
VOLTAIC : Volume Optimization Layer To AssIgn
Cloud resources

Hugo E. T. Carvalho and Otto Carlos M. B. Duarte
Universidade Federal do Rio de Janeiro (UFRJ)

Rio de Janeiro – Brazil
{hugo, otto}@gta.ufrj.br

Abstract—Cloud computing offers on-demand access to com-
putational resources. One of the major challenges in cloud
environments is to enforce the elasticity of the processes that
execute in the cloud, avoiding Service Level Agreements (SLAs)
violations and reducing waste with idle resources. We propose
an autonomic resource management system for cloud computing,
called VOLTAIC (Volume Optimization Layer To AssIgn Cloud
resources). The proposal analyzes usage profiles of physical and
virtual elements and defines heuristics based on differential
utilization level that guarantee an optimized allocation of virtual
elements. VOLTAIC introduces algorithms to determine proper
parameters to allocate cloud elements and to automatically
migrate those elements to avoid performance degradation due to
server saturation. Results obtained through the implementation
of the system in a small-scale cluster show that the system
efficiently assigns virtual elements and ensures proper resource
allocation to virtual elements. We also developed a virtualnet-
work simulator for cloud environments to attest the applicability
of VOLTAIC in broader scenarios. Results show reductions inup
to 10% in the amount of idle cycles due to correct assignment
of virtual elements.

I. I NTRODUCTION

Cloud computing introduces a new provisioning model for
technology infrastructure. In this model, clients hire providers
that dynamically offer processor, memory, disk, and network
resources. This can be achieved through the use of the
virtualization technology [1], which implements a hardware
abstraction that enhances the flexibility of resource allocation.
This flexibility confers elasticity in the cloud environment,
defined as the capacity of providing resources on-demand
and at the same time ensuring Quality of Service (QoS) of
clients [2]. Service providers must develop efficient cloud
systems to avoid the waste with idle resources, ensure QoS
and fulfill dynamic workload demands. Armbrustet al. [3]
claim that the main cloud challenges are the service availability
and the elastic resource provision that scales with the demand
and reduces costs without violating Service Level Agreements
(SLA).

Virtualization allows on-demand remapping of virtual re-
sources over physical resources and thus enables the adaptation
of systems to dynamic workloads. This remapping primitive
is defined as migration and allows workload transfers among
different physical machines without interrupting their execu-
tion. Currently, migration is manually triggered by network
managers to load balance data centers. This reallocation
scheme is inefficient because of its high reaction time, which

is inadequate to dynamic workload environments like clouds.
The autonomic migration is an even greater challenge, be-
cause there is a need to consider multiple parameters of the
current machines and to estimate future resource demands of
machines.

In this article, we propose VOLTAIC, which performs
autonomic migrations to provide elasticity in the resource
provisioning of a cloud environment, guaranteeing QoS for
the clients and enhancing the usage of available resources.
Through the profile analysis of virtual and physical elements,
the system performs a dynamic allocation of elements. The
utilization profiles of virtual elements are compared among
themselves and among the profiles of resources offered by
the physical machines. VOLTAIC searches the most adequate
physical server to each virtual element by considering the
likelihood between the profile of the virtual element and the
profile offered by the physical server.

VOLTAIC was implemented and tested in a real environ-
ment and uses Libvirt API [4]. Thus, VOLTAIC is applicable
to all virtualization platforms that supports Libvirt, such as
Xen [5], VMWare [6], KVM [7], etc. In order to validate
the proposed system in large scale environments, we devel-
oped a cloud environment simulator. The simulator receives
utilization profiles of real machines and generates outputs
that validate the modeling for the proposed scenario. The
obtained results show that VOLTAIC is efficient for elasticity
provision and enhances the availability of resources. The
proposal reduces in up to 10% the denial rate of processor
resources when compared to proposals of the literature.

The article is structured as follows. Section II presents the
related work, which aims in management of cloud environ-
ments and migration of virtual elements. Section III shows
the proposed architecture, its behavior and the proposed algo-
rithms. Section IV and Section V shows the implementation of
VOLTAIC, the development of the simulator and the results.
of the proposal. Finally, Section VI presents the conclusions
and future directions of this work.

II. RELATED WORK

The development of mechanisms that ensure elasticity in
resource provision is a big challenge. There are many works
that address the virtual element allocation in physical sub-
strates, but the major part of the proposals focuses on the
admission control of virtual elements and ignore the resource

consumption variability that requires dynamic re-allocations.
Fajjari et al. developed an admission system based on ant
colony meta-heuristics to solve this kind of problem [8].
Alkmin et al. developed mapping algorithms that minimizes
the resource utilization in virtual network environments [9].

SandPiper [10] is a system that monitors virtual machines
and detects physical machine hotspot to avoid them. Hotspots
are physical machines that are close to full resource saturation.
SandPiper monitors virtual machines in Xen virtualization
platform and uses prediction equations to estimate hotspots.
In order to detect hotspots, SandPiper uses an iterative algo-
rithm that orders all physical machines as a function of their
volumes, defined as

V ol = 1/(1 − cpu) · 1/(1 − mem) · 1/(1 − net), (1)

which is a value that represents the volume of used resources
as a function of processor, memory and network. After the
ordering procedure, the algorithm classifies, within each ma-
chine, the virtual elements that use more resources. Then, the
system iteratively reallocates the virtual elements that belong
to higher volume machines into lower volume machines,
until all hotspots are mitigated. The resource allocation of
VOLTAIC is significantly different from SandPiper because
it takes into consideration the compatibility of the usage sim-
ilarity of physical and virtual machines. Besides, our proposal
uses a more complete volume metric that takes into account
other parameters. The new parameters indicate the need to ex-
ecute management algorithms before the environment reaches
critical situations. VOLTAIC also allows the utilization of an
adaptation of the punishment algorithm proposed by Carvalho
et al. to enforce that VOLTAIC algorithms can achieve enough
processing power to fulfill its objectives [11].

Gonget al. propose Press, a lightweight prediction system
that takes into account Fast Fourier Transformations (FFTs)
and Markov chains to predict the resource demand of virtual
resources [12]. Press was developed to work with Xen systems
and was tested with samples obtained from processor clusters
of Google. The system shows good prediction results, detect-
ing the need to perform migration of virtual elements. An
important contribution is the utilization of signatures that uses
the variance of machine profiles in time as a metric to know
the reliability of the profiles to estimate future demands. Press
presents good results in prediction but does not implement
automatic relocation algorithms.

Houidi et al. propose an adaptive mechanism to provide
resources in virtual network environments [13]. Authors take
into account network restrictions such as topology limitations
and SLA constraints to enhance network performance and
enhance tolerance to failures.

We have proposed propose SLAPv, an adaptive control
mechanism for virtual network environments [11]. The pro-
posal is based on adaptive punishments applied to virtual
elements to enforce SLAs and provide a better utilization
of idle resources. SLAPv verifies if virtual machines violate
the contracted SLAs and is limited to the distribution of
resources within a single physical node. Another contribution
is the adoption of a fuzzy metric to verify the saturation

level of physical resource on each physical node, defined as
system charge. The system charge reflects parameters such as
processor usage, memory and network.

In this paper, we propose VOLTAIC system that is an
autonomous resource manager for cloud environments, which
allocates virtual elements, enhances the QoS offered to clients
and avoids the waste of computational resources. The system
charge metric used in our SLAPv proposal was adapted into
VOLTAIC as a criterion to execute dynamic allocation mech-
anisms. VOLTAIC allows resource management in a broader
level, because it allows the utilization of the migration primi-
tive to enhance the resource provision for virtual elements. The
system useslibvirt to interact with virtualization platforms
and manage physical machines. Thus, VOLTAIC is compatible
with any virtualization platform that supportslibvirt, such
as Xen, VMWare, KVM, etc., differently from existent propos-
als that works only with specific virtualization environments
[10], [11], [12]. By adopting the utilization of a single
interface to manage virtual platforms, we can augment the
applicability of the proposed system, but it inherits some
problems related to which information can be extracted by
each platform due tolibvirt limitations. Besides, results
show that the absence of some platforms-specific information
does not affect the performance of the proposal. We must
also mention that the platforms must provide live migration
mechanisms as well.

III. T HE VOLTAIC SYSTEM

The name VOLTAIC is inspired in nature, where electrical
charge differences induce charge exchange through voltaic
arcs. In the same way real clouds balance electrical charges
among each other, the proposed VOLTAIC system balances
resource consumption in cloud computing environments. The
autonomic management is characterized as a process of ob-
servation and decision making in the proposed environment,
without human intervention. Therefore, the autonomic man-
ager perceives the behavior of physical and virtual machines,
analyzes and predict possible saturation situations, and makes
decisions.These decisions can encompass the temporary re-
source pruning [11] and live migration of virtual elements [14].

The system is composed of three main modules. The
first module is the Statistic Collector (SC), which interacts
with libvirt, retrieves the monitoring statistics of each
physical machine, and stores this information in a database.
The second module is the Profile Analyzer (PA), which uses
the information collected and stored by the Statistic Collector
to extract knowledge from the virtualization platforms. This
knowledge comprises utilization profiles of virtual elements,
offered profiles (OPs) of physical machines, system charge,
and the mapping of virtual elements in physical elements. The
third module is the Orchestrator (OC) that uses the knowledge
acquired by the Profile Analyzer to manage physical and
virtual machines. It controls the amount of resources that are
offered to each virtual machine and organizes virtual element
migrations to balance the resource distribution.

A. VOLTAIC Architecture

The system uses a management model in which a physical
machine (PM) configured with a VOLTAIC module manages
a given set of physical machines, as seen in Fig. 1. VOLTAIC
manages this set of machines, controls the offered resources,
and dynamically migrates virtual elements, avoiding resource
saturation. If a set of PMs is inside a single administrative
domain, it is possible to enable interaction among them, with
resource announcements and requisitions. Hence, we extend
the system capability, offering resources to virtual elements
under domain of other VOLTAIC machines, improving re-
source utilization and enhancing the provided services.

Orchestrator

Virtualization
Platform

Libvirt
Server

VM1 VM2 VMN
...

Physical Machine1

Virtualization
Platform

VM1 VM2 VMN
...

Physical Machine2

Virtualization
Platform

VM1 VM2 VMN
...

Physical MachineM

...

VOLTAIC Module

Libvirt Client
Statistic
Collector

Collected
Information

Profile Analyzer

Knowledge

Charge Control

Resource Control

Libvirt
Server

Libvirt
Server

Figure 1. A VOLTAIC module managing a set of physical machines and
orchestrating the resource allocation.

B. The Statistic Collector Module

The Statistic Collector (SC) module useslibvirt to
interact with the physical machines and retrieves monitoring
information. The SC retrieves processor utilization, allocated
memory and network utilization of physical machines and vir-
tual elements. We can adjust the sampling frequency, avoiding
that well defined events synchronizes with times of inactivity
in SC retrieval process. The sampling frequency is correlated
with the reaction time of the system.

C. The Profile Analyzer Module

The Profile Analyzer (PA) module process information
acquired by the Statistic Collector. The analysis involvesthe
collection of information regarding the mapping of virtual
elements into each physical element and the generation of
time series, which reflect the relationship between resource
consumption and time. VOLTAIC generates profiles based
on cumulative distribution functions (CDFs) and probability
density functions (PDFs). These functions allow the estimation
of future resource demands of each machine and allows the
estimation of a given element be served in a given physical
machine. This kind of analysis is based on Sandpiper [10].
Besides the utilization profile, physical machines also possess
an offered profile (OP), which represents the profile of avail-
ability of resources. This profile is then processed when there
is a need to select the proper physical machine to serve a given
virtual machine that needs to be migrated.

Based on the profiles and time series, the Profile Analyzer
generates a metric defined as system charge. This metric

is generated according to Carvalhoet al. and represents a
nebulous conjunction among multiple system variables, such
as processor utilization, memory, network and current system
temperature [11]. Therefore, system managers can model
which parameters are the most important in the system charge
and how the variation of parameters influences the decision
making scheme. Through this metric and its time variation, the
system detects physical machines that are close to saturation.
By detecting this risk, VOLTAIC pro-actively eliminates the
problem through dynamic reallocation of virtual elements.

D. The Orchestrator Module

The Orchestrator is the main module of VOLTAIC. It is
responsible for decision making and for machine management.
The decision is based on the execution of charge and resource
control algorithms. The charge control algorithm examines
the variability of the charge of physical systems and detects
bottlenecks in resource offering that generates losses. Ifthe
average load of the last samples extrapolates a given security
threshold, the load control algorithm begins the reallocation
procedures. The resource control algorithm allows the system
to estimate future resource consumptions and decides the best
allocation for each virtual element.

1) Resource Allocation Algorithms:The load control al-
gorithm monitors the load of physical systems and detect
if a given physical machine sustained an average load that
exceeds a security threshold for a predefined time period.
If this happens, migration algorithms are triggered. In the
implementation and in the simulation, this period comprises
the last five system charge measurements. The security limit
was defined as0.80. This limit can assume values in interval
[0, 1], which is the range of values that can be assumed by the
system load. The critical machine selection algorithm sorts
physical machines as a function of their system loads and the
amount of critical virtual machines on each physical machine.

input : SysChargeList[], V Limit
output: PmMigrationCandidates
PmMigrationCandidates = [];
for PM ∈ SysChargeList do

V irtualCriticalNumber = 0;
for V M ∈ PM do

critic = criticality(V M, V Limit);
if critic[0] == True then

V irtualCriticalNumber+ = 1;
end

end
Info = (MF, V irtualCriticalNumber) result =
PmMigrationCandidates.append(Info);

end
sortByCriticalV Ms(result);

Algorithm 1 : Selection of critical physical machines.

Critical virtual machines are those allocated on saturated
physical systems and that are responsible for an amount of
the system load that is higher than a predetermined limit and
which profile variations in time demonstrate low correlation.

The profile variation in time is a reflex of the probability
that the virtual machine possesses a predictable behavior.If
a virtual machine shows high correlation among consecutive
profiles, this indicates that this vm has higher chances of
behaving in the same way in near future. Otherwise, the
machine shows unstable behavior and the proposed algorithm
aims to allocate it in another physical machine to avoid the
disturbance of well-behaved machines that share the same
physical resources. The algorithm can be seen in Alg. 1. In the
algorithm, theVlimit input means the established threshold
for virtual machines. There, thecriticality() function
evaluates the contribution of the virtual machine in the total
load of the physical machine which hosts it and the profile
variability of the virtual machine. Criticality is defined as

criticality = α · [v.charge] + (1 − α) · [abs(ρ)] (2)

and establishes a relation of the impact of the virtual machine
in the physical machine and the correlation of adjacent profiles
of the same machine. The machine profile is stored as a sliding
window of fixed length. In our experiments,α was set as0.5,
which means that the equal weight is given to both charge
and correlation. After the evaluation of criticality, the function
returns a tuple with the criticality value and a boolean value
which indicates if this value violates the established threshold.

The sortByCriticalVMs() function groups physical
machines with similar charge values and sort this groups in
function of the number of critical virtual machines in each of
them. Therefore, the first returned elements represent machines
with higher charge and more critical virtual machines.

After this procedure, VOLTAIC executes the virtual ma-
chine migration selection algorithm. This algorithm, seenin
Alg. 2, iterates over physical machine candidates. For each
candidate, the algorithm observes if the recent consumption
profile and its correlation between the profile and the offered
profile (OP) of physical machines, sorted from lower to higher
charge. The adopted correlation method is the Pearson corre-
lation, which is obtained by dividing the covariance by the
product of standard deviation of two variables. If the profile is
correlated and the average consumption of the virtual machine
is smaller than the one offered by the physical machine,
the virtual machine is migrated. Otherwise, the next virtual
machine is analyzed.

IV. I MPLEMENTATION AND SIMULATION

VOLTAIC is implemented in Python and usespython-libvirt
for virtualization platform communication.

In order to test a broad range of parameters and perform
migration tests in larger scale, we also developed a discrete
event simulator for virtual environments. The simulator isde-
veloped in python and allows the configuration of physical and
virtual machines. The simulator1 offers creation, destruction,
migration, and event scheduling primitives. Each execution
step represents a unit of simulation time. The main classes
of the simulator are detailed below.

1The simulator is available for download and can be found in
http://www.gta.ufrj.br/˜hugo/virtsim/.

input : PmMigrationCandidates[], P limit, V limit
output: V mMigrationCandidates[]
V mMigrationCandidates = [];
for PM ∈ PmsMigrationCandidates do

if PM.charge ≥ Plimit then
for V M ∈ PM do

distribution = getDist(V M);
if criticality(V M, V limit)[0] == True
then

info = (distribution, V M, PM);
V mMigrationCandidates.append(info);

end
end

end
end
V mMigrationCandidates.sort(reverse = True);

Algorithm 2 : Selection of migration candidates.

A. Physical Machines

The physical machines entities are similar to real machines.
We define the maximum processor capacity, memory, and
network resources that is offered on each simulation step
and also we associate virtual machines to physical machines.
The implementation also simulates a generic virtualization
platform, which allows the utilization of virtualization prim-
itives (creation, destruction, and migration), and also the
implementation of different resource schedulers. The simulator
user adds costs to perform the primitives and schedule tasks.

The implemented processor scheduler makes a fair resource
distribution among virtual machines (proportional division).
For instance, if the physical machine only provides 100
processing units per step and two machines try to use 100
units each, each machine receives only 50 processing units
and the simulator stores that virtual machines lost resources
in this interaction, in this case, each machine achieved a loss
of 50 processing units.

B. Virtual Machines

Virtual machine entities inherit characteristics from physical
machine entities, but there is no implementation of the virtu-
alization platform. We define processor, memory, and network
thresholds. Besides, the virtual machine entity allows the
utilization of customized profiles for each resource, enabling
the injection of real resource consumption patterns in the
simulator to see the VOLTAIC reaction to it. We can also
opt for distribution functions to generate machine profiles. In
this manner, given that the developer possesses knowledge
of the types of virtual machines that will be deployed in
real scenarios, it is possible to simulate access patterns even
without the existence of real profiles.

C. VOLTAIC and the Simulation Manager

In simulation, VOLTAIC possesses its own entity, capable
of interacting with physical and virtual machines. VOLTAIC
allows the execution of the monitoring tasks, migration al-
gorithms, and migration candidate selection algorithms. This

0 20 40 60 80
0

300

600

900

1200

1500

Time(s)

P
r
o
c
e
s
s
o
r

(
%
)

VM1

VOLTAIC Migration

VM2

(a) Processing variation as function of time.

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

Time(s)

S
y
s
t
e
m

C
h
a
r
g
e

VOLTAIC Migration

PM1 Charge

PM2 Charge

Limit

(b) System charge variation.

Figure 2. Autonomic migration. VOLTAIC detects sustained system charge values and migrates a virtual machine to a machine with lower load.

interaction is accomplished through the simulation manager.
The simulation manager coordinates all simulation activities.
We can define the number of simulation rounds and the
number of steps for each round. The simulation manager also
helps the system to perform migrations, by invoking sending
and reception methods on each physical machine. At the end
of the execution, we can generate a log of all operations and
procedures that were taken during the simulation.

V. RESULTS

The implementation and simulation results were obtained in
two identical physical machines (PM1 and PM2), connected
by Intel 82599EB 10 Gbps cards through an optic fiber. The
servers have two Intel Xeon X5570 processors, with a total of
16 physical cores and 24 GB of DDR3 1066 MHz memory.
The virtualization platform that was used was KVM and the
libvirt version was 0.9.6.

The test methodology follows the evolution of VOLTAIC
system, with the intention to demonstrate the validity of each
step of the development of the proposal. Initially, we perform
tests that demonstrate the proper working of the proposal
when it is implemented in a real environment. We capture real
utilization profiles from this scenario. The simulator is then
fed with the real scenario information, such as the estimated
migration time and the resource utilization profiles. Next,we
test the behavior of the simulator when it is subjected to
real profiles. We observe that the simulator shows a behavior
that is equal to the real system implementation. After that,
we simulate environments with higher number of virtual and
physical machines, to evaluate the performance of the system
and the resource allocation schemes in broader scenarios.

In the first implementation test, we created two virtual
machines. Each virtual machine receives processing tasks and
uses up to 16 of the available cores. If the physical machine
cannot provide enough processing, virtual machines suffer
from utilization capability reduction until there are enough
resources available.

In Fig. 2(a), we observe the processor utilization of two
virtual machines (VM1 and VM2) during time. The processing
scale represents the total utilization of processor resources,
which varies from zero to1.600%, which represents the full
utilization of all the 16 available cores. Initially the twovirtual
machines are allocated in physical machine 1. We can see
that in the instantt=20 seconds VM1 receives an intensive
processing task, which elevates its processor utilizationfrom

0% to1.000%. In this situation, the physical machine is totally
saturated and even a small positive variation of processor
usage can generate performance losses. VOLTAIC detects the
augment in the processor demand and opts for automatically
migrate VM1, which is the virtual machine that shows higher
probability of saturating PM1 to PM2, to fairly distribute
the charge among physical machines, as seen in Fig. 2(b).
Therefore, VOLTAIC relocates virtual machines according to
the physical machines that can provide the resource profile
which is the most compatible with each virtual machine.

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

Time (s)

S
y
s
t
e
m

C
h
a
r
g
e PM1

Charge

PM2 Charge

PM2 Simulated
Charge

PM1 Simulated
Charge

Figure 3. Equivalence between simulation and implementation.

To enhance the scale of tests, we developed a virtual
environment simulator. To validate the simulator, the same
utilization profile from Fig. 2(a) and the physical machines
configurations were reproduced in the simulator and we ob-
served the system charge variation. Results show that for the
same real charge, the simulator shows the same behavior in
processor variation and in system charge variation, as seenin
Fig. 3. The simulation steps were associated to the time in
seconds of the real system execution.

To demonstrate VOLTAIC, the simulator was loaded with
virtual machines with processor utilization profiles that fol-
lows a normalized distribution centered in 200% of processor
utilization. Each virtual machine is configured with 256 MB
of RAM memory and this amount is fixed for all machines. In
the simulations, we do not consider the utilization of network
interfaces. In the beginning of each simulation round the
initial allocation of each virtual machine is modified and we
verify the amount of lost processing cycles in the system. The
lost cycles are related to simulation steps in which resource
demand is higher than the current configuration of the system
can provide. In this case, virtual machines cannot have its
demands fulfilled. After the simulation, we make a statistical
analysis of data and compare the amount of lost resources
when compared with the same environment condition with
SandPiper and without autonomic migration algorithms.

0 10 20 30 40 50 60
0

15

30

45

60

75

Virtual Elements

L
o
s
t

C
y
c
l
e
s

(
%
)

VOLTAIC

SandPiper

No Algorithm

(a) Lost cycles in function of the number of virtual machines.

0 10 20 30 40 50
0

500

1000

1500

Simulation Steps

C
P
U

U
t
i
l
i
z
a
t
i
o
n

(
%
) Attempt

VOLTAIC SandPiper

No algorithm

(b) Offered CPU for a given virtual machine.

Figure 4. CPU utilization in details. VOLTAIC Outperforms SandPiper and the execution with no algorithms in the CPU provisioning.

The results seen in Fig. 4(a) show the amount of processing
cycles that were lost in function of the number of virtual
machines allocated in the physical machines. These results
were obtained in the execution of five rounds of 100 simulation
steps and we simulated 10 physical machines. The results show
that VOLTAIC reduces que amount of lost cycles in more
than 10%. We can observe that until the number of virtual
machines reaches 35, the proposal presents better results than
SandPiper. This occurs mainly because the selection criterion
of critical machines takes into account the correlation of the
virtual machine profiles and the criticality of virtual machines.
As the number of virtual machines increases, the physical
machines became more saturated and eventually all of them
are classified as critical. If this happens, the priority heuristic
that chooses less stable machines and searches for adequate
reception profiles became an algorithm that takes into account
only the system charge, because all physical machines present
saturation symptoms and critical machines. Even in these
conditions, the system reduces the lost cycles in 10% when
compared to the results that use no algorithms.

In Fig. 4(b), we verify the analysis of a random virtual
machine in one of the execution rounds of the tests. We can
verify the processor consumption attempt, and the processor
consumption offered by VOLTAIC, SandPiper, and in the
absence of reallocation algorithms. Our proposal, as time
evolves, learns the behavior of virtual machines and selects
a better placement for it. After 18 simulation steps, VOLTAIC
found out the physical machine that better suits the virtual
machine and ensure proper resource allocation for it.

VI. CONCLUSION

Quality of Service and elasticity provision are a great
challenge for cloud computing. Efficient resource allocation
is fundamental for scalability of this computation model.
We propose the VOLTAIC that is an efficient system to
dynamically reallocate virtual elements in physical machines.
VOLTAIC analyzes utilization profiles and, based on usage
correlations, reduces the amount of wasted processor cycles
during normal and saturated scenarios.

The proposed heuristics predict saturation situations and
trigger migration algorithms. The algorithms detect and select
the physical machines that are closer to saturation and find the
best candidates for machine migration. Results show that the
proposed migration algorithms reduce in up to 10% the failure

rate in the offering of processor resources. Therefore, the
results show that the proposal performs well for the analyzed
data center scenarios, maximizing the amount of instantiated
virtual machines, ensuring the fulfillment of services, avoiding
resource waste, and enhancing the profit of providers.

Besides the dynamic allocation proposal, this article brings
as a contribution an implementation of a virtual environment
simulator. This simulator allows the instantiation of virtual
elements and virtualization platforms. The profile of the virtual
elements can be loaded from real traces. Finally, the simulator
is extensible and allows the development of new schedulers
and virtualization proposals. As a future work, we intend to
extend the simulator and to implement new heuristics to dy-
namically allocate resources in cloud computing environments.

REFERENCES

[1] N. Fernandes, M. Moreira, Moraeset al., “Virtual networks: Isolation,
performance, and trends,”Annals of Telecomm., pp. 1–17, 2010.

[2] S. Dustdar, Y. Guo, B. Satzger, and H. Truong, “Principles of elastic
processes,”Internet Computing, IEEE, vol. 15, no. 5, pp. 66–71, 2011.

[3] M. Armbrust, A. Fox, R. Griffithet al., “Above the clouds: A berke-
ley view of cloud computing,” Technical Report UCB/EECS-2009-28,
EECS Department, University of California, Berkeley, Tech. Rep., 2009.

[4] M. Bolte, M. Sievers, Birkenheueret al., “Non-intrusive virtualization
management using libvirt,” inProc. of the CDATE. EDAA, 2010, pp.
574–579.

[5] M. Bourguiba, K. Haddadou, and G. Pujolle, “Evaluating Xen-based
virtual routers performance,”International Journal of Communication
Networks and Distributed Systems, vol. 6, no. 3, pp. 268–282, 2011.

[6] E. VMWare, “Server,”GSX Server, product documentation, 2005.
[7] A. Kivity, Y. Kamay, D. Laor et al., “KVM: the linux virtual machine

monitor,” in Proc. of the Linux Symposium, vol. 1, 2007, pp. 225–230.
[8] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “VNE-AC: Vir-

tual network embedding algorithm based on ant colony metaheuristic,”
in Communications (ICC), 2011. IEEE, 2011, pp. 1–6.

[9] G. P. Alkmin, D. M. Batista, and N. L. S. Fonseca, “Optimalmapping
of virtual networks,”GLOBECOM 2011, 2011.

[10] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Sandpiper:
Black-box and gray-box resource management for virtual machines,”
Computer Networks, vol. 53, no. 17, pp. 2923–2938, 2009.

[11] H. E. T. Carvalho, N. C. F. Fernandes, O. C. M. B. Duarte, and others.,
“SLAPv: a service level agreement enforcer for virtual networks,” in
ICNC’12 - ISA, Maui, Hawaii, USA, Jan. 2012, pp. 713–717.

[12] Z. Gong, X. Gu, and J. Wilkes, “PRESS: Predictive elastic resource scal-
ing for cloud systems,” inNetwork and Service Management (CNSM),
2010 International Conference on. IEEE, 2010, pp. 9–16.

[13] I. Houidi, W. Louati, Zeghlacheet al., “Adaptive virtual network provi-
sioning,” in Proc. of the 2nd ACM SIGCOMM workshop on Virtualized
infrastructure systems and architectures. ACM, 2010, pp. 41–48.

[14] C. Clark, K. Fraser, S. Hand, Hansenet al., “Live migration of virtual
machines,” inin Proceedings of the 2nd conference on NSDI. USENIX
Association, 2005, pp. 273–286.

