side effect to increase
detection’s performance.

The non-IID scenario represents a challenge in the de-
velopment of federated learning-based arrhythmia detection
models. This challenge is because clients with data distributed
in very different ways lead to a model that does not fit the
global distribution of the data well. However, even in this
scenario, small changes in the local models, such as reducing
oversampling, generate results comparable to those obtained
in the IID scenario. Furthermore, such problems can be solved
using other aggregation algorithms, such as the federated
version of adaptive optimizers [26].

In a nutshell, one of the challenges of federated learning lies
in using aggregation algorithms that enable better performance
in non-IID data scenarios. Thus, performance analysis and the
development of other algorithms that perform better in non-
IID scenarios is an interesting direction for future work. In
addition, the development of strategies that adjust the clients’
local models independently is another possible direction to
provide a better global model.
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