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Abstract— This paper proposes and analyzes a bio-inspired
scheme to field estimation using wireless sensor networks. The
proposed scheme exploits the temporal pattern of the sensed
process to reduce the number of samples sent back by a
sensor node to the sink and decrease the energy consumption
in data transmission. The proposed scheme is orthogonal to the
techniques that reduce the spatial density of collected samples
deactivating nodes with similar measurements. Thus, the pro-
posed scheme can be used along with these techniques. Results
show that for very regular processes the scheme can reduce
around 90% the total amount of samples sent in the network
and even for less regular processes the proposed scheme can
reduce between 10 and 20% the total amount of samples sent
with small reconstruction errors.

I. INTRODUCTION

Field estimation is an important application of wireless sen-
sor networks. This type of application deploys sensor nodes in
a specific region to remotely sense space-temporally variable
processes. The spatial and temporal frequencies of sampling
directly impact the quality of the estimation. The spatial
frequency depends on the number of nodes and how these
nodes are distributed, while the temporal frequency depends
on the rate of sampling of the active nodes. High frequencies
consumes more resources, but low frequencies may reduce the
accuracy of the process estimation [1]. Therefore, there is a
tradeoff between the frequency and the number of samples
transmitted, which is related to the energy consumption of the
network.

The most common solution to reduce the number of samples
transmitted to the sink is to identify areas where different
nodes present similar readings and reduce the sampling spatial
frequency by deactivating some of these nodes [2], [3], [4].
The idea is to expand the network lifetime collecting fewer
samples in regions with smooth spatial variations. Thus, the
transmission of redundant information is reduced and the high
cost of data transmission is avoided [5]. Nevertheless, this
approach is not efficient in regions of the field with sharp
spatial variations, or borders. These regions usually represent
important aspects of the process [6] and need to have many
nodes actives. There is, however, another sampling dimension
to regard: the temporal dimension. Little effort has been
made to know when active nodes must collect and transmit
samples. A feature that can be exploited is the temporally
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regular behavior of many physical processes. Temperature, for
instance, generally has a similar behavior in consecutive days.

We propose to allow nodes to identify patterns in the
behavior of the sensed processes and report only uncommon
measures. This environment-aware behavior is similar to the
response of living beings to the surrounding events. People and
animals are continually receiving stimuli; however, it is impos-
sible to handle consciously all these stimuli. The organisms
develop the notion of periphery and center of attention [7].
While the periphery is handled in a sub-conscious manner, the
center of attention is the event consciously treated. Generally,
an event migrates from the periphery to the center of attention
when it differs much from the periphery as a whole.

This paper proposes and analyzes a bio-inspired scheme to
exploit specific features of the monitored processes in order
to reduce the number of transmitted samples. The proposed
scheme is fully distributed as each node identifies its own
periphery (Section II). Thus, each node sends to the sink only
the samples that differ from the usually sensed by the node.
This scheme can save resources for nodes located in border
regions as in smooth varying regions. This temporal technique
is orthogonal to space-frequency-reduction techniques and
both techniques can be used together to improve the system
performance. This paper is organized as follows. Section II de-
fines more clearly how some features of the physical processes
can be exploited and details the proposed scheme. The results
of the simulations of the scheme are showed in Section III.
Finally, Section IV concludes this paper.

II. PROPOSED SCHEME

The proposed scheme is based on the construction of a
periphery of attention by each sensor node. It is necessary
that the monitored process present an expected time behavior.
Indeed, many physical processes present regular behaviors,
sometimes with well-defined cycles. Fig. 1 shows the tem-
perature measured in two different places of Rio de Janeiro
during three consecutive days [8].

It is clear from Fig. 1 a regular behavior where the tempera-
ture is low in the morning and rises near noon. The temperature
falls in the afternoon and reaches low values again at night.
Relating to the idea of periphery, a temperature curve that
is similar to the average of these curves of Fig. 1 could
remain in the periphery. Otherwise, a curve differing above a
certain threshold must be explicitly taken into account. While
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(a) Temperature in São Cristóvão.
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(b) Temperature in Guaratiba

Fig. 1. Temperatures in two distinct places of Rio de Janeiro.

the three curves in Fig. 1(a) present very similar behavior,
the Day 2 curve of Fig. 1(b) has significant differences from
the Day 1 and Day 3 curves. The proposed scheme aims at
conserving resources not sending information when situations
like the one in Fig. 1(a) occurs. On the other hand, the
accuracy of the estimation is preserved sending information
for situations like the Day 2 curve in Fig. 1(b). Therefore, the
sink assumes the behavior is the one expected if no update
sample is received. Furthermore, update samples are included
in the process reconstruction, keeping low the estimation error
in situations like Day 2 curve of Fig. 1(b). These samples sent
due to their difference with the regular behavior are called
refining samples.

The periphery construction and refining sample generation
can take different forms. The first stage is to determine the
periodicity of the regular behavior. One option to do this is
to collect samples for a relatively long time and calculate
the autocorrelation of the vector of samples. Based on the
autocorrelation, the period of the process can be obtained.

Once the period of the regular behavior is identified, the node
can begin defining its own periphery, or expected behavior, as
follows:

PBi = Pi−1 × α + PBi−1 × (1 − α), (1)

where PBj is the vector containing the expected behavior
during period j, Pi−1 is the vector with the samples collected
during period (i − 1), and α is the weight of the last period
obtained in the expected behavior. Thus, as α increases, the
higher will be the importance of more recent periods on the
expected behavior and smaller will be the influence of the
historic behavior of the process.

In this paper we focus temperature monitoring, which
clearly has a daily periodicity. Temperature presents also an
annual periodicity, but our analysis is based on the daily
periodicity. Hence, the sensor nodes must identify a daily-
expected behavior, updated every day. The decision over
refining samples is done based on this behavior. Also, it is
necessary to provide the sink with enough information to
correctly reconstruct the field. In order to do that, the sink
needs to know an expected behavior, which is assumed to
occur when no refining samples are received. The node must
send periodically an updated expected behavior to the sink.
Thus, until a new expected behavior is received, the sink
assumes the process behaves like the last expected behavior
received added to eventual refining samples. These refining
samples will replace the samples of the expected behavior for
the hour informed by the sensor as it sends the refining sample.
The sensor node must decide on sending or not refining
samples based on the last expected behavior vector sent to
the sink. This procedure maintains the consistency between
the measured and the reconstructed information. Therefore,
the sensor verifies if the measured value differs above certain
threshold from the sample for the specific hour in the last
expected behavior sent. If this difference is higher than the
configured threshold, the sensor sends the refining sample and
the timing information to the sink.

It is worth to note that each sensor node builds and analyzes
its periphery on its own time basis, which dispenses synchro-
nization between sensor nodes. The timing information for the
reconstruction at the sink is relative to the time basis of the
specific sensor node. Moreover, if each day the sensor sends
the expected behavior for the next day, the system will achieve
no gain. Therefore, the sensor periodically sends expected
behavior updates periodically but at a frequency low enough
to achieve some gain. Fig. 2 shows the daily procedure, where
DBj is the vector with the expected behavior during day j,
Di the vector with the measurements of day i, last update

is the vector with the last expected behavior sent to the sink,
and X(k) is the k-th element of vector X .

The expected behavior calculus of Fig. 2 is slightly different
from the one showed in Eq. 1 in order to send, in the update
day, the expected behavior for that day (last update = DBi)
instead of the measures for that day (Di). This is only a design
option. The scheme could send the expected behavior and the
refining samples for the update day. As α get higher and the
process variation gets lower, these two approaches become
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Fig. 2. Daily procedure for each sensor node.

equals. Next section details the simulations of the proposed
scheme.

III. SIMULATIONS

The efficacy of the proposed scheme is evaluated by simu-
lation considering the reduction in the total number of samples
sent to the sink. The simulations presented here are based on
the temperature monitoring problem described in Section II.
During the simulations, three main variables are considered:
the update frequency, the α parameter, and the maximum error
without refining.

An important part of the analysis of the proposed scheme
is the data generation. The data model must represent the
main features of the application with respect to the results of
the scheme [9]. Section III-A give some insights of the data
generation procedure used to analyze the proposed scheme.

A. Data Modeling

The data is generated based on observation of real-site-
collected data like the ones showed in Fig. 1. Observing these
collected data, it is possible to note important features in the
temperature evolution during one day and during consecutive
days. There are two distinct features in the temperature evo-
lution during one day: the higher temperature near noon and
the sharper variation of the temperature in these moments of
higher average temperature. The temperature in consecutive
days presents some relation in its average and in the difference
between the lower and the higher temperature of the day.

It is worth noting that the goal of this data model is not to
create real temperature curves, but to create curves that exhibit
the same main behavior of temperature curves. Generating data
this way makes it possible to better evaluate the proposed
scheme to the target application.

First of all, the basis for the construction of the daily
behavior is the function −cos(x). This function exhibits its
higher values near the middle of the period. A bias is added to
this function to make the average temperature behave similar
to Fig. 1(a). In order to model the behavior of consecutive
days, this bias added at day i (bias(i)) is defined as the bias
of the anterior day i−1 (bias(i−1)) plus a Gaussian random
variable with 0 mean and standard deviation σ1. Greater
relations between the average temperature of consecutive days
are achieved with smaller values of σ1. The same procedure is
used to model the amplitude of the function −cos(x) for day i

(amp(i)) based on the amplitude of day i−1 (amp(i−1)). This
relation between the two amplitudes represents the relation
between the difference of the higher and the lower temperature
of the consecutive days.

Finally, another Gaussian random variable with 0 mean and
standard deviation σ2 is added to each point of the function
−cos(x) representing the temperature in different hours of the
day. In order to reproduce the sharper variation in hours with
higher average temperatures, this random variable is multiplied
by a constant C proportional to the value of the −cos(x)
function at the specific hour. All the random variables have
their maximum and minimum values limited. This avoids
unreal differences of temperature between consecutive days.

The daily data has 96 samples, which means data collection
at 15 minutes intervals. The values of σ1 and σ2 are varied
during the simulation to evaluate the effect of these parameters
over the proposed scheme. The next section presents further
details of the simulations and discusses the achieved results.

B. Results

The simulations are based on data generated as described in
Section III-A representing the readings of a sensor. The pro-
posed scheme is applied to this data set and the fraction of the
total samples that must be actually sent to the sink is obtained.
The smaller this fraction is, the better the proposed scheme
efficacy. The simulation starts with the daily (96 samples)
periodicity defined. Thus, the analysis evaluates the steady
state operation of the scheme. Moreover, the identification of
the regular period is independent of the parameters used in the
scheme and depends only of the data set used.

There are three main parameters in the proposed scheme: the
update frequency, the α factor, and the tolerated sample error.
Therefore, these parameters are varied during the simulation
in order to better understand their effects. The α factor is
bounded to 1. In all simulations, the update frequency is
one expected behavior vector sent at each Update days.
Thus, higher values of Update means lowers update frequen-
cies. The tolerated sample error is equal to the parameter
maximum error times the expected behavior of the specific
hour. All the results shown have a confidence interval smaller
than 3% of the average value for a confidence level of 99%.

The first analysis concerns the impact of the uncertainty of
the sensed process over the fraction of samples sent. This is
done evaluating the effects of the variation of σ1 and σ2 over
the number of samples sent. Fig. 3 shows the fraction of the
samples sent when σ1 and σ2 varies together (σ) for a tolerated
error of 1%.

Analyzing Fig. 3 it is possible to observe that the small
value of the tolerated error severely reduces the influence of
the α and Update parameters. For processes with smaller
variation (low σ) the fraction of samples sent tends to be

1

Update
. It is worth noting that the smaller update frequency

used, Update = 20, sends less samples when the process does
not vary much, but clearly has a worse performance when the
variation of the process increases (higher σ). For this tolerated
error, the fraction of sent samples approaches 90% rapidly with
the increase of σ. Fig. 4 shows the results for a tolerated error
of 5%.

As we can see from Fig. 4, with the increase of the tolerated
error the parameters α and Update have larger influence in the
results. Thus, the variation of these parameters produces more
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(a) α = 0.1.
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Fig. 3. Samples sent varying σ for maximum error = 0.01.

significant changes in the results. For a tolerated error of 5%,
the proposed scheme reduces between 35 and 40% the number
of samples sent for σ = 1. Moreover, for higher values of
σ, the intermediate Update value, 10, presents better results.
This suggests that this intermediate value of Update achieves
a better tradeoff between the fixed part of the total samples
sent ( 1

Update
) and the samples sent due to the difference from

the expected behavior.
The importance of the tolerated error makes it necessary to

further investigate its influence over the results. Fig. 5 shows
the results as a function of the tolerated error for Update =
10 for an intermediate value for α.

Fig. 5 shows that as the tolerated error decreases, the
variations of σ (σ1 and σ2 together) have worse impact
on the scheme performance. For high tolerated errors, small
variations of σ are negligible. It is worth to note the limit

1

Update
to which the fraction of samples tends when the

tolerated error grows or σ is reduced (more regular processes).
Moreover, even for less regular processes, σ = 1, it is possible
to reduce between 10 and 20% the total number of samples
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Fig. 4. Samples sent varying σ for maximum error = 0.05.
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Fig. 5. Samples sent as a function of the tolerated error for α = 0.25.

sent for tolerated errors as low as 1 and 3%.
Finally, we analyze the effects of σ1 and σ2 separately.



Fig. 6 is generated using an intermediate tolerated error
value, 3%. This tolerated error keeps the sensitivity of the
performance to the variations of σ in a reasonable level,
avoiding the extreme sensitivity showed in Fig. 5 for the 1%
case and the relative insensitivity of the 10% case.
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Fig. 6. Samples sent as a function of σ1 and σ2 for maximum error =
0.03 and Update = 10.

While the scheme for α = 1 (Figura 6(a)) is almost equally
sensitive to the variations of σ1 and σ2, when α is set to 0.1
(Figura 6(b)) there is a higher sensitivity to σ1. This behavior
is especially noticeable in the region of the graphs where
σ1 and σ2 are low. The sensitivity of the scheme to σ2 is
similar because this parameter does not influences the relation
between consecutive days. On the other hand, σ1 dictates the
relation between the behaviors of consecutive days and the α

parameter aim at enhancing the performance of the scheme in
different consecutive days relations.

IV. CONCLUSIONS

This paper proposes and analyzes a bio-inspired scheme to
reduce the number of samples sent back by sensor nodes to
the sink. The proposed scheme exploits specific features of
the sensed physical process, identifying a regular behavior of
the process, which will define the periphery of attention of
the sensor node. Peripheral events, or events similar to the
periphery, are no reported to the sink. This procedure reduces
the data traffic and, consequently, the energy consumption
in the network. The proposed scheme has the advantage
of being suitable even for nodes at borders of the fields,
which are unable to benefit from conventional techniques that
reduce the spatial density of collected samples. Moreover, the
proposed scheme can be used together with these conventional
techniques to obtain greater gains.

The viability of the proposed scheme was analyzed based
on a temperature monitoring application. The data generation
was designed to reproduce the main features of this physical
process with respect to the performance of the scheme. Results
show a tradeoff between the number of times the node updates
the expected behavior and the amount of samples sent due to
high difference with the expected behavior. Severe restrictions
on the tolerated error rapidly reduce the gain of the scheme
as the process becomes less regular. Results show that the
scheme must be tuned based on the regularity of the process
to enhance the performance. For very regular processes the
scheme can reduce up to 90% the total amount of samples
sent in the network. For less regular processes the proposed
scheme can still reduce between 10 and 20% the total amount
of samples sent with small reconstruction errors.

As future works we intend to analyze the effects of packet
losses in the network on the information reconstruction error
and to evaluate the scheme based on data collected in real
sites.
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