
1

SensingBus: Using Bus Lines and Fog Computing
for Smart Sensing the City

Pedro Cruz∗, Felipe F. da Silva∗, Roberto G. Pacheco †, Rodrigo S. Couto†, Pedro B. Velloso∗,
Miguel Elias M. Campista∗ and Luís Henrique M. K. Costa∗

∗ Universidade Federal do Rio de Janeiro - PEE/COPPE/GTA - DEL/POLI
† Universidade do Estado do Rio de Janeiro - FEN/DETEL/PEL

Abstract—Different smart city applications rely on Internet
of Things infrastructures to perform sensing tasks, using data
to improve citizens’ daily life. Nonetheless, deploying static
sensing nodes over entire cities is often unpractical, since costs
may become prohibitive to municipalities. If, however, sensors
could move throughout the city, they would be able to cover a
wider area and take advantage of opportunistic communications,
reducing costs. Motivated by this idea, we propose SensingBus, a
general-purpose system that collects data from sensors carried by
urban buses. SensingBus is based on a three-level architecture.
At the first level, sensing nodes collect and send data to the
second level, consisting of fog nodes. The fog nodes pre-process
and deliver data to the third level, the cloud infrastructure,
which stores and makes data externally available. The fog infras-
tructure, on the other hand, discards defective data, compresses
information, and provides secure access points between fog and
cloud. To validate SensingBus, we build a prototype and perform
experiments to stress the fog nodes. We verify that each one can
accommodate at least 20 simultaneous sensing nodes, which is an
adequate number to perform city sensing using urban bus lines
of a city such as Rio de Janeiro.

Index Terms—Internet of Things, fog computing, urban sens-
ing, smart cities.

I. INTRODUCTION

Smart cities aim at improving the quality of life of citizens
by providing new public services or enhancing the efficiency
of existing ones. The key idea consists of monitoring several
aspects of the city, such as traffic, weather, air quality, only
to cite a few, and using the collected information as the
fundamental input to intelligent applications. For example,
consider a typical public service: street lighting. Municipalities
are interested in keeping the number of faulty light poles
as low as possible, because there is a relationship between
dark areas and crime events, and other problems such as
car accidents. Hence, a smart city can use sensing devices
to monitor light poles and detect problems in these objects.
Another promising application is to predict flooding caused
by storms and tell citizens to avoid areas that will potentially
be affected.

The Internet of Things (IoT) paradigm can be used to collect
the data of interest for each smart city application. The basic
principle of IoT consists of adding communication, processing
and sensing capabilities to everyday objects [1]. Nevertheless,
to provide effective sensing in smart cities, one has to spread

This paper was accepted for publication in the IEEE Cloud Computing
Magazine. All rights are reserved to IEEE c©2018 IEEE.

IoT devices in large geographic regions. Such strategy might
prove prohibitively expensive. For example, in the case of
street lighting, every light pole would be equipped with sensors
and communication interfaces. Considering a big city with
several thousands of light poles distributed over a large area,
adding IoT devices to every light pole might impose significant
deployment and maintenance costs. One alternative is to apply
a Mobile Wireless Sensor Network (MWSN) that covers the
entire region of interest. As sensors move through the region,
the coverage area is enlarged, avoiding additional costs with
IoT devices. This approach, termed as mobile sensing in the
literature, creates a trade-off between mobility cost and the
time to cover a given area [2].

One way of granting mobility to sensors is to embed them
into buses, in line with the IoT paradigm. The advantage
of using buses to transport sensors is threefold. First, buses
cover a significant area of cities. Second, the additional cost
of carrying IoT devices in buses is negligible. Third, the route
of a given bus line is generally the same, with reasonably
regular intervals, providing predictable coverage. Moreover,
bus lines usually present some itinerary overlapping, which
means that one location might be in the route of several buses.
Thus, several measurements of this location can be collected,
increasing the sensing reliability. In the example of street
lighting, a single luminosity sensor in a bus can monitor the
quality of all light poles on its route. As employing a single
mobile sensor can be unreliable, different buses passing near
a given light pole can measure its luminosity quality.

Typically, IoT devices have limited processing and storage
capabilities, while smart city applications collect and analyze
a large data amount. Thus, a solution to store and process the
collected data is to use a cloud computing infrastructure [3].
IoT devices are responsible for sensing and actuation, while
heavier processing tasks are performed in the cloud, which
has more processing power and is able to gather all data
collected in a distributed fashion. A major concern regarding
this approach is the network traffic exchanged between devices
and cloud, which might be high. Furthermore, security is
a concern, given that IoT devices may be unable to run
secure protocols to communicate with the cloud. We overcome
these limitations by employing a fog computing infrastructure
between IoT devices and the cloud. The role of the fog is to
pre-process data before it reaches the Internet [4]. Hence, more
sophisticated security protocols can be employed before the
messages are sent over the Internet. Additionally, messages can



2

be aggregated, filtered, and compressed in the fog, reducing
the traffic sent to the cloud and network costs.

This work introduces SensingBus, a system that uses the
concept of mobile sensing in smart cities. To offer sensor
mobility, SensingBus leverages the mobility of bus lines of
public transportation systems. Thus, using the IoT paradigm,
buses in SensingBus are equipped with sensors and a com-
munication interface to collect and send the collected data to
fog nodes located at bus stops. The fog sends data to the
cloud, after performing preliminary processing. SensingBus is
based on a three-level architecture, similarly to [4] and [5].
The first level is composed of IoT devices that collect data.
The second level is the fog infrastructure which lays between
IoT devices and the cloud, employed to improve security and
reduce performance issues. The third level is the cloud, which
receives this data and make it available to users. We also
present the SensingBus prototype and a brief performance test
of the fog nodes. Our results show that fog nodes can serve at
least 20 simultaneous devices, and that this amount of devices
is the maximum demand of 88% of the bus stops in the city
of Rio de Janeiro.

II. MOBILE SENSING IN SMART CITIES

There are different projects that employ mobile sensing to
monitor smart cities. BusNet [6] is an architecture based on a
delay tolerant network used to monitor road conditions. In this
architecture, buses are equipped with sensors and a main bus
stop is responsible for gathering and analyzing the collected
data. Data arrives at the main stop by using opportunistic
communications. BusNet employs sensor units, installed on
buses, which send data to auxiliary nodes spread over a road
network. The auxiliary nodes then send the collected data to
buses traveling in the direction of the main station. Hence,
buses act as sensing nodes as well as data mules. Mosaic [7] is
another mobile sensing architecture, which targets measuring
air quality. In Mosaic, sensor nodes are installed in vehicles
and send raw data to the cloud using a GSM/GPRS module.
The cloud is responsible for processing data and delivering
it to end users through an API. One of the cloud tasks is to
calibrate the received information by removing inaccurate data.
This calibration is performed using Artificial Neural Networks
(ANN) and Support Vector Machines (SVM).

SensingBus communication architecture lies between Bus-
Net and Mosaic approaches. We employ opportunistic commu-
nications between buses and fog nodes which are located at bus
stops. This approach is similar to the communication between
sensor units and auxiliary nodes of BusNet. Nevertheless, fog
nodes receive data and send it directly to a cloud, instead
of using data mules. In Mosaic, the information is sent from
sensing nodes directly to the cloud. Hence, differently from
Mosaic, we employ a fog infrastructure between sensing nodes
and the cloud. This fog can perform pre-processing, such as
data calibration implemented in Mosaic.

The project SmartSantander [8] and the work of Alsina-
Pagès et al. [9] also employ vehicles to perform urban mobile
sensing. SmartSantander employs sensor nodes attached to
urban vehicles in order to gather data about the city, together

with other data sources. The project follows a three-tier
architecture, with IoT, Gateway and Server tiers. The work
of Alsina-Pagès et al. analyses a WSN with urban buses for
noise monitoring. Alsina-Pagès et al. [9] list the requirements
of this network and evaluate different options to perform signal
processing using sensor nodes. The main difference between
SensingBus and both projects is that the gateway nodes in
SensingBus can pre-process data, composing a Fog level and
enabling new services and architectural possibilities.

There are some works employing mobile sensing to collect
data and perform scientific analysis. Some examples address
issues related to air pollution mapping. In these projects,
data is collected to build models and infer the air quality
in a city. Since their main focus is data processing, they do
not propose an architecture to store and make information
available. Opensense [10] is an example, which uses buses
in Lausanne to acquire data and propose models to estimate
polluted locations. Another approach focused on data process-
ing is presented in [11], where sensors are installed in Google
Street View cars in Oakland. Their work provides different
conclusions about air quality in this city, as well as generic
models or technical information that can be applied in other
cities. Finally, the work in [12] employs Google Street View
cars to detect gas leaks.

The above-mentioned works confirm the potential of mobile
sensing for smart cities and indicate that an integrated strategy
for city sensing can prove useful. Hence, SensingBus can im-
prove the mentioned approaches by applying the Fog paradigm
into the mobile urban sensing with low-cost equipment. This
strategy can enable new applications, reduce costs and improve
quality of service.

III. SENSINGBUS

The main goal of SensingBus is to provide a monitoring
platform which facilitates the development of smart city
applications. SensingBus implements the whole monitoring
process, which comprises data sensing, transmission, storage,
and service. The main SensingBus functionalities are:
• Data gathering: SensingBus gathers data along the path

of participating buses, i.e., the ones equipped with a
sensing node;

• Data pre-processing: SensingBus pre-processes data be-
fore transmitting it through the Internet. For instance,
inconsistency is filtered, so the links to the Internet
are not overused. Additionally, using signed certificates,
SensingBus avoids that unauthorized devices can publish
or modify the data before it reaches users;

• Data transmission: gathered data is transmitted from
buses to users. Users must be able to ensure that data
is not fake, i.e., it was gathered by SensingBus and was
not modified during transmission.

• Data storage: all data is stored in a single database in
the cloud;

• Data service: urban data collected by SensingBus is made
available to users.

To provide such functionalities, the architecture of Sens-
ingBus is divided in three levels: Sensing, Fog, and Cloud.



3

Wireless
Interface

Fog node

Application
Client

Application
Server

Pre-processing

Controller

Network
Interface

To Cloud
node

From a
Sensing node

Cloud node

IaaS Cloud

Web
Interface

Database
Server

API

From a 
Fog node

To
users

Controller

GPS
Receiver

Sensor
Bank

Wireless
Interface

Persistent
Memory

Sensing node

To a Fog
node

InternetSensing Level Cloud LevelFog Level

Fig. 1. The three-level architecture of SensingBus.

The Sensing level is composed of Sensing nodes located in
the vehicles. This level performs data gathering. Data is then
sent to the Fog level, consisting of fixed nodes installed into
strategic spots around the city, such as bus stops. The Fog
level pre-processes the data, as a fog element in the network.
The Cloud level runs on a cloud service and receives, stores,
and processes the data. The Cloud level also gives end users
access to data. The architecture of SensingBus and its nodes
is shown in Fig. 1.

A. Sensing level
The Sensing level is responsible for gathering data about

the city and sending it to Fog nodes. Along with the sensed
data, the Sensing node registers the timestamp and geographic
coordinates of each sample. This level is composed of the set
of all Sensing nodes located in the buses.

The Controller of the Sensing node (Fig. 1) manages all
tasks of the node. At a specific sampling rate, the Controller
reads the coordinates and time indicated by the GPS Receiver
and also reads the measurements of every sensor in the Sensor
Bank. The coordinates, time, and measurements are associated
and written into the Persistent Memory. At every iteration, the
Controller also queries the Wireless Interface to check whether
a connection is established with a Fog node. The Sensing
node connects to the Fog node using a private network, where
all the other devices are trusted. Whenever a connection is
established, the Controller sends all the data stored in the
Persistent Memory to the Wireless Interface. This data is sent
to a Fog node, and can thus be deleted from the Persistent
Memory in the Sensing node. The size of the Persistent
Memory must be enough to hold all data gathered between
any two consecutive encounters of the Sensing node with a
Fog node.

One design objective of SensingBus is to have inexpensive
Sensing nodes because, ideally, every urban bus in the city will

carry one. Thus, Sensing nodes are simple and constrained in
terms of computational resources.

B. Fog level
The Fog level follows the fog computing paradigm. Fog

nodes are located at the edge of the network. Their compu-
tational power is at an intermediate level between Sensing
nodes and nodes in the Cloud level, which are cloud servers.
Basically, Fog nodes receive raw data from the Sensing level,
pre-process, and send it over the Internet to the Cloud level.
The pre-processing is fundamental to our system since it can
provide important functionalities that improve performance
and security. These functionalities include data aggregation,
data compression, cryptography, and others.

Fog nodes (Fig. 1) act as both application clients and
servers, depending on the context. From the viewpoint of
Sensing nodes, Fog nodes are application servers receiving
data. Additionally, Sensing nodes also view Fog nodes as
access points, since Fog nodes create private networks for
communication between Fog and Sensing nodes. On the other
hand, to the nodes in the Cloud level, Fog nodes are application
clients. They connect to the Cloud level using the Internet and
forward data received from the Sensing nodes.

Communication between Sensing nodes and Fog nodes
happens on a private network, therefore, a certain security
level is assured. Since messages between Fog nodes and Cloud
nodes travel over the Internet, it is important that Fog nodes
use protocols that implement authorization and data integrity.
For this reason, it is expected that every Fog node has a
certificate, signed by a Certificate Authority known and trusted
by Cloud nodes.

C. Cloud level
The Cloud level is the final destination of collected data.

Inside it, data is stored, processed, and made available to users.



4

There are many reasons for having these tasks performed by
a cloud service, but the most important are the elasticity and
availability of the cloud. Elasticity is important because we
expect intensive algorithms to run over data from times to
times. Availability is important because SensingBus might act
as the core of fundamental services, such as flood warnings.

The web server of the Cloud node waits for requests from
Fog nodes and users. Fog nodes can only add data to the
database, whereas users can only read data from the database.
The Cloud node consists of a virtual machine running on a
distributed IaaS cloud. This arrangement provides elasticity,
allowing the processing and storage of the Cloud node to
grow and shrink, on demand. Moreover, availability is favored
by the distributed aspect of the IaaS cloud. Different sites
of the distributed cloud can replicate the same Cloud node,
improving the resilience of the system.

Cloud nodes must hold a certificate signed by a Certificate
Authority trusted by the nodes of the Fog level, in such a way
that Fog nodes know if they have their messages intercepted
and even discarded. Additionally, Cloud nodes must be capable
of checking the certificates presented by Fog nodes. This
prevents malicious devices from inserting data into the Cloud
node database.

The main limitation of SensingBus is related to its spatial
and temporal coverage. The spatial coverage is limited because
SensingBus can only cover the streets that are visited by buses.
The temporal coverage is limited because buses travel through
the city, covering different areas at each moment. Therefore,
SensingBus can serve as a main source of data, as other
networks cover the areas SensingBus cannot reach.

IV. PROTOTYPE

We build a prototype for SensingBus in order to confirm its
feasibility and scalability. The equipment and software used
in the Sensing, Fog, and Cloud nodes are listed in Table I.
Our source code is available at https://github.com/pedrocruz/
sensing_bus. The next sections explain in detail the different
parts of the prototype.

A. Sensing nodes

Sensing nodes employ an Arduino UNO as Controller,
due to its low cost. The Wireless Interface is an ESP8266,
a programmable IEEE 802.11b/g/n interface. Physically, this
node is composed of two parts: one is kept inside the bus
and the other is installed outside the vehicle. This division
is performed since some modules must be exposed to the
environment, such as sensors and transmitters, while other
components must be protected from harsh environment condi-
tions. For example, rain can harm some electronic equipment,
but a rain sensor must be exposed to it. The part inside the
vehicle contains the Controller, GPS Receiver, and Persistent
Memory. The GPS Receiver and Persistent Memory are on
the same board, the most expensive in this node. The external
part contains the Wireless Interface, GPS Receiver antenna,
and Sensor Bank. The external part is protected by an acrylic
case measuring 7 × 7 × 4 cm, on the rooftop of the bus. Since
sensors need to detect environmental issues, the protective case

has transparent surface and some holes, allowing sensors to
effectively sense the environment. The effect of the protective
case and mobility on the measurements were tested on a
previous work [13], using a similar component layout. The
following functionalities are currently implemented in the
Sensing nodes:

• Data gathering: data is gathered by sensors in the sensor
bank;

• Data temporary storage: data is stored until a connec-
tion with a Fog node is possible;

• Data delivery: data is delivered to a Fog node, when a
connection is available.

Taking advantage of the programmable Wireless Interface,
we implement a simple protocol for the communication be-
tween the Controller and the Wireless Interface. In this proto-
col, the Controller asks periodically if there is a connection and
the Wireless Interface answers. When the answer is positive,
the Controller sends enough data to fill the buffer of the
Wireless Interface, waits for data to be sent and initializes
a new iteration, asking again if there is a connection.

As an implementation issue, messages have constant values
per node, such as a header, indicating the sensors installed in
the bank. Since the SRAM memory of Arduino Uno is limited,
we treat all the constants as strings and store them in the
flash memory. In the first implementation on ESP8266, every
message sent would open a TCP connection and close it after
the message was sent. Even though this approach saves lines of
code, every new connection creates new objects that are not
discarded immediately when the connection closes, causing
instability to ESP8266. To solve this issue, the connection
status is kept and ESP8266 performs several requests over
the same connection.

The Wireless Interface holds the SSID and password of
a WPA2-protected network created by the Fog nodes. The
Wireless Interface searches periodically for a wireless network
with the pre-configured SSID, and answers queries from the
Controller. After the Wireless Interface signals the Controller
about a new connection, the Controller only sends application-
specific data to the Wireless Interface. The Wireless Interface
prepares the HTTP headers and executes a POST method to
the Fog node. According to our experiments, this approach is
two times faster than preparing the HTTP headers inside the
Controller. The codes used in this test can be found in folder
“sensing/tests” of the repository.

B. Fog nodes

The equipment used in Fog nodes are shown in Table I.
Raspberry Pi II Model B is chosen as Controller because
of its computing power, size, costs, and available interfaces.
WiPi is chosen as the Wireless Interface due to its costs
and because of the number of simultaneous connections that
it supports. Some other options with greater communication
range were considered but discarded, because of the low
number of simultaneous connections supported. The effect of
simultaneous connections is further discussed in the following
sections.

https://github.com/pedrocruz/sensing_bus
https://github.com/pedrocruz/sensing_bus


5

TABLE I
EQUIPMENT AND SOFTWARE USED IN THE SENSINGBUS PROTOTYPE.

Level node Module Equipment Manufacturer/Publisher Type

Sensing node

Controller Arduino UNO R3 Arduino Hardware
GPS Receiver GS-96U7 Guangzhou Xintu Hardware
Persistent Memory GS-96U7 Guangzhou Xintu Hardware
Wireless Interface ESP8266 Espressif Hardware

Sensor Bank

Humidity Sensor DHT11 DFRobot Hardware
Temperature Sensor DHT11 DFRobot Hardware
Light Intensity Sensor GL5528 GBK Robotics Hardware
Rain Intensity Sensor GL5528 GBK Robotics Hardware

Fog node Controller Raspberry Pi II model B Raspberry Pi Foundation Hardware
Wireless Interface WiPi Element14 Hardware

Cloud node IaaS Cloud OpenStack OpenStack Foundation Software
Server Apache 2.4.18 Apache Software Foundation Software
Database MySQL 5.7 Oracle Software
Web Interface Django Django Software Foundation Software
WAPI Django REST Framework Tom Christie Software

The Wireless Interface of Fog nodes acts as an IEEE 802.11
access point protected with WPA2 (Wi-Fi Protected Access 2).
The SSID and password are configured into the Controller. In
the Controller, an HTTP server implemented in Python serves
incoming requests and pre-process data before sending it to
the Cloud node. Fog nodes have the following pre-processing
functions currently implemented:
• Error detection: data is checked for inconsistencies and

defective data is discarded;
• Data concentration: data is stored and sent periodically.

We use a single connection at the end of each interval,
reducing the number of connections to Cloud level;

• Data compression: data is compressed before it is sent,
reducing the traffic to the Internet, and, consequently, the
costs with subscriptions.

For every request, the Fog node Controller checks data
and discards inconsistent measurements. After that, data is
accumulated on a concentration queue. At regular intervals,
data is compressed and sent to the Cloud node. To send data,
the Fog node acts as HTTPS client, getting authorization by
presenting its certificate to the Cloud node.

C. Cloud node

The prototype of Cloud node is implemented in soft-
ware. The software used is shown in Table I. An Apache
(http://httpd.apache.org/) server runs on a virtual machine,
instantiated on an IaaS cloud. The Apache server ex-
ecutes a Django (https://www.djangoproject.com/) applica-
tion, that relies on MySQL (https://www.mysql.com/) to
store data, and on Django REST Framework (http://www.
django-rest-framework.org/) to create API endpoints. The
Cloud node exposes an URL for data insertion. This URL
is protected by Apache, which only authorizes clients if they
present valid certificates, generated by a trusted Certificate
Authority. Therefore, on SensingBus as a whole, data integrity
and authorization between Sensing level and Fog level rely
upon WPA2, whereas between Fog and Cloud levels, data
integrity and authorization are assured by HTTPS. The Cloud
node prototype also provides API endpoints for querying

data. Data can be queried by date, time, location and sensor
type. Thus, users can use SensingBus to develop their own
applications. The documentation of the API can be found
together with the available code.The following functions are
currently implemented in Cloud nodes:
• Data insertion endpoints: API endpoints are exposed

for data insertion;
• Data query endpoints: API endpoints are exposed for

data query. Data can be queried by date, time, location
and sensor type.

The communication between different nodes is performed
using HTTP/HTTPS and users fetch data using RESTful APIs.
This ensures uniform interfaces, to deal with the heterogeneity
of devices and applications.

D. Performance Analysis

We conduct a number of experiments to test the scala-
bility of our Fog node prototype. We aim to evaluate the
number of requests a single Fog node has to serve simul-
taneously. To estimate this number, an analysis of two real
datasets is performed. The first dataset contains the positions
of all bus stops in Rio de Janeiro (http://data.rio/dataset/
pontos-de-parada-de-onibus). The second dataset contains the
positions of all buses in Rio de Janeiro, refreshed every minute
(http://data.rio/dataset/gps-de-onibus). We collected the posi-
tions of all buses throughout 8:00 AM and 10:00 PM of
November 30, 2016. The early and late hours of the day are
discarded because a great number of buses is parked, creating
distortions in our evaluation.

We assume that every bus carries a Sensing node and every
bus stop has a Fog node installed. For every minute, the
positions of buses and bus stops are compared. If the distance
between a bus and a bus stop is shorter than a given threshold
that represents the communication range, we consider that the
Sensing node in the bus can send data to the Fog node on
the bus stop. We define five different communication ranges:
1000, 500, 250, 125, and 72 meters. Using this dataset, it is
possible to evaluate the amount of data received by every Fog
node. Fig 2(a) illustrates the cumulative distribution of the

http://httpd.apache.org/
https://www.djangoproject.com/
https://www.mysql.com/
http://www.django-rest-framework.org/
http://www.django-rest-framework.org/
http://data.rio/dataset/pontos-de-parada-de-onibus
http://data.rio/dataset/pontos-de-parada-de-onibus
http://data.rio/dataset/gps-de-onibus


6

103 104 105 106 107 108

Amount of data received in a day (B)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

ti
on

 o
f F

og
 n

od
es Range = 1000m

Range = 500m
Range = 250m
Range = 125m
Range = 72m

(a) Cumulative distribution of data received by each
Fog node in a day, for different communication
ranges.

0 100 200 300 400
Number of simultaneous contacts

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
ti

on
 o

f b
us

 s
to

ps

Range = 1000m
Range = 500m
Range = 250m
Range = 125m
Range = 72m

(b) Cumulative distribution of maximum number of
Sensing nodes served by each Fog node, for different
communication ranges.

5 10 15 20
Number of simultaneous gathering nodes

4

5

6

7

8

9

10

11

U
sa

ge
 (%

)

50

100

150

Th
ro

ug
hp

ut
 (k

bi
ts

/s
)

CPU Usage (%)
Memory Usage (%)
Throughput (kbits/s)

(c) Stress tests of a Fog node prototype.

Fig. 2. Analysis of the Fog nodes of the prototype.

amount of data received by each fog node throughout a day.
It is possible to note that, for all ranges, less than 40% of Fog
nodes receive less than 1 MB of data. Also, for every range,
10% of the Fog nodes concentrate more than 47% of the traffic.
In order to test the scalability of the Fog node prototype,
we evaluate the maximum number of Sensing nodes served
simultaneously by each Fog node, during the day. Fig. 2(b)
shows the cumulative distribution of the maximum number of
Sensing nodes served simultaneously by each Fog node, for
different communication ranges. According to Rubinstein et
al. [14], the range of IEEE 802.11g in traffic speed is inferior
to 250 m. Since our prototype can use IEEE 802.11b/g/n, we
adopt 250 m as a reference. In Fig. 2(b), it is possible to
note that, for a communication range of 250 m, around 88%
of Fog nodes serve less than 20 Sensing nodes simultaneously.
Therefore, we adopt 20 as the maximum number of Sensing
nodes to use in the stress test.

We use the same datasets to verify the intercontact times of
buses with bus stops, considering a communication range of
250 m. We observe that, in more than 98% of the samples, a
bus waits less than 10 minutes between contacts. Therefore,
we configure every Sensing node in our stress test with data
equivalent to 10 minutes of sensing. Given that the sensor bank
in our prototype generates 53 bytes every second, 10 minutes
of sensing produces 31,800 bytes. In our implementation, this
is equivalent to 15 HTTP POSTs from the Sensing node to the
Fog node. The data generation rate of our prototype indicates
that the Persistent Memory has to store less than 5 MB in
order to store data for a whole day. In addition, the maximum
expected time a bus travels with no Fog contact is much shorter
than a day.

To simulate the simultaneous arrival of Sensing nodes in
the communication range of a Fog node, we simultaneously
turn on one, five, ten, fifteen, and twenty Sensing nodes within
range of the Fog node. After Sensing nodes are on, we wait
all data to be received by the Fog node and transmitted
to the Cloud node of the prototype. For each number of
Sensing nodes, the test is repeated 30 times. Throughout the
tests we did not observe any instability in our nodes. The
codes used in this experiment are available in the folder
“fog/stress_tests” of the repository. Fig. 2(c) shows the results

for the average memory and CPU usage since the first POST
arrives at the Fog node, until the last POST arrives at the Fog
node, for all the participating Sensing nodes. Measurements
are presented with 95% confidence interval. On Fig. 2(c), one
can observe that the Fog node can serve up to 20 Sensing
nodes without exhausting its memory and CPU resources. It
is worth noting that the average throughput obtained by each
Sensing node drops as the number of Sensing nodes increases,
as a consequence of competition for the medium. In a previous
work, we have studied the intercontact times between buses
and bus stops [15]. Considering the data generation rate of
the sensor bank, we conclude in [15], that the throughput per
sensing node must be at least 3 kbps to deliver all data gathered
in a single contact opportunity. Our experiments show that our
prototype suits such requirements, even in the worst case, with
20 simultaneous sensing nodes sharing the same fog node.

V. CONCLUSION

This paper presented SensingBus, a system for smart city
sensing based on urban buses. SensingBus combines the con-
cepts of IoT, fog, and cloud computing in order to collect, pre-
process, process, store, and serve sensed data. One of the main
goals of SensingBus is to provide a low-cost general-purpose
solution that collects and provides to users information of
different locations of a city.

We have also demonstrated the feasibility of SensingBus
through the results obtained using a prototype, built using
low-cost hardware. Those results analyze the scalability of the
SensingBus prototype. Using data from real bus lines, we have
shown that the Fog node prototype supports at least 88% of
bus stops in Rio de Janeiro. Note that in a real implementation
we may not install fog nodes in all bus stops. Hence, being
able to choose 88% of the bus stops is more than enough.

As future work, we plan to build a pilot version of the
system over the internal bus fleet of UFRJ campus. We are
also investigating promising end-user applications that can
benefit from data gathered from SensingBus, as well as a list
of sensors that should be added to the Sensor Bank. Another
plan is to use fog nodes to coordinate a cooperation between
buses, to eliminate, or at least reduce, the amount of duplicate
data.



7

ACKNOWLEDGMENTS

This work was partly funded by FAPERJ, CAPES, CNPq,
and grants #15/24494-8 and #15/24490-2, São Paulo Research
Foundation (FAPESP)

REFERENCES

[1] J. Gubbi et al., “Internet of things (IoT): A vision, architectural elements,
and future directions,” Future Generation Computer Systems, vol. 29,
no. 7, pp. 1645–1660, Sep. 2013.

[2] B. Liu et al., “Mobility improves coverage of sensor networks,” in 6th
ACM MobiHoc’05, May 2005, pp. 300–308.

[3] K. Xu, Y. Qu, and K. Yang, “A tutorial on the Internet of Things: From a
heterogeneous network integration perspective,” IEEE Network, vol. 30,
no. 2, pp. 102–108, 2016.

[4] F. Bonomi et al., “Fog computing and its role in the Internet of Things,”
in ACM Workshop on Mobile Cloud Computing (MCC), Aug. 2012, pp.
13–16.

[5] W. Li et al., “System modelling and performance evaluation of a three-
tier cloud of things,” Future Generation Computer Systems, vol. 70, pp.
104–125, May 2017.

[6] K. D. Zoysa et al., “A public transport system based sensor network for
road surface condition monitoring,” in Workshop on Networked Systems
for Developing Regions (NSDR), Aug. 2007.

[7] W. Dong et al., “Mosaic: Towards city scale sensing with mobile sensor
networks,” in IEEE International Conference on Parallel and Distributed
Systems (ICPADS), Dec. 2015, pp. 29–36.

[8] L. Sanchez et al., “Smartsantander: Iot experimentation over a smart
city testbed,” Computer Networks, vol. 61, pp. 217–238, 2014.

[9] R. M. Alsina-Pagès et al., “Design of a mobile low-cost sensor network
using urban buses for real-time ubiquitous noise monitoring,” Sensors,
vol. 17, no. 1, p. 57, 2016.

[10] A. Marjovi, A. Arfire, and A. Martinoli, “High resolution air pollu-
tion maps in urban environments using mobile sensor networks,” in
International Conference on Distributed Computing in Sensor Systems
(DCOSS), Jul. 2015, pp. 11 – 20.

[11] J. S. Apte et al., “High-resolution air pollution mapping with google
street view cars: Exploiting big data,” Environmental Science & Tech-
nology, vol. 51, no. 12, pp. 6999–7008, Jun. 2017.

[12] J. C. von Fischer et al., “Rapid, vehicle-based identification of location
and magnitude of urban natural gas pipeline leaks,” Environmental
Science & Technology, vol. 51, no. 7, pp. 4091–4099, Mar. 2017.

[13] P. Cruz et al., “On the accuracy of data sensing in the presence of
mobility,” in 7th NoF’16, Nov. 2016.

[14] M. G. Rubinstein et al., “Measuring the capacity of in-car to in-car
vehicular networks,” IEEE Communications Magazine, vol. 47, no. 11,
Nov. 2009.

[15] P. Cruz, R. S. Couto, and L. H. M. K. Costa, “An algorithm for
sink positioning in bus-assisted smart city sensing,” Future Generation
Computer Systems, 2017.


	Introduction
	Mobile Sensing in Smart Cities
	SensingBus
	Sensing level
	Fog level
	Cloud level

	Prototype
	Sensing nodes
	Fog nodes
	Cloud node
	Performance Analysis

	Conclusion
	References

