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Abstract—Wi-Fi datasets play a crucial role in wireless net-
working research. They are often the result of extensive, demand-
ing measurement campaigns. Unfortunately, researchers lack a
clear assessment of where to place probes and when they have
collected enough data and still obtain a representative view of the
environment. Our goal is to make this process more efficient while
preserving its rigor. We propose a framework that incorporates
a calibration phase to evaluate the representativeness of a
dataset. To this end, we use Earth Mover’s Distance (EMD) as
a similarity metric to quantify data distribution differences and
avoid redundant data captures. Through experimental campaigns
in three distinct environments, we demonstrate that achieving a
significant reduction in data collection effort is possible without
compromising measurement reliability.

Index Terms—Wi-Fi, data collection, experiment design.

I. INTRODUCTION

Robust data collection is a cornerstone of scientific research,
engineering, and technological development [1]-[3]. The qual-
ity and scope of datasets directly influence the accuracy and
reliability of experiments. Data collection often constitutes a
significant part of the research effort in many fields, includ-
ing mobile communications, signal processing, and machine
learning applications. This paper focuses on link-quality Wi-
Fi data collection and seeks to answer the following question:
How to collect Wi-Fi data with reduced effort while keeping
the rigor necessary for reliable experiment conclusions?

Collecting datasets often requires substantial resources, in-
cluding time to run the experiments, potentially expensive
equipment, and personnel effort. Such hurdles often prevent
researchers from conducting experiments multiple times or
testing various conditions. As a result, many of them unthink-
ingly restrict data collection to a narrow set of scenarios, which
prevents the generalization of the findings. This limitation
raises an important question: Can one collect high-quality
datasets in a shorter time frame and/or with fewer collection
points? We explore this question in the context of Wi-Fi packet
captures, where the goal is to achieve reliable results while
avoiding extensive and time-consuming data collection.

Wi-Fi data collection typically relies on devices that capture
Wi-Fi packets, playing the role of probes. Nevertheless, the
effectiveness of this probing process depends on various
factors, including the chosen distances for placing probing
devices and the amount of data captured. Traditionally, Wi-
Fi data collection efforts aim to maximize the dataset by
collecting data at distances as fine as possible and running
experiments for extended durations. Although thorough, this
approach may not always be necessary to achieve the desired
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Fig. 1. Distribution of RSSI measurements for 3-second, 3-minute and 30-
minute data collection campaigns.

outcome, particularly when a balance between resource use
and data quality is required.

RSSI (Received Signal Strength Indicator) is a good exam-
ple of Wi-Fi data serving several purposes, such as network
performance monitoring, localization refinement, handover
assistance, interference detection, and energy optimization at
devices. However, RSSI values exhibit significant fluctuations
due to the varying channel conditions, making individual
measurements unsuitable for characterizing the channel [2].
Instead, a more representative approach involves analyzing the
distribution of RSSI values over multiple measurements.

Fig. 1 presents the RSSI distributions from data collection
at the same distance X from the source but for three different
durations: 3 seconds, 3 minutes, and 30 minutes. With 3
seconds of data collection, the observed RSSI values exhibit
noticeable fluctuations. As the measurement duration extends
to 30 minutes and more packets are captured, the RSSI
distribution converges toward a more stable representation
of the underlying signal characteristics. However, while 30
minutes of data collection may seem comprehensive, it can be
an overkill compared to 3 minutes of data. By analyzing these
distributions, we can see that a more targeted approach to data
collection — one that carefully balances time and information —
can be more efficient while still providing the necessary level
of detail for the experiment.

In this paper, we examine the balance between resource
utilization and data thoroughness in Wi-Fi data collection and
propose a method to assess the feasibility of reducing data
collection while preserving the reliability of results. Instead
of relying on single RSSI values, we analyze RSSI distri-
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Fig. 2. Typical setup for Wi-Fi data collection.

butions to characterize the wireless channel, using the Earth
Mover’s Distance (EMD) as a measure of similarity between
distributions. Based on EMD values, we apply clustering
to identify measurement distances that exhibit similar signal
characteristics and determine the amount of data needed at
each distance to construct a representative distribution within
a given EMD threshold. We evaluate the methodology across
three distinct environments — an office, a parking lot, and a
campus setting — covering different channel conditions. Our
findings demonstrate that comparing RSSI distributions with
an appropriate metric enables the grouping of similar distances
into clusters, which reduces the number of distinct measure-
ment points needed. We are also able to determine how many
Wi-Fi packets we need to capture, in each distance, to build
a representative RSSI distribution that meets a specified EMD
threshold. Our methodology enables researchers to reduce data
collection efforts in an informed manner while maintaining the
necessary rigor for experimental reliability. In addition, we
offer insights into the refinement of data collection strategies
to assist researchers in designing Wi-Fi experiments.

The remainder of the paper is structured as follows. In
Section II, we define the problem of Wi-Fi data collection
regarding balancing resource constraints while maintaining
data quality. In Section III, we discuss the methodology used
to evaluate data collection strategies. In Section IV, we instan-
tiate the methodology proposed and analyze the concise data
collection over three different scenarios. Section V provides
an overview of the related work. Finally, in Section VI, we
conclude the article and discuss future research.

II. PROBLEM STATEMENT

Wi-Fi data analyses usually revolve around received sig-
nal strength indicator (RSSI) [1], channel state information
(CSD) [3], interference patterns [4], and multipath effects [5].
A popular strategy to assess such information is to rely on
probe devices (sniffers), which passively monitor Wi-Fi traffic.
Fig. 2 shows the data collection process, where a probe records
packet transmissions from a source X meters apart.

Suppose we want to characterize a wireless channel by mea-
suring the RSSI of Wi-Fi packets. During the data collection
campaign, we must decide at which distances from the source

we should measure and how many packets each sniffer should
capture in each distance to obtain a representative distribution
of RSSI values. A common approach is to arbitrarily select
probe positions based on intuition and collect data for as
long as possible [6]. Nonetheless, this approach may not
always be necessary or efficient, as different experiments
require different levels of data refinement. The key challenge
is collecting data comprehensively while limiting the effort
and maintaining experimental rigor.

In real-world scenarios, data collection depends on factors
such as the duration of the event of interest, project require-
ments, and limited access to collection sites. For instance,
Barrachina-Mufioz et al. studied Wi-Fi channel bonding inside
the Camp Nou stadium during a football match, facing both
limited experiment time and restricted access to the environ-
ment [7]. The experimental design must thus carefully balance
these constraints to ensure data quality and feasibility.

Essential choices in Wi-Fi data collection involve configur-
ing probes and accounting for practical constraints.
Configuration parameters:

o Sniffer placement: Determining the positioning of § snif-

fers to maximize data representativeness.

o Amount of packets: Establishing how many packets, N,

each sniffer should capture to ensure sufficient informa-
tion to characterize the environment.

Constraints:

o Representativeness: The collected RSSI values should
accurately capture the wireless signal patterns, adhering
to the level of precision required by the experiment.

e Data collection effort:

— Sniffer availability: The available hardware might limit
the number of sniffers.

— Limited data capture: Accessibility to the target area,
application duration, and sniffers’ storage capacity may
limit the number of packets a sniffer can capture.

The final goal is to determine the appropriate sniffer place-

ment and number of packets to collect, ensuring that the
captured data reflects the precision required for the experiment
while considering the data collection effort.

III. CONCISE WI-FI DATA COLLECTION

We propose a methodology that reduces the effort of
collecting Wi-Fi data while ensuring the necessary rigor for
experimental analysis. The initial phase, conducted only once,
considers the finest level of distance resolution and captures
the highest volume of packets possible in the experiment
to determine the necessary data collection parameters. After
this initial step, subsequent experiments — such as monitoring
variations across different days — can be conducted more effi-
ciently with fewer probes and a reduced volume of collected
data while maintaining reliable results.

A. Metric selection

To characterize the Wi-Fi channel using RSSI distributions,
we need a metric that effectively quantifies the differences



between these distributions while being appropriate for RSSI
measurements. Traditional measures such as Kullback-Leibler
(KL) divergence [8] and Jensen-Shannon (JS) divergence [9]
are commonly used for comparing probability distributions.
Nevertheless, when applied to discrete values, these metrics
rely on the degree of overlap between distributions, making
them less suitable for Wi-Fi data, where slight RSSI variations
may not reflect significant differences in channel conditions.

For example, consider two data collection points, A and
B, in which the resulting RSSI distributions correspond to
Dirac delta functions é(x — A) and 6(z — B). If A = —20
dBm and B = —21 dBm, they reflect nearly identical channel
conditions, yet KL and JS divergences treat them as entirely
distinct due to their lack of overlap. Conversely, if A = —20
dBm and B = —70 dBm, these metrics still consider them
equally dissimilar, failing to reflect the meaningful difference
in channel quality.

To address these limitations, we employ the Earth Mover’s
Distance (EMD) [10], which measures the minimum effort
required to transform one distribution into another. Unlike
divergence-based metrics, EMD considers both magnitude
and distance, making it more suitable for comparing RSSI
distributions. Mathematically, EMD is an efficient metric in
transportation problems [11], where the goal is to minimize the
cost of shifting probability mass from one distribution to an-
other. By using EMD, we ensure a better comparison between
measurement positions to reflect real-world signal variations,
enabling more informed decisions on data collection.

The EMD is defined as the solution to the transportation
problem [11], a bipartite network flow problem, which mini-
mizes the total transportation cost:

EMD(P, Q) = min » _ ¢;; fij, (1)
i

where c;; represents the cost (distance) of moving mass from
element 7 in distribution P to element j in distribution (), and
fi; represents the flow between 7 and j. The EMD minimizes
the total cost of transporting mass between the distributions,
and the resulting value is used as the similarity measure.

B. Calibration phase

In this phase, we conduct a single experiment with the maxi-
mum data collection effort we intend to make, aiming to obtain
the most detailed data possible. The idea is to collect as many
packets as possible in the finest feasible granularity regarding
probe position. This provides a baseline for comparison with
reduced data collection strategies, ensuring we can evaluate
the impact of reducing the data collection process for the
subsequent experiments.

1) Collection distances: We use the calibration phase data
as a baseline to identify the distances between the probe
and the source that are representative of the experimental
environment. We use EMD (see Section III-A) as the metric to
compare the RSSI distributions across different measurement
distances. The goal is to determine whether we can spatially

quantize the data collection by clustering distances that pro-
duce similar distributions during the calibration phase.

To achieve this, we compute the pairwise EMD between all
measurement positions from the calibration phase, forming an
EMD matrix where each element [é, j] represents the EMD
between the RSSI distributions of distances ¢ and j. While
numerous clustering algorithms exist, in this work, we employ
a greedy, sequential clustering approach [12]. This method
iteratively groups elements, ensuring that each new addition
to a cluster satisfies the desired maximum EMD with all
previously included elements.

2) Dataset volumes: Another important consideration is, at
each distance, how much data we should capture to reach a cer-
tain level of reliability. We analyze the maximum divergence
in RSSI distributions for a given packet count using a sliding
window approach with EMD. Let D be the dataset from the
calibration phase, consisting of the RSSI measurements, where
|D| = S denotes the total number of samples.

1) Window selection: For each position, we define a win-
dow of size W with W < S, representing the number of
packets we want to evaluate. If this number is sufficient
for reliable data, we aim to reduce the data collection in
that position to this window size. Each window results in
a subset d; y of the dataset D in the step ¢:

D= {dt,W; dt+1,Wa e 7dt+W—l,W}a

where 1<t<S—-W.

2) Sliding window comparison: We slide this window
across the dataset with a step size of 1, comparing every
pair of overlapping windows using EMD. For each pair
(di,w,dv.w), where t < t/, we compute:

EMD(d w, dp,w ).

3) Computation of maximum EMD: After iterating
through all possible window pairs, we define the max-
imum EMD for the given window size W as:

EMD o (W) = max EMD(dyw , dpr,w).

4) Tteration over different window sizes: We repeat steps
1, 2, and 3 for different values of W to analyze how the
maximum EMD varies with various volumes of data.

This process above measures, in a pairwise fashion, the
maximum divergence between distributions when capturing
W packets for a certain distance separating the source and
the probe. In other words, we can limit the data collection to
W packets and still obtain an accurate representation of the
link — but with less effort.

IV. EVALUATION

Having established the methodology, we now instantiate
it in an experimental Wi-Fi data collection scenario. By
analyzing different environments, we assess the impact of
the distance between the source and the probe, as well as
data volume reduction, ensuring that the experiment does not
require more effort than necessary.
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Fig. 3. Clustering of data collection positions according to the maximum EMD.

A. Experimental scenarios

We consider three distinct environments with line-of-sight
(LoS) conditions. We follow exactly the setup of Fig. 2.
For each experiment, the source transmits 400 packets per
measuring point during the calibration phase, with a spatial
granularity of one meter. The three scenarios are:

o Office: An indoor corridor at Sorbonne Université. Mea-
surements were taken during working hours, with nearby
offices occupied, introducing potential interference from
human activity.

« Parking: A basement parking lot at Sorbonne Université,
characterized by an isolated environment with no cellular
or Wi-Fi connectivity. This setting represents a remote,
interference-free scenario.

« Campus: An outdoor location in the courtyard between
two towers at Sorbonne Université, offering an open-air
propagation environment with potential reflections and
diffraction effects from surrounding structures.

B. Representative distances

We begin the methodology instantiation by determining the
distance of sniffers in the experimental environments. To this
end, we use the EMD metric to cluster measurement distances
based on their RSSI distributions, adjusting the maximum
EMD threshold to control the allowed intra-cluster divergence.
We consider the maximum EMD as a reference value, as
the objective is to ensure that each cluster implies a single
measurement point in future experiments.

Fig. 3 illustrates the clustering process. The maximum
EMD appears on the y-axis and the measurement positions
(in meters) on the z-axis. Each horizontal bar represents a
maximum EMD level, ensuring all clusters maintain an EMD
below or equal to that threshold. The cluster boundaries are
marked with lines within each bar, allowing us to identify
which sniffers belong to the same cluster. At the end of each
bar, we indicate the number of clusters for the corresponding
maximum EMD.

A maximum EMD of one means treating all data col-
lection points as equivalent, leading to a single cluster. If

the maximum divergence between data distributions across
positions remains within an acceptable error margin, a single
measurement may represent the entire environment (a single
cluster). Conversely, as we reduce our maximum EMD and
require more representative data of each position, the number
of clusters increases, as observed in Fig. 3. We do not show
the maximum EMD of zero, as it corresponds to the situation
where we would have one singleton cluster per measurement
position (25 clusters in our case).

We can determine sniffer distance based on experimental
constraints. Suppose we have a hardware constraint of only
five sniffers. In this case, we identify the smallest EMD that
results in five clusters (i.e., 0.25) and place one sniffer within
each. As an example, for the campus experiment, depicted
in Fig. 3(c), this means placing sniffers at positions covering
1-4 meters, 5-18 meters, 19-21 meters, 22-24 meters, and 25
meters. Thus, a representative set of measurement positions
would be 2, 12, 20, 23, and 25 meters from the source.

Alternatively, if the constraint is the maximum EMD, and
the maximum acceptable EMD is 0.20, we can determine the
minimum number of sniffers required to meet this threshold.
This would correspond to a minimum of eight sniffers in the
campus experiment. It is noteworthy that the data collection
requirements vary across different experiments. For the same
maximum EMD of 0.20, the office experiment requires 11
measurement points, the parking experiment needs 10, and
the campus experiment only requires 8.

C. Data volume to capture

As we continue our methodology, the next step is determin-
ing the number of packets to capture at each distance. Fig. 4 il-
lustrates how the maximum EMD (y-axis) varies as a function
of the number of captured packets (x-axis) for each evaluated
distance. A clear trend is that as the maximum EMD decreases
(i.e., the RSSI distribution for a given distance becomes more
refined), the number of captured packets increases. This allows
us to adjust the data collection process based on the desired
level of reliability. For instance, in the campus experiment,
based on the sniffer positions chosen in the previous step (at
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Fig. 4. Maximum EMD vs. Number of packets used in the experiment.

2, 12, 20, 23, and 25 meters), by analyzing the intersection of
the gray dotted line with the curves, as illustrated in Fig. 4(c)
for our example, we can determine the minimum number of
packets necessary to capture in each position to achieve the
same reliability in the measurements with a maximum EMD
of 0.25. In our example, the number of packets to collect
in the campus experiment is 50 for 2m, 35 for 12m, 40 for
20m, and 20 for both 23m and 25m. Following our approach,
for the chosen maximum EMD threshold, the total number of
collected packets across all distances amounts to 165.

This methodology not only assists our decision-making
regarding probe distance and the volume of data to capture
but also provides insights into the data capture process. By
analyzing Fig. 4, we notice that the parking experiment has
a more consistent behavior throughout different data volumes.
This observation might come from the fact that the parking
area is on the -5th floor of the campus, where interfering
signals are almost absent. Conversely, in the office experiment,
a distance of 12 m presents itself as an outlier, requiring
6 to 40 times more packets than other distances to achieve
the same data reliability of 0.25 EMD. This phenomenon
could indicate an artifact at that position that results in more
inconsistent measurements or even propagation effects related
to that distance.

D. Capture reduction and representativeness

Table I shows a more detailed analysis of the packet volume
reduction. For each selected maximum EMD value, the table
shows the average number of packets required (in the “average
packets” column) and the corresponding ratio A compared to
the baseline capture. For instance, in the Office scenario, with
a maximum EMD of 0.2, only 24.75% of the initially planned
packets need to be captured, reducing the data collection effort
by a factor of four. This implies that the time allocated for a
single experiment in the office could be reallocated to conduct
four separate experiments. It also raises an important issue
regarding what representativeness is in experimental work.

Representative data collection involves a trade-off between
data precision and experimental scope. With limited efforts,
researchers must choose between collecting accurate measure-
ments in a few selected scenarios or gathering broader data that
captures the full range of real-world conditions.

For example, consider deploying Wi-Fi in a concert arena
with limited access. Measuring wireless characteristics only

TABLE I
AVERAGE VOLUME OF PACKETS CAPTURED AND VOLUME
REDUCTION, PER MAX EMD IN THE THREE SCENARIOS.

| Office | Parking | Campus
Max | Average A Average A Average A
EMD | Packets Volume| Packets Volume| Packets Volume
1.0 10 2.50% 11 2.75% 10 2.50%
0.9 10 2.50% 11 2.75% 11 2.75%
0.8 10 2.50% 11 2.75% 11 2.75%
0.7 10 2.50% 15 3.75% 11 2.75%
0.6 11 2.75% 17 4.25% 12 3.00%
0.5 11 2.75% 20 5.00% 17 4.25%
0.4 32 8.00% 25 6.25% 24 6.00%
0.3 47 11.75% 56 14.00% 47 11.75%
0.2 99 24.75% 93 23.25% 110 27.50%
0.1 230 57.50% 200 50.00% 230 57.50%

at the stage or a few specific rows might yield high-precision
measurements but miss critical spatial variations. In contrast,
sampling data from all seating areas — even if individual mea-
surements exhibit slightly higher variability — offers a more
comprehensive picture of network behavior by accounting
for obstacles, interference, and other dynamic environmental
factors.

Moreover, the ideal balance between precision and scope de-
pends on the nature of the system under study. A broader scope
in data collection provides more robust generalization in highly
dynamic environments where conditions fluctuate over time or
regarding space. On the other hand, increased measurement
precision may be more valuable in static or highly controlled
settings. By shifting the focus from absolute precision to the
representativeness of collected data, researchers can ensure
that experimental results are reliable and applicable to real-
world scenarios.

V. RELATED WORK

The use and analysis of Wi-Fi data covers a significant slice
of wireless communications studies. Many of the works aim to
provide a basis for application and thus rely on experimental
analysis and data collection.

As an example of experimental wireless communication
work, Bertier et al. present an empirical characterization of
high-speed device-to-device (D2D) communication technolo-
gies in Android, specifically Wi-Fi P2P and Nearby Con-
nections [13]. The data collection was performed with high



precision, measuring the goodput at intervals of 1 meter up to
10 meters, then every 5 meters up to 100 meters, and finally
every 10 meters up to 300 meters. While the data collection
campaign was thorough, it might have been possible to reduce
the effort, allowing more time to explore different scenarios, or
adjust the collection parameters to better suit the requirements
of the different collection distances.

Some localization studies also rely on Wi-Fi data collection,
where dataset development depends on decisions regarding
sensor placement and the amount of data gathered at each
point. Ma et al. investigate a Wi-Fi indoor positioning system
(IPS) based on the IEEE 802.11mc fine-timing measurement
(FTM) scheme, also known as Wi-Fi RTT [14]. Using a
commercial smartphone and Wi-Fi access points, they conduct
experiments in real-world indoor environments to assess range
performance and enhance positioning accuracy. Their dataset
consists of measurements from a 12-point grid, with data
collected at 0.5-meter intervals up to 20 meters under different
channel bandwidths (20, 40, and 80 MHz). At each position,
measurements were recorded for five minutes at the highest
available scanning frequency.

The idea of reducing data collection efforts while preserving
data quality has been explored in other experimental fields
but remains largely unaddressed in Wi-Fi data collection.
An Approximate Data Collection (ADC) approach for sensor
networks was proposed by Wang et al. which reduces commu-
nication costs while maintaining predefined error bounds [15].
Their method clusters sensor nodes, exploits local data corre-
lations, and performs global data approximation at the sink
node. However, their approach still requires deploying all
sensors at maximum granularity, as data from all nodes must
be collected before applying their optimization, meaning the
overall deployment effort remains unchanged.

In contrast, our approach focuses on reducing the deploy-
ment effort itself by incorporating a calibration phase. This
aims to minimize unnecessary time consumption, equipment
costs, and personnel mobilization for Wi-Fi data collection
experiments.

VI. TAKEAWAYS AND FUTURE WORK

While our methodology provides guidance for efficient
Wi-Fi data collection, we do not suggest avoiding rigorous,
exhaustive measurements when necessary. The goal is not to
reduce data collection indiscriminately but to refine it based
on experimental constraints and environmental factors. We
do not advocate universally fixed thresholds either, as each
experimental scenario requires a careful calibration phase, as
proposed, based on its specific constraints and objectives.

Primarily, our methodology demonstrates that Wi-Fi data
collection does not have to rely on arbitrary decisions. By
incorporating a calibration phase and a well-chosen met-
ric, researchers can apply their data collection efforts more
efficiently, enabling the exploration of additional scenarios
within the same time and equipment constraints. Since Wi-Fi
signal propagation varies across different LoS conditions — as
expected — our methodology allows researchers to tailor data

collection efforts, ensuring that all collected positions adhere
to the same maximum EMD and maintain consistent reliability.

Future work could extend this approach by evaluating the
impact of reducing data collection efforts within the same sce-
nario and across scenarios that exhibit similar characteristics
(e.g., different corridors within the same building). Addition-
ally, we intend to explore alternative clustering algorithms for
sniffer placement and investigate clustering behavior at longer
distances.
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