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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

O PODER DOS CAMINHOS QUASE MAIS CURTOS E O IMPACTO DA

MOBILIDADE DOS NÓS EM REDES DINÂMICAS

Dianne Scherly Varela de Medeiros

Setembro/2017

Orientador: Miguel Elias Mitre Campista

Programa: Engenharia Elétrica

O objetivo desta tese é investigar três aspectos importantes das redes dinâmicas:

o impacto da mobilidade dos nós na transmissão de dados em múltiplos saltos, o

efeito do uso de caminhos mais longos na importância relativa dos nós, e o de-

sempenho da rede na presença de falha em nós centrais. Para analisar o primeiro

aspecto, este trabalho propõe a (�; �)-vizinhança, que estende a vizinhança tradi-

cional para considerar como vizinhos nós a múltiplos saltos de distância e restringe

o estabelecimento de enlaces de acordo com a velocidade relativa entre os nós. Essa

proposta é usada posteriormente no desenvolvimento de três estratégias de encam-

inhamento. A restrição de velocidade relativa imposta nessas estratégias resulta

em uma redução significativa do consumo de recursos, sem que ocorra impacto sig-

nificativo na taxa média de entrega de pacotes. Para analisar o segundo aspecto,

propõe-se a centralidade de intermediação �-geodésica, que usa caminhos mais cur-

tos e quase mais curtos para quantificar a importância relativa dos nos. Os caminhos

quase mais curtos são limitados por um fator de espalhamento �. O uso de caminhos

não-ótimos provoca o reranqueamento de diversos nós e tem como principal efeito

uma menor ocupação de posições mais centrais por pontos de articulação. Por fim,

o desempenho da rede em presença de falha é investigado através de simulações nas

quais as falhas atingem nós definidos como os mais centrais de acordo com métricas

de centralidade distintas. O resultado é uma redução brusca da vazão média da

rede, independentemente da métrica usada para determinar quais são os nós mais

centrais. O grande trunfo da métrica proposta é que, apesar da severa redução na

vazão, é grande a probabilidade de manter a rede conectada após a falha, uma vez

que é pouco provável que um nó em falha nas posições mais centrais seja também

um ponto de articulação.
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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

THE POWER OF QUASI-SHORTEST PATHS AND THE IMPACT OF NODE

MOBILITY ON DYNAMIC NETWORKS

Dianne Scherly Varela de Medeiros

September/2017

Advisor: Miguel Elias Mitre Campista

Department: Electrical Engineering

The objective of this thesis is to investigate three important aspects of dynamic

networks: the impact of node mobility on multihop data transmission, the effect of

the use of longer paths on the relative importance of nodes and the performance of

the network in the presence of failure on central nodes. To analyze the first aspect,

this work proposes the (�; �)-vicinity, which extends the traditional vicinity to con-

sider as neighbors nodes at multihop distance and restricts the link establishment

according to the relative speed between nodes. This proposal is used later on the

development of three forwarding strategies. The relative speed restriction imposed

on these strategies results in significant reduction of resources consumption, with-

out incurring significant impact on the average packet delivery ratio. To analyze the

second aspect, we propose the �-geodesic betweenness centrality, which uses shortest

and quasi -shortest paths to quantify the relative importance of a node. The quasi -

shortest paths are limited by a spreadness factor, �. The use of non-optimal paths

causes the reranking of several nodes and its main effect is a reduced occupation of

the most central positions by articulation points. Lastly, the network performance

in presence of failures is investigated through simulations, in which failures happen

on nodes defined as the most central according to distinct centrality metrics. The

result is a severe reduction of the average network throughput, and it is indepen-

dent of the metric used to determine which nodes are the most central. The major

strength of the proposed metric, then, is that, despite the severe reduction of the

throughput, there is a high probability of maintaining the network connected after

a failure, because it is unlikely that a failing node in the most central position is

also an articulation point.
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Chapter 1

Introduction

Network science is an ascending interdisciplinary �eld that gained much importance

in the last few decades [1]. It is applied to the study of several topics in di�erent re-

search areas, such as physics, biology, sociology, economics and engineering, covering

a wide range of networks, e.g., trading, semantic, information, terrorist, social, com-

puter, genetic, infrastructure, and protein networks, among many others. Thanks

to network science, researchers are able to better understand the interactions and

associations among network elements, so that they can discover the fundamental

principles that govern the network behavior, structure and functionalities [1]. As

a consequence, network science allows researchers to model real world phenomena,

such as the spread of viruses and the \rich gets richer" e�ect, or even determine the

role of each element within the network. To this end, it is necessary to use several

tools, such as graph theory, data mining, inferential modeling, and social structures.

As a �nal step, network science provides the necessary knowledge to control or, at

least, predict the behavior of real systems [2].

Real systems are usually put together under the domain of complex networks,

which are characterized by an irregular and complex structure that dynamically

evolves over time [2]. In addition, they represent systems with thousands or millions

of nodes, such as neural, genetic, transportation, vehicular, computer, electrical,

and telecommunications networks, as well as the Internet and the World Wide Web,

among many others [2]. Nowadays, people that study such networks are mainly

interested in understanding their dynamical behavior. Particularly, researchers aim

to investigate how the network structure (i.e., network topology) a�ects the system

properties over time. The performance of wireless networks, for instance, is strongly

governed by the network structure. Such networks remain in spotlight even after

years of extensive investigation, because new challenges frequently arise.

The dynamics of wireless networks structure is related to two properties: the

link quality and the node mobility. The latter is intrinsic to dynamic networks,

which are characterized for being prone to frequent topology changes. The result
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is the removal and addition of link as nodes move around, causing intermittent

connectivity. The link quality can change the network structure even when nodes

cannot move, as in static networks. This happens because any modi�cation on the

network surroundings, such as weather uctuations, can improve or degrade the link

quality, consequently changing the link state. Hence, to study the inuence of the

network structure on system properties, we need to analyze both dynamic and static

networks.

In this thesis we focus on Vehicular Ad Hoc Networks (VANETs), which are a

special case of wireless networks, where node mobility can be very intense. Nev-

ertheless, we also use static networks, derived from social and randomly generated

networks. The dynamic nature of VANETs adds even more challenges to the wire-

less paradigm. Handling mobility in such networks remains an open research issue,

especially when communications occur through multiple hops. Multihop commu-

nications are jeopardized by a number of obstacles, such as the ability of nodes to

move around and the intra-ow interference. As a consequence, these networks of-

ten face intermittent connectivity, lack of end-to-end paths, and frequent changes of

intermediary nodes on a path, preventing e�cient data transfers [3].

what action the node should perform with the packet, for instance, it could

instantly forward it or drop it if no neighbors are within its radio range.

Routing in VANETs cannot be designed as in static wireless networks, because,

in the latter, lack of end-to-end paths is transitory. In VANETs, there is a high

probability of not having a fully connected network and, consequently, end-to-end

paths can be rare. Therefore, nodes need to have information about their surround-

ings to decide the action they should perform on the packet, e.g., drop it or forward

it to the next hop. To make this decision, nodes need to know how to make the

most of contact opportunities. When developing routing protocols for VANETs, it

is also important to consider that in these networks, there is a reach of interest that

depends on the application, i.e., communication happens between nodes within a

region and, usually, it does not involve nodes in distant areas of a city. The perfor-

mance of multihop communications in such scenarios is highly dependent of nodes

ability to establish e�cient routes according to the current network conditions [4].

Researchers tackle this problem by proposing prediction mechanisms to anticipate

contact availability [5] and disruption [6].

Network science also provides tools to discover the roles played by nodes within

the networks. To this end, it is necessary to evaluate nodes relative importance,

improving the decision making process. For instance, based on the acquired knowl-

edge one can �nd nodes that play the role of brokers and decide to prevent their

failure and protect them from attacks at any cost. This is because brokers are re-

sponsible for everything that travels between two communities and a failure on such
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nodes can interrupt the ow between these communities. In computer networks, a

broker is a bridge, and the communities could be two di�erent Local Area Networks

(LANs). Many ows are processed by the broker, thus, one could decide to install

ow analyzers on such nodes. Hence, important nodes are good candidates to run a

number of control functions, or to help with content dissemination [7{9], depending

on their roles within the network. Such important nodes are also said to be central

nodes and we use both terms interchangeably in this thesis.

The de�nition of central node may change from one application to the other and

the identi�cation of central nodes is not trivial, particularly in large and dynamic

networks. This identi�cation is fundamental in several networks [10{14]. The most

usual metrics to assess node importance according to its structural position in the

network are the centrality metrics [15{17]. There are plenty of them and some will

be discussed in this thesis. Meanwhile, it is only necessary to know that the main

centrality metrics are degree, closeness, betweenness and eigenvector centralities.

The other existing centralities are usually variants based on them. Thedegree cen-

trality relates to how popular a node is. Thecloseness centralityis related to how

quickly a ow can spread from a node to all other nodes in the network, i.e., a

node with high closeness is close to all other nodes in the network. Theeigenvec-

tor centrality relates to how well connected a node is, so that a node is important

if its acquaintances are also important. Lastly, thebetweenness centralityrelates

the importance of a node with the number of shortest paths (geodesics) it belongs

to [15]. Nodes that play the role of brokers have high betweenness, because they

are in-between many other nodes (along the shortest path). Hence, they can control

when and what ows between other pairs of nodes, if it ows along shortest paths.

Investigating the structural importance of nodes in both dynamic and static net-

works is fundamental to make better decisions. Particularly, in dynamic networks,

network science can also help to provide insights on the inuence of node mobility, so

that we can maximize the exploitation of contact opportunities. We investigate both

aspects in this thesis. In the following section we highlight our speci�c objectives.

1.1 Objectives

In this thesis, we investigate the inuence of the network structure on the system

behavior. More speci�cally, we study how this structure a�ects (i) data forwarding

and (ii) nodes relative importance. We also (iii) introduce an analysis that focuses

on network resilience. To this end, we use dynamic wireless networks, but we also

rely on static networks to lay the basis of our analysis. Hence, the objectives of this

work are three-fold:
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1. To investigate the impact of node mobility on the establishment of multihop

communications, through the analysis of node vicinity;

2. To analyze the inuence of longer paths on the assessment of node centrality;

and

3. To verify the impact of single failures of the most central nodes on the network

performance when ows follow shortest paths.

The vicinity analysis is essential for vehicular networking, because it allows a

better comprehension of contact opportunities. The idea is to maximize the com-

municability between pairs of vehicles, i.e., increase the number of opportunities

to successfully transfer data. This is important if vehicle-to-vehicle communications

are used to extend the communication range of a vehicle. For instance, in drive assis-

tant applications it is necessary that vehicles have an extended horizon of awareness,

beyond their local surroundings. This is only possible if vehicles can communicate

successfully with other vehicles at multihop distances. There is a limit, however,

for the necessary reachability of the communication. Depending on the application,

there is no need for a vehicle in the south of a city to communicate with a group

of vehicles in the north of the same city. In addition, considering other types of

applications, such as entertainment (or infotainment), it is necessary to maximize

data transfer between vehicles, which also requires to study and deeply understand

the behavior of contact opportunities. Several studies concerning mobility patterns

and connectivity in Mobile Ad Hoc Networks (MANETs) already exist and many of

them are compiled in several surveys [18{23]. E�orts are also made to address these

issues in VANETs and solutions have already been proposed to partially overcome

the intermittent connectivity problem [5, 6, 24{26]. Other works analyze contact

opportunities through the study of node vicinity [27{29]. Typically, a contact hap-

pens when two nodes are within mutual radio range, restricting node vicinity to

directly reachable nodes. This restriction is not detrimental to a number of appli-

cations for which the 1-hop vicinity is su�cient, such as the detection of congestion

in urban scenarios [30]. Nevertheless, applications that rely on the communication

between nodes separated by longer hop distances waste several contact opportuni-

ties due to the vicinity restriction. Besides that, node vicinity changes frequently

due to the intense node mobility. Phe-Neau et al. [31, 32] use an unusual approach

to exploit contact opportunities. They extend the concept of node vicinity in terms

of hops to also consider nodes reachable at longer distances. The resulting extended

vicinity incorporates nodes even if they are out of mutual radio range and, as a

consequence, nodes �nd more contact opportunities, through multihop contacts.

We know, however, that VANETs su�er with intermittent connectivity, notably in

multihop communications.
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In this work, we analyze contact opportunities, taking into account the rela-

tionship between nodes extended vicinity and their relative speeds. The goal is to

quantitatively evaluate the expected notion of \better connectivity at lower relative

speeds" to shed more light into multihop communications in typical vehicular sce-

narios. To this end, we propose a methodology to group nodes according to their

relative speeds, i.e., we consider links only between nodes at a certain interval of

relative speeds. This restriction can inuence the contact duration, but it helps to

identify conditions for multihop communications, which in a broader sense, depend

on whether opportunistic contacts appear for long enough to be considered useful.

We �rst (i) study the inuence of nodes' relative speed on the vicinity behavior.

Then, we (ii) further extend the concept of node vicinity to also include nodes' rela-

tive speed. We consider that relative speeds are more suitable than absolute speeds

because they determine contact duration. The idea is to identify the feasibility of

multihop communications in typical vehicular scenarios. We also (iii) analyze the

usefulness of such communications through the investigation of how much data a

node could transfer to its peer during the available contact duration. Finally, (iv)

we propose and evaluate simple forwarding mechanisms that use the outcomes of

the vicinity analysis.

In addition to the vicinity analysis, a new rationale behind the de�nition of node

centrality is also proposed in this thesis. Centrality metrics are used to determine

the importance of a node to the network. The focus is on the betweenness centrality

because it �nds nodes that can potentially intermediate more ows between other

nodes in the network. Note that, in network science, \ow" is a broad term that can

represent anything that travels across a network, such as packets, gossips, electrical

or chemical signals, vehicles, among other entities. Thus, its de�nition will depend

on the type of network studied. For instance, if we analyze a computer network, a

ow will represent packets exchanged between communicating nodes. Such networks

can bene�t from the traditional concept of betweenness, which uses shortest paths to

determine node importance. In computer networks, e.g., it can be used to estimate

the monitoring and control capabilities of a node [33], to design protocols to elect

nodes as cluster heads [34], to detect the location of vulnerabilities in a network [34],

to design routing protocols in delay tolerant [10, 16, 35, 36] and wireless sensor [37]

networks, among other applications.

Several works question the use of shortest paths as the sole parameter to quantify

the importance of nodes [38{42]. We also question this approach and we argue that

it may underestimate important nodes | in particular, those in the close vicinity

of shortest paths but that do not belong to them. This happens when a node

that falls on many paths slightly longer than the shortest path is ignored by the

betweenness centrality. We inquire why these nodes are neglected, if they are good
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candidates, in practice, to maintain the network connected in case of failure of

more important nodes, or to reduce the load on such nodes. Hence, we propose

a weighted betweenness centrality, the� -geodesic betweenness, which extends the

traditional betweenness proposed by Freeman [43] to also consider slightly longer

paths when assessing node importance. Such paths are de�ned herein asquasi-

shortest paths. In a nutshell, the� -geodesic betweenness of a node� k is computed

using the proportion of shortest andquasi-shortest paths that � k falls on between

all possible pairs of nodes in the network. This proportion is weighted by the ratio

between the cost of the shortest path connecting a pair of nodes and the cost of the

quasi-shortest path between the same pair of nodes passing through� k . The search

for quasi-shortest paths is limited by a parameter� , which de�nes the maximum

extra path cost that the proposed� -geodesic betweenness can take into account. We

show in this thesis that a small� is enough to capture well the idea ofquasi-shortest

paths while keeping the computational load low. The metric proposed in this work

can be used as part of the modelling of situations where the management of ows

try to escape from the common-sense, aiming to avoid unwanted consequences that

are expected to happen.

We evaluate the proposed metric by comparing it with other existing between-

ness centrality metrics. We (i) verify if the metrics are capable of pinpointing nodes

that should receive a di�erent value for their centralities compared with the tradi-

tional betweenness. This means that the set of most central nodes can change from

one metric to the other. The nodes that improve their position in the rank can be

more suitable to be used, depending on the application. Then, we (ii) compare the

coe�cient of concordance of the rankings obtained for each metric and (iii) investi-

gate if they can break ties between nodes classi�ed in the same position. The goal is

to verify if the metrics are measuring similar characteristics to determine the node

ranking and to �nd if the metrics can provide a broadened ranking, which widens

the number of options to choose from a more �ne-grained node ranking. Following,

we (iv) verify the inuence of the parameter� on the variation of node positioning

on the rank. Then we (v) analyze the behavior of the rank over time to verify the

impact of the metric on the ability to intermediate paths. Finally, we study the

performance of a dynamic network in presence of single failure. To this end, we (vi)

evaluate the number of critical nodes elected as the most central by each centrality

metric. Then, we consider a shortest-path-based packet forwarding strategy to (vii)

analyze the impact on the network throughput when a failure happens on nodes

classi�ed by each metric as the most central, when ows follow shortest paths.

6



1.2 Contributions

The contributions of this work are summarized hereafter.

1. We study the e�ect of network structure and node mobility on multihop com-

munications and on the evaluation of node centrality. We identify the im-

portance of quantifying the inuence of relative speeds on communications in

multihop networks, and the need for a betweenness metric that better cap-

tures the importance of nodes that participate on paths slightly longer than

the shortest one.

2. We propose an extended de�nition of node vicinity to include both nodes

at multihop distances from an ego node (central node in the vicinity) and

their relative speeds, instead of only focusing on the node adjacent vicinity.

Moreover, we propose the� -geodesic betweenness, a weighted centrality metric

that better evaluates the importance of nodes that do not necessarily fall

on shortest paths but frequently participate in paths almost as short as the

shortest ones;

3. We characterize the extended vicinity in three distinct scenarios, to analyze its

behavior under distinct conditions, such as varied node density, and we ana-

lyze the usefulness of a contact opportunity to transfer large �les, which could

be required by entertainment applications in VANETs. Then, we demon-

strate through simulations that we can potentially reduce network resource

consumption, without reducing the average packet delivery ratio, using the

relation between relative speeds, hop distance, and contact duration to make

forwarding decisions;

4. We characterize the proposed� -geodesic betweenness centrality and we analyze

the connectivity of a dynamic network through a comparative investigation,

where we verify the number of critical nodes in central positions and the impact

on network throughput when central nodes fail and ows follow shortest paths.

These contributions are reported in the following papers, in order of publication:

� \Uma avalia�c~ao da Inuência da Velocidade dos N�os no Estabelecimento de

Caminhos em Redes Ad Hoc Veiculares", accepted in the Simp�osio Brasileiro

de Redes de Computadores e Sistemas Distribu��dos (SBRC 2015);

� \Intermedia�c~ao por Espalhamento: Caminhos Quase Mais Curtos Tamb�em

Importam", accepted in the Simp�osio Brasileiro de Redes de Computadores e

Sistemas Distribu��dos (SBRC 2016);
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� \Weighted Betweenness for Multipath Networks", accepted in the Global In-

formation Infrastructure and Networking Symposium (GIIS 2016);

� \E�ciência dos Caminhos Quase Mais Curtos em Redes Dinâmicas", accepted

in the Simp�osio Brasileiro de Redes de Computadores e Sistemas Distribu��dos

(SBRC 2017);

� \The Power of Quasi-Shortest Paths:� -Geodesic Betweenness", accepted in

the IEEE Transactions on Network Science and Engineering (TNSE 2017);

In the case scenarios studied in this work, results considering di�erent radio

ranges con�rm that, indeed, the best contact opportunities happen at few hop dis-

tances and low relative speeds. Nevertheless, we found that a signi�cant number of

useful contacts can happen even between nodes at high relative speeds, separated

by multihop distances. Even in such conditions, we show that nodes can transfer

MB-size messages according to the contact duration. Besides more general results,

we also observe that contacts with longer duration become less frequent for rela-

tive speeds higher than 40 km/h and most likely happen between nodes less than 3

hops away, in sparser scenarios. On the other hand, even considering lower relative

speeds, results show that contacts between nodes separated by more than 6 hops

are not frequent. We also note that high relative speeds can potentially degrade

the number of useful contacts more severely than the hop distance. Finally, com-

paring our forwarding strategies with the Optimized Link State Routing Protocol

(OLSR) [44], we show that it is possible to reduce the waste of resources, without

decreasing the average packet delivery ratio, if we restrict multihop communications

considering the relation between the reachability of nodes and their relative speeds.

This happens even when the forwarding decision only takes into account local infor-

mation. Although the OLSRis not the most suitable routing protocol for VANETs,

we use it because in the current state of the work, we need a routing protocol for

wireless networks that has information about the global network structure.

The vicinity of a node must also include relative speeds both in more theoretical

evaluations and in practical settings [21], and the results obtained herein can be used

as a step forward to develop more sophisticated message dissemination schemes in

vehicular networks. All these results are discussed in our technical report \Impact

of Relative Speed on Node Vicinity Dynamics in VANETs" [45], submitted to the

Wireless Networks Journal (Springer).

The comparisons between our proposed centrality metric and other related met-

rics showed that the� -geodesic betweenness can rerank several nodes, even though

it is strongly correlated to the traditional de�nition of betweenness, already using

low values for the spreadness factor� . It is also useful to provide a wider range
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of rank positions, presenting a more �ne-grained classi�cation. Yet, the� -geodesic

betweenness reduces the number of resources reallocations, when node centrality is

used to place such resources. In addition, our metric is able to keep nodes on the

same rank position for longer time spans in networks with dynamic topology. The

number of articulation points elected by the� -geodesic betweenness as the most

central nodes are always less or equal than the number elected by other betweenness

centralities. In a network where ows follow shortest paths, the throughput su�ers

a great reduction when a central node fails, which is similar to all the metrics. Even

though the throughput is reduced, the probability that the network is split into sev-

eral connected components is also reduced when failures happen on the most central

nodes elected by our metric.

1.3 Organization

We organize this work as follows. We �rst introduce in Chapter 2 some de�nitions

necessary to lay the basis of our work. Chapter 3 describes and characterizes the

datasets used in this thesis. We then proceed to our �rst analysis, in Chapter 4,

where we propose an extension of node vicinity and a methodology to analyze it.

Chapter 5 discusses the results of our vicinity study, including the analysis of three

proposed forwarding schemes based on our results. Following we begin our second

analysis, starting with Chapter 6, where we propose a novel weighted betweenness

centrality metric. Chapter 7 presents the characterization of the proposed metric

and discusses some possible applications. Finally, Chapter 8 concludes this work

and presents future research directions.
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Chapter 2

Network Model, Concepts and

De�nitions

In this chapter, we explain the network model and we formalize the main de�nitions

and concepts necessary to establish the basis of this work.

2.1 Network model

We consider that networks can be modelled as weighted graphs,G = ( V; E; W). The

set of verticesV contais all nodes in the network, and the set of edgesE comprises

all links between nodes inV. Each edge has a cost that belongs to the set of

weights W. Two neighbor nodes� i and � j are connected by an edge" i;j whose

cost is ! i;j 2 R�
+ . The edge" j;i automatically exists if the graph is undirected (or

symmetric). Otherwise, it will exist only if � j is also neighbor of� i , in which case

we say the graph is directed (or asymmetric). The graphG is connected if all nodes

in V are reachable, and not connected, otherwise. If all nodes are reachable, it is

certain that there exists an edge between each and every pair of adjacent nodes.

Connectivity is further discussed in Section 2.4.

We further consider that each node� i can move at speed~si , where fj ~si j 2

R+ j smin � j ~si j < s max g, and smin and smax are the minimum and the maximum

absolute speeds allowed, respectively. The relative speed of nodes� i and � j is, thus,

given by ~ri;j = ~si � ~sj , wherej ~ri;j j = j~si � ~sj j and j ~ri;j j 2 [0; 2 � smax ]. For the sake

of simplicity, we use the notationsi and r i;j to represent, respectively,j~si j and j ~ri;j j,

whenever possible.

We can divide the set of all relative speeds intom consecutive subsets, in which

each relative speedr i;j 2
S m� 1

� =0 R� , 8� i ; � j 2 V , where R� = [ � � s� ; (� + 1) � s� [

and s� = 2� smax
m . In this case, we can group all pairs of nodes� i ; � j with r i;j 2

R� in a subset of nodesV(R� ) � V . Consequently, we can obtain the subgraph
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GR � (V(R� ); E(R� )) � G (V; E), where E(R� ) is the set of existing links connecting

adjacent nodes inGR � with r i;j 2 R� . Thus, although two adjacent nodes� i ; � j may

be included inV(R� ) due to their relative speed, a link connecting them will only

exist in E(R� ) if r i;j 2 R� and they are within mutual radio range. Otherwise,� i ; � j

may still be mutually reachable if they are interconnected bya sequence of adjacent

links between pairs of nodes also inV(R� ). Hence, according to our de�nition, if

� i ; � k ; � w ; � j are in V(R� ), and if f r i;k ; rw;j g 2 R� , then there is a link between� i ; � k

and another between� w ; � j . A path from � i to � j will exist in GR � only if r k;w 2 R� .

As a corollary, if m = 1, all relative speeds are within the same subsetR0 =

[0; s� [= [0; 2 � smax [. Analogously to relative speeds, we divide the set of absolute

speeds into consecutive subsets, represented byS� .

2.2 Paths and costs

A path p1;L between source� 1 and destination � L is an ordered sequence of distinct

nodes in which any consecutive pair of nodes is connected by a link. A path does

not contain any loops and any change in the sequence of nodes, either by switching

or by shifting a node, originates a new path. We denote the length of pathp1;L as

� 1;L = L � 1, with L 2 N� . The cost of this path is denoted by� 1;L , with � 1;L 2 R�
+ ,

and it is given by the sum of the individual costs of all links composing the path.

The shortest path p�
1;L between � 1 and � L is the one with the smallest cost,

denoted by � �
1;L . This path is also known in the literature as theleast cost path.

In this work, we use bothshortest pathand least cost pathinterchangeably. We

also consider, without loss of generality, the number of hops as the cost of a path,

such that � 1;L = � 1;L and, as a consequence,� 1;L 2 N� . In this case, the cost of

the shortest path is given by� �
1;L = � �

1;L . Note that more than one shortest path

(geodesic) may exist between the same pair of nodes. We denote the number of

shortest paths between� i ; � j as n�
i;j . Yet, we denote the number of shortest paths

between� i ; � j passing through� k as n�
i;j (� k).

2.3 Taking nodes on quasi-shortest-path into ac-

count

In some networks, ows do not follow shortest paths. In other networks, it is inter-

esting to have other paths that are a little bit longer. In a computer network, for

instance, the use of shortest paths can lead to the overload of nodes on such paths.

We could reduce this load by splitting the ow between alternative paths. Ideally,

these paths will be as short as the shortest one, and we will be able to increase the
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Figure 2.1: The shortest path between� i and � j is � �
i;j = 3 hops long. If � = 1, the

quasi-shortest path of length� �
i;j = 4 through � k can be considered too.

overall communication throughput and end-to-end cost. Nevertheless, occasionally,

another shortest path is not available, but many other paths are. We could, then,

use aslightly longer path to reduce the load on the shortest path, at the cost of

a small increase on the end-to-end cost. Very long paths, however, have low or

none contribution to the network operation and should not be used [41]. Hence,

we introduce two conjugated concepts to consider such important alternative paths

when analyzing a network.

De�nition 1. Spreadness: The spreadness� is the maximum tolerable di�erence

between the costs� 1;L and � �
1;L , i.e., � = � 1;L � � �

1;L , with � 2 R+ .

De�nition 2. Quasi -shortest path: The quasi-shortest path is a pathp1;L for

which � 1;L � � �
1;L � � , where� is the spreadness factor.

The quasi-shortest path is the most important concept of this work. The idea

behind it is illustrated in Figure 2.1, where� = 1. Such quasi-shortest paths are

able to increase the importance of nodes that are ignored or underestimated when

we consider only the shortest paths { this is the case, for example, of node� k (that

does not fall on any shortest paths). Nevertheless, this node is very close to all

shortest paths between both sides of the network, as represented by nodes� i and

� j , respectively. Paths going through� k di�er from the shortest path by only one

hop. Note that more than onequasi-shortest path with the same cost can exist

between two nodes and more than one of these paths can pass through the same

intermediary node. Therefore, we represent the number ofquasi-shortest paths

between� i ; � j as ni;j and, among those, the ones passing through� k as ni;j (� k).

The spreadness� de�nes the extra cost we can add to the shortest path and,

as a consequence, it determines the maximum cost of thequasi-shortest path. This

limitation avoids the explosion of the number of possible paths. Although we de�ned

� 2 R+ , in this work we consider the number of hops as cost metric and, thus,� 2 N.

The spreadness limits the search depth to look only forquasi-shortest paths that

are slightly longer than the shortest path. The idea is based on the fact that the
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throughput of information traveling through paths for which � 1;L � � �
1;L is expected

to be low [40]. Note that if � = 0, � 1;L = � �
1;L , and only the shortest paths are

considered.

2.4 Connectivity and articulation points

The use of graphs can reveal interesting properties from networks, such as network

connectivity. A network is connected if there is at least one path between all pairs of

nodes, and it is bi-connected if there are at least two node-disjoint paths between all

pairs of nodes. The path redundancy present in bi-connected networks excludes the

possibility of �nding nodes that can split the network into one or more connected

components in case of failure. Nodes that can potentially disconnect the network are

said to be articulation points and they represent critical vulnerabilities. Formally,

� a is an articulation point if there exist two nodes� i ; � j 2 V with � i 6= � j 6= � a and

� i 6= � a, such that � a is part of all paths pi;j .

2.5 Node vicinity

The typical vicinity of node � i is composed of directly reachable nodes, i.e., all nodes

� j 2 V within mutual radio range of � i . In this work, we refer to the central node

of the vicinity, � i , also as the \ego node". When any node� j is within mutual

range with � i , the link " i;j exists and we say that nodes� i ; � j are in contact. Hence,

all nodes� j in � i 's vicinity are in contact with � i . Using the typical de�nition of

node vicinity, a fraction of nodes can remain nearby the ego node without ever

entering mutual radio range. As a consequence, the ego has a limited view of

its contact opportunities. Additionally, nodes can frequently enter and exit the

mutual radio range, which incurs several vicinity changes over time. Phe-neau et

al. [31, 32] extend the concept of contact to consider also nodes reachable via multiple

hops. Consequently, they also extend the concept of vicinity, incorporating nodes

even if they are out of mutual radio range. Therefore, nodes can potentially �nd

more contact opportunities. The relative speed of nodes can greatly inuence these

opportunities, because it determines the link existence and contact duration [45],

which is equal to the path duration. Hence, we extend the vicinity proposed by

Phe-neau et al. to also consider the relative speed of nodes.

De�nition 3. (�; � )-vicinity : The (�; � )-vicinity of a node � i 2 GR � is the set of

all nodes also inGR � for which the shortest path from� i is � hops long at most.

The vicinity of a node� i 2 GR � can be characterized only by parameters� and � ,

where� de�nes the maximum number of hops from� i , while � de�nes the range of
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(a) Vehicles � i , � j , and � k moving at speeds,
si , sj , and sk , respectively.

(b) GR 0 , (0; 1)- and (0; 2)-vicinity of node � i .

Figure 2.2: De�nition of � i 's (�; � )-vicinity, disregarding vehicles relative speeds
(m = 1). Subgraph GR0 coincides withG, including all nodes in the network.

relative speeds considered and, consequently, which subgraph must be used. Hence,

nodes in GR � may not belong to the same (�; � )-vicinity of � i , according to the

number of hops (� ) of the shortest path interconnecting them.

Figure 2.2(a) depicts a network of nodes moving at speeds within [0; 45 km/h]

(arrows starting at nodes indicate their absolute speed). In this �gure, nodes� i , � j ,

and � k move, respectively, at absolute speedssi , sj , and sk , wheresi 2 [0; 15 km/h[,

sj 2 [15; 30 km/h[, and sk 2 [30; 45 km/h]. If m = 1, the relative speed between

all pairs of nodes in the network lies withinR0 = [0; 90 km/h]. Thus, all nodes are

within the (0 ; � )-vicinity of � i . Figure 2.2(b) shows� i 's (0; 1)- and (0; 2)-vicinity,

and the subgraphGR0 obtained from the subsetV(R0). Note that with m = 1,

V(R0) = V. Hence, all the links connecting nodes in the network do exist and can

be used to compute paths. As a consequence,GR0 = G and the delimitation of � i 's

vicinity does not change according to the di�erent relative speeds, similarly to [32].

If we considerm = 3, we have three di�erent subsets of relative speeds:R0 =

[0; 30 km/h[, R1 = [30; 60 km/h[, and R2 = [60; 90 km/h]. In this case, we can

separate the pairs of nodes withinV in subsets, according to their relative speeds:

V(R0), V(R1), and V(R2). From these subsets we obtain the subgraphs illustrated

in Figure 2.3, GR0 , GR1 , and GR2 . Note that, we can compute the shortest paths to

obtain the (�; � )-vicinity of node � i only after �nding GR � .

Figure 2.3(a) showsGR0 and the (0; 1)- and (0; 2)-vicinity of � i . We observe

that although the (0; 2)-vicinity includes all nodes in the (0; 1)-vicinity, it does not

include all nodes inGR0 . Therefore,� i requires more than two hops to reach a node

which is not in its (0; 2)-vicinity. In the worst case, no paths connecting� i to these

nodes exist inGR0 , which means that� ! 1 for the subsetV(R0). Figures 2.3(b)

and 2.3(c) show, respectively, the (1; 1)- and (1; 2)-vicinity, and the (2; 1)- and (2; 2)-

vicinity of node � i , as well asGR1 and GR2 .
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(a) GR 0 , and (0; 1)- and (0; 2)-vicinity. (b) GR 1 , and (1; 1)- and (1; 2)-vicinity.

(c) GR 2 , and (2; 1)- and (2; 2)-vicinity.

Figure 2.3: Example ofGR � for nodes with relative speed inR� , the links connecting
them, and the (�; � )-vicinity of node � i .

2.6 State of a node

Each node� i in direct contact with a peer node� j in GR � is considered to be in

State � , where � = 1. If they need one more node� k 2 GR � to reach each other,

than � i ; � j are in State 2. If no path exists between them inGR � , this pair of nodes

is in State 1 , which only represents the absence of intermediary nodes in the same

GR � to set up a path between� i and � j . This does not necessarily mean that� i and

� j are out of reach, because they can be in contact in anotherGR � . Hence, we can

de�ne the state of a node as follows.

De�nition 4. State � : The state of a node corresponds to the shortest hop distance

connecting it to another node.

Note that, as the state of a node depends, in fact, of the distance to a peer node,

each node can be in more than one state simultaneously, depending on how many

peers it has.

The de�nition of node state is important to analyze transition probabilities be-

tween the states, according to the following model. We model the vicinity dynamics

of a node pair as a continuous time Markovian process. This means that the current

markovian state summarizes the past history of the process [46] and the transition to

another state can happen at any instant of time. The memoryless aspect of this pro-

cess implies that the duration of each state follows an exponential distribution and
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each modi�cation is independent of the sampled time. Thus, we maintain our anal-

ysis agnostic to the duration of a given state to be independent of the time sampling

frequency of events. These properties are convenient since we are most interested in

capturing the vicinity changes of nodes at di�erent relative speeds. Hence, in our

model, for a given pair of nodes� i ; � j , the hop distance between them in a given

epoche is represented by a random variableX e
i;j , which is stored in a State� . Each

pair � i ; � j may change its state only once per epoche and the number of states is

equal to the maximum number of hops interconnecting a pair of nodes plus the State

1 . The current State � of a node is independent of previous states. Consequently,

if � i and � j are � -hops distant in e, there is a probability that the distance between

them will be d in e+1. Hence, we have thatpab = P(X e+1
ij : � = b j X e

ij : � = a) � 0.

2.7 Vicinity timeline

The vicinity timeline is a pairwise component of the vicinity analysis and it can be

de�ned as follows.

De�nition 5. ( �; � )-vicinity timeline : The (�; � )-vicinity timeline of a pair of

nodes inGR � is the sequence of states for the pair of nodes in analysis, overtime.

Each entry in the vicinity timeline is an event represented by a tuple

ht i ; t f ; � i ; � j ; �; r i;j i , where t i and t f are the initial and �nal instants of time of the

event, � i ; � j is the pair of nodes,� is the shortest hop distance between them, and

r i;j is their relative speed. State1 is represented by� = 0 in the ( �; � )-vicinity

timeline. Time intervals are atomic, i.e., there is no other event in the whole timeline

starting or �nishing at an instant of time t, where t i < t < t f . This is important

to better understand concurrent events. The state transitions in the (�; � )-vicinity

of the node is stored in such timelines, allowing to determine the state transition

probabilities, which details how nodes move relative to each other.

Table 2.1 summarizes the notation described in this chapter, in order of appear-

ance, to facilitate future reference.
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Table 2.1: Summarized notation used in this work.

Notation Comment
V Set of vertices
E Set of edges
! i;j Cost of edge between nodesi and j
� i Node i
" i;j Edge between nodesi and j
~si or si Absolute speed of nodei
~ri;j or r i;j Relative speed between nodesi and j

R� Range of relative speeds
� Index of relative speed range
V(R� ) Set of nodes moving at relative speeds withinR�

E(R� ) Set of edges between nodes moving at relative speeds withinR�

GR � Subgraph of nodes moving at relative speeds withinR�

S� Range of absolute speeds
pi;j Path between nodesi and j
� i;j Hop distance between two nodes, i.e., the path length
� i;j Cost of the path between nodesi an j
p�

i;j Shortest path between nodesi and j
� �

i;j Cost of the shortest path between nodesi and j
� �

i;j Length of the shortest path between two nodes
n�

i;j Number of shortest paths between nodesi and j
n�

i;j (� k ) Number of shortest paths between nodesi and j passing through nodek
� Spreadness factor
ni;j Number of quasi-shortest paths between nodesi and j
ni;j (� k ) Number of quasi-shortest paths between nodesi and j passing through nodek
� State of a node
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Chapter 3

Datasets Description and

Characterization

In this work, we use di�erent datasets available on the Internet, as well as several

randomly generated static networks. Three of the publicly available datasets rep-

resent dynamic networks, and they are used for the vicinity analysis proposed in

Chapter 4. The remaining four are static networks and we use them to assess the

centrality metric proposed in Chapter 6, as well as the randomly generated static

networks and snapshots from one of the dynamic network datasets. We organize

this chapter in three sections, where we discuss the datasets separately, according

to the type of network they represent.

3.1 Dynamic network datasets

In our analyses, we use three di�erent dynamic network datasets, which are summa-

rized in Table 3.1: Mobility Dataset [47], Ad Hoc City Dataset [48], and TAPAS-

Cologne Dataset [49]. They represent, respectively, medium, sparse and high density

urban scenarios. Each one of them is generated by capturing vehicle mobility, which

Table 3.1: Dynamic network datasets main characteristics.

Feature
Mobility Ad Hoc City TAPASCologne

Dataset [47] Dataset [48] Project [49]
Type of trace Real Real Hybrid
Location method GPS GPS {
Number of vehicles 536 1,200 121,140
Type of vehicle Taxi Bus Car
Total duration 30 days 30 days 2 hours
Sampling frequency 1 sample / 10 seconds 525 samples / 1 day 1 sample / 1 second
Analyzed period 1 day 1 day 10 minutes
Location San Francisco, CA { USA Seattle, WA { USA Cologne { Germany
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(a) Taxi scenario.

(b) Bus scenario.

(c) Synthetic scenario.

Figure 3.1: Normalized frequency of updates in each scenario. We divide the cities
in small areas of 100� 100 m2 and we analyze the sampled period of each dataset.
We consider that areas where we can �nd frequent updates are also denser areas.
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can be plotted to obtain the city map for each scenario, as shown in Figure 3.1. This

�gure represents, in fact, a heatmap of the normalized frequency of updates in small

areas of 100� 100 m2 for each dataset. We normalize the values by the highest

frequency in each scenario, considering the sampled period. The color range shows

that the more frequent the updates, the more dark red the area. Frequent updates

can happen in an area due to the number of updates sent by a set of vehicles or

due to the number of vehicles sending updates. Knowing that vehicles periodically

send updates, we consider that an area with frequent updates much likely has sev-

eral nodes. Hence, we can infer that the frequency of updates is directly related

to the density of vehicles in the area. It is important to observe that each dataset

represents distinct scenarios, where di�erent types of vehicles move across the cities,

with a diversi�ed range of absolute speeds. To characterize the scenarios in relation

to these speeds, we plot the Cumulative Distribution Function (CDF) of absolute

speeds for each dataset, as shown in Figure 3.2. We discuss the characterization of

each scenario in the following subsections.

(a) Taxi scenario. (b) Bus scenario.

(c) Synthetic scenario.

Figure 3.2: Cumulative distribution function of absolute speeds for each scenario.
(c) Cars in the synthetic scenario register the highest absolute speeds, followed by
the (a) taxis and the (b) buses. The latter registers the highest number of very low
absolute speeds and the most uniform distribution among the analyzed datasets.
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3.1.1 Mobility Dataset: Taxi scenario

The Mobility Dataset [47] represents the movement of 536 taxis in San Francisco,

California { USA, over 30 days. In fact, the dataset also involves part of the outskirts

of San Francisco. Taxi location is obtained through GPS and updates are sent each

10 seconds. Update events are represented by a tuplehlat; long; o f lag; t i , wherelat

and long are the latitude and longitude of the vehicle,o f lag is the occupancy ag

for the taxi (not used in this work), and t is the event time. Note that the existence

of periodic updates does not necessarily mean that every taxi send its location at

the end of each period. From the provided 30-day dataset, we analyze 1 day.

Figure 3.1(a) shows the normalized frequency of updates for the Taxi scenario,

considering the analyzed 1-day trace. We observe that, although taxis do not have

prede�ned routes or time schedules, updates are more frequent in the northern area

of the city, which is the city center, according to Google Maps. We also note that

a great number of updates are sent by vehicles traveling through a speci�c route to

the south, which leads to the city airport, according to Google Maps. We observe

some very straight lines in this �gure that do not match any existing roads in reality.

This happens as a consequence of lack of periodic updates for each and every taxi in

the scenario, which leads to approximation errors related to the taxi position, when

computing the absolute speeds.

Figure 3.2(a) shows the CDF of absolute speeds for the Taxi scenario. We observe

that 1% of the absolute speeds is equal to 0 km/h and almost 30% of the absolute

speeds lie within [0; 4 km/h]. Such percentage of very low absolute speeds can be

a consequence of waiting for passengers at taxi stands, in addition to stops due to

tra�c lights and street intersections. Tra�c jam also contributes to this percentage

and its presence in this scenario is highly plausible, as approximately 90% of the

registered absolute speeds lie within [0; 45 km/h].

3.1.2 Ad Hoc City Dataset: Bus scenario

The Ad Hoc City Dataset [48] registers the mobility of the eet of city buses in

Seattle, WA { USA, over 30 days. GPS devices are embedded in 1,200 buses and

location information is updated 525 times per day for each bus. Events are repre-

sented by tuples of the typehd; t; � i ; rt; x; y i , where d is the day for that event, t

is the event time, � i is the bus identi�cation, rt is the route followed by the vehi-

cle andx; y are the Cartesian coordinates for the vehicle position. Each bus sends

consecutive updates at di�erent time intervals. In average, we should expect one

update for each bus at, approximately, each 3 min. The following characterization

refers to 1 day from the 30-day dataset.

In the Bus scenario, we expect to �nd less vehicles distributed across the city
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when compared to the Taxi scenario. We further expect that buses have prede�ned

routes and time schedules. Similarly to the Taxi scenario, we plot the heatmap

for the frequency of updates in each region of 100� 100 m2. Figure 3.1(b) shows

the resulting map. We observe that frequent updates are concentrated on a small

region, which is the city center, according to Google Maps, where we believe the bus

density is higher.

Figure 3.2(b) shows the CDF of absolute speeds for the chosen day. We observe

that approximately 30% of the absolute speeds in this scenario are equal to 0 km/h,

indicating that buses stop more than taxis. Indeed, this is expected because, besides

the inuence of tra�c jams, the number of bus stops in the city is usually higher

than the number of taxi stands. In addition, the time spent to pick up passengers at

bus stations is usually higher than at taxi stands. Yet, the number of buses parked

at the bus garage but that continue to send location updates can also inuence the

CDF, resulting in a great percentage of null absolute speeds. Similarly to the Taxi

scenario, 90% of the registered absolute speeds lie within [0; 45 km/h].

3.1.3 TAPASCologne Dataset: Cologne synthetic scenario

The TAPASCologne Dataset [49] was produced by the Institute of Transportation

Systems at the German Aerospace Center (ITS-DLR). The goal is to model the

car tra�c in Cologne city, Germany, with the highest possible level of accuracy

compared to the real tra�c. The dataset is a hybrid model, built with a set of tools

to simulate vehicular mobility, such as the software Simulation of Urban Mobility

(SUMO) and the Travel and Activity Patterns Simulation (TAPAS) methodology,

among others. Location updates are sent each 1 second, but not by every single car.

Each update event is represented by a tupleht; � i ; x; y; si i , wheret is the event time,

� i is the vehicle identi�cation, x; y are the Cartesian coordinates for the position,

and si is the absolute speed. In this work we refer to this scenario, interchangeably,

as Synthetic or Cologne scenario.

The complete dataset covers an area of approximately 400 km2 and comprises

more than 700,000 individual trips of regular people cars during a 24-hour period.

Routes and time schedules are not prede�ned, although they usually follow a pattern

for each person, and very high absolute speeds are registered due to the presence of

highways crossing the city. At the time the analysis in this work was carried out,

the TAPASCologne project provided a 2-hour subset of the dataset. We divide this

dataset in smaller subsets to �nd the one with the least number of vehicles. The

goal is to ensure timely convergence of our analyses. Hence, we select the �rst 10

minutes, with almost 9,000 vehicles. Analogously to the Taxi and Bus scenarios, in

Figure 3.1(c) we plot the frequency of updates for the Synthetic scenario, and we
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observe that updates are frequent in several areas of the city.

Figure 3.2(c) shows the CDF of absolute speeds in the 10-minute subset trace.

Absolute speeds are more distributed compared to the other traces and we �nd

signi�cant number of registers with high absolute speed. Approximately 10% of

absolute speeds are equal to 0 km/h and 30% lie within [0; 40 km/h]. Further, 90%

of the registered speeds are under 100 km/h. This indicates that cars tend to move

faster than buses and taxis, which is expected. The presence of a wide range of

absolute speeds in this dataset, achieving speeds higher than 200 km/h, is probably

a consequence of the coexistence, in the same scenario, of roads and streets with

di�erent achievable speeds, including unlimited speed highways (autobahns).

3.2 Static network datasets

In addition to the dynamic datasets, we use snapshots from the Cologne synthetic

dataset, and three more static datasets derived from social networks. All of them

have distinct characteristics and they are summarized in Table 3.2. Figure 3.3

shows the graph obtained from each static dataset, and one snapshot sample from

the Cologne dataset. In this illustration, the importance of the node is depicted ac-

cording to its topological position. The scheme goes as follows: smaller nodes have

smaller traditional betweenness, hence, the less ows they intermediate using short-

est paths (geodesics); more reddish nodes have lower degree, hence, they have fewer

neighbors; more bluish nodes have higher degree, hence, they have more neighbors.

We further use several randomly generated static networks, which are discussed in

a separate section at the end of this chapter.

3.2.1 Freeman's EIES

The Freeman's EIES dataset presents the communication relationships between peo-

ple in a group of 32 academics [50] interested in interdisciplinary research. The data

consists of all messages sent plus acquaintance relationships. The graph of relation-

ships provided by this dataset is shown in Figure 3.3(a). A directed edge between

Table 3.2: Static network datasets main characteristics.

Feature
Freeman's Doubtful Sound PhD Cologne
EIES [50] Dolphins [51] Students [52] snapshots [49]

Number of nodes 32 62 1,025 1,584{1,916
Number of edges 460 159 1,043 1,573{2,044
Symmetry Asymmetric Symmetric Asymmetric Symmetric
Density 0:464 0:084 0:001 0:001
Number of samples 1 1 1 10
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two nodes [� i ; � j ] exists only if � i has sent a message to� j , totaling 460 links, with

a density of 0:464. Note that only few nodes in this dataset have high traditional

betweenness, and they are also the nodes with highest degree (large bluish nodes).

Although we can also �nd few nodes with high degree and low traditional between-

ness (small bluish nodes), degree and traditional betweenness are closely related,

i.e., nodes with high traditional betweenness tend to have high degree.

3.2.2 Doubtful Sound Dolphins

The Dolphins dataset provides the association relationship between 62 dolphins

in Doubtful Sound, New Zealand [51]. Each node corresponds to a dolphin and

the interaction between them is represented by an undirected edge, totaling 159

links. The density of this network is 0:084 and the graph provided by the frequent

associations between dolphins is shown in Figure 3.3(b). In this �gure, we observe

several nodes with high traditional betweenness and average degree (large purplish

nodes).

3.2.3 PhD Students

The PhD Students dataset is a very low density network (0:001) representing the

relationships between 1,025 PhD students and advisors [52]. This is a directed

network, where a link exists from� i to � j only if � i is the supervisor of� j , totaling

1,043 links. The graph obtained from these relationships is shown in Figure 3.3(c).

We observe that this network has a peculiar structure, where many nodes behave

as islands (i.e., roots) to which many other leaf nodes are attached. This is an

important characteristic that must be remembered when analyzing the centrality of

nodes in this network. We can spot a single node with high degree (bluish node),

and the majority of nodes have low traditional betweenness (small nodes).

3.2.4 Snapshots from the TAPASCologne dataset

We use 10 samples of the original dataset presented in Subsection 3.1.3, containing

from 1,584 to 1,916 nodes and from 1,573 to 2,044 undirected links, depending on the

snapshot sample. Snapshots with more nodes do not necessarily have more edges,

and vice-versa. Each node in this network represents a vehicle and an edge exists

between them if they are less than 50 meters away from each other. The density

of all samples is 0:001 and one of the sample graphs obtained from this dataset is

shown in Figure 3.3(d). We observe, in this �gure, that the majority of nodes are put

together in small groups, in which nodes have low traditional betweenness and low

degree (small reddish nodes). We also note other larger components, among which
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