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Abstract—Multi-Access Edge Computing (MEC) is a promising
solution that enables limited devices to access external computing
resources. This allows users to receive high-performance, low-
latency applications while using their User Equipment (UE).
MEC relies on servers which are close to the UE and can offer
computing resources to UE applications. In a MEC system, low
latency is achieved by the proximity of users to the physical
resources serving them. However, MEC faces challenges, espe-
cially in scenarios where user mobility can disrupt the proximity
between users and the physical resources serving them. When
the user is moving in a car, this can lead to a challenging
environment for applications which trust the MEC to get access
to external computing resources with low latency. We investigate
this scenario to assess the impact of vehicular mobility on MEC
performance. In a realistic setup, we collect nearly 5,000 latency
measurements of the path between UEs in a 5G network and
evaluate the impact of user mobility on a potential MEC system.
We show that distance and signal quality play an important role
in the end-to-end latency experienced by the UE.

Index Terms—Multi-Access Edge Computing, 5G, Mobility.

I. INTRODUCTION

The emergence and growing demand for applications that
require high levels of computational power is challenging
for devices with energy and computational limitations, such
as IoT devices, smartphones, or vehicles. As such, limited
devices often delegate the processing of complex applications
to more robust external computing resources in the cloud. An
external computing power handles most intensive tasks, in a
process called offloading [1]. Some applications may have low
latency tolerance for the proper execution of their activities,
such as remote robotic surgery and connected autonomous
vehicles [2]. In these cases, traditional cloud computing may
not be sufficient to provide the computing power under low
latency, making edge computing the best alternative. The
edge is able to provide external computing resources that are
geographically and topologically closer to users [3].

The Multi-Access Edge Computing (MEC) standard devel-
oped by the European Telecommunications Standards Institute
(ETSI) defines the provision of edge computing resources by
Mobile Network Operators (MNOs). In this context, the main
devices are mobile and limited, called User Equipment (UE).
Each UE can run local applications (UE applications) and,
if these applications are too resource-intensive, the UE might
need to offload some task. According to the MEC standard,
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MNOs deploy servers in the edge of their networks, referred
to as MEC hosts. MEC hosts are responsible for running MEC
Applications (MEC Apps). MEC Apps can handle offloading
requests from the UE applications, relieving the UEs from
executing intensive tasks. However, there are many challenges
in implementing the MEC standard when it comes to deal-
ing with multiple UEs simultaneously, mainly in developing
strategies to optimize resource allocation [4]. As a UE moves,
it may move away from the MEC host originally allocated to
serve it, increasing latency and degrading the QoE. Therefore,
resource allocation strategies used by MNOs must consider
mobility as a fundamental factor so that UEs are always
served by servers that are close enough [5]. Consequently,
it is necessary to create and analyze datasets that correlate
latency and mobility within the same mobile network in order
to improve the corresponding allocation decisions.

This paper investigates the impact of the mobility of a car
on the latency between a potential MEC application and a UE
application1. To do this, we develop two Android applications
which instantiate a client and a server within the mobile
network of the same MNO, creating a topology similar to
that between a UE and a MEC host. Then, we conduct
several experiments in which the client sends requests to the
server and the server returns a response, while both devices
collect metrics about the network and link between them
and their respective base stations (BS). In the experiments
the client moves around in a car while the server remains
static. In addition to the latency values, the collected dataset
contains information regarding channel conditions (e.g., signal
strength), user equipment location (i.e., Global Positioning
System coordinates), connected cell identification (Cell ID),
and other values. These metrics allow the estimation of the
latency between the two devices and the characterization of
the correlation between latency and other aspects, including
the distance between the two devices, the distance between
the client and its base station, and the signal quality. We also
collect the position of the base stations (BSs) from Unwired
Labs2, also aiming to understand the role of the distance
between UE and its BS in the latency. The collected data

1Some ideas and results of this work are based on a
preliminary paper, published in Portuguese in a Brazilian
workshop (https://sol.sbc.org.br/index.php/wgrs/article/view/30091).
This utilization is permitted by the Brazilian publisher, as seen in
https://sol.sbc.org.br/index.php/indice/conduta

2https://us1.unwiredlabs.com/



is made available in a public repository3, and three main
contributions can be summarized as follows:

• Production of communication traces between devices
within the same MNO;

• A study of the relevance of the distance between MEC
host and UE to the communication latency;

• A study of the relevance of the distance between UE and
the BS to the communication latency.

A number of papers in the literature address the effect of
user mobility to the data traffic. Therefore, mobility traces are
obtained that reflect the network conditions while the UE is
connected to the mobile network and exchanging information
with servers external to the operator [6]–[8]. Additionally,
there are studies that theoretically characterize the latency
between UEs and the edge [9]. On the other hand, no publicly
available 5G traffic traces within the same cellular network
have been identified in the literature. Thus, we build in this
paper a public dataset capable of emulating traffic between
a MEC server and a UE in a 5G network, facilitating the
development of efficient allocation and offloading strategies.

This paper is organized as follows. Section II reviews
relevant literature. Section III addresses the variability and
escalation of latency as a device relocates from proximity to an
edge server. The data collection methodology and the data to
be gathered are delineated in Section IV. An interpretation of
the generated results is presented in the analysis of Section V.
Finally, the conclusion is presented in Section V-C.

II. RELATED WORK

Several studies focused on generating datasets to evaluate
network capacity in scenarios where UE moves while exchang-
ing packets or requests with an external server. These efforts
aim to analyze latency and variations in connection perfor-
mance in mobile networks or to experiment with different
MNO topologies. Raca et al. provide a valuable dataset to
assess the fluctuation of channel conditions in 5G networks [6].
In their experiments, UEs either download files or stream
videos from a cloud server under both stationary and vehicular
movement conditions. Latency is measured using a network
monitoring application, revealing an average latency increase
of 15 ms when the device is in motion. Additionally, the same
research group conducted a similar study under 4G conditions,
employing the same methodology to produce a dataset [10].

Xiao et al., employing the TCP protocol in 4G networks,
introduced a dataset to analyze cellular network performance
under high-speed conditions [7]. Their study used UEs located
in a high-speed train (up to 300 km/h), a car (up to 100 km/h),
and a stationary point. They observed latency as high as
150 ms on the train, compared to around 30 ms in the car
and at the stationary point.

Another important contribution is from Safari et al., who
generated an open dataset using stationary and distributed
mobile nodes [8]. This is done by collecting network data
from dozens of MNOs in six countries from the MONROE

3https://github.com/GTA-UFRJ/WolfLatency

platform. MONROE is an open source platform that performs
measurement campaigns. Nevertheless, their measurements
capture interactions between UEs in the MNO network and
servers external to the network, rather than within the same
network.

In the theoretical domain, several works have analyzed
latency between devices and edge servers. Ko et al. provide a
theoretical analysis of the latency encountered by MEC users,
emphasizing the importance of latency assessment for MEC
service design [9].

Research on mobility and its effect on network connectivity
can also be found outside the context of MEC. Mehmeti and
Porta, analyzing a public dataset from a mobile operator in
Ireland, show that the time UEs remain connected to the
same BS while in motion follows a Pareto distribution [11].
Bouchelaghem et al. created a dataset based on user behavior,
capturing location traces within a 500-meter range of BSs
every five minutes. Their work demonstrates how mobility
prediction based on user movement history can enhance MEC
systems by optimizing service delivery along user routes [12].

While the aforementioned studies offer valuable insights
into the impact of mobility on mobile networks, they primarily
focus on the communication between UEs and servers external
to the mobile network. None of these studies investigate intra-
network communication between devices within the same cel-
lular network, which would enable the evaluation of mobility’s
effect on potential MEC systems operated entirely within an
MNO. Additionally, there is a gap in the literature regarding
datasets that capture both mobility and network performance
metrics in the same experiment. Our work provides a novel
dataset which supports the development of resource allocation
strategies designed to optimize performance in the context of
UE mobility.

III. LATENCY BETWEEN DEVICE AND EDGE

To offload a task, an application running on a UE requests
an external server to execute the task and return the results. If
the server belongs to a cloud service, the server can be located
far away from the UE – both geographically and topologically.
If the distance between UE and the server is significant, this
means that there can be significant communication latency.
In this case, even with negligible task processing time, the
transmission and response delays can hinder latency-sensitive
applications. Using edge computing can reduce this commu-
nication delay.

The edge provides computing power closer to the UEs. As
the packets have to travel through less hops, the edge reduces
the communication latency. The edge also reduces the traffic
in the core of the network. One way to implement an edge
computing service in the mobile context is through the MEC
standard.

A. Multi-Access Edge Computing

According to the MEC standard [13], MNOs distribute
offloading-capable servers, named MEC hosts, throughout
their access network. A MEC host can be placed in a BSs



or at other strategic point in the network. The MEC hosts are
managed by the MEC system. The UEs run local applications,
called UE applications, that have an interface and interact
directly with the end user. The UE applications are able
to offload tasks to applications named MEC Apps, which
are executed by the MEC hosts. When the UE application
decides to offload a task to a MEC host, it first requests the
MEC system to instantiate the correspondent MEC App. The
MEC system then decides which MEC host should handle the
requests from this UE and instantiates the MEC App in the
chosen MEC host. The UE application can then proceed to
request the MEC application for the the task offloading.

In the MEC standard, the MEC system is responsible for
choosing which MEC host should run each MEC application.
Choosing the best server is not trivial. The choice depends on
the MNO’s allocation policy [14] and will only be made if the
user and his UE applications have the necessary permissions
and no restrictions. In this sense, the MEC system is respon-
sible for the resource allocation, and it should follow some
resource allocation policy. Developing an allocation policy
is complex and takes into account not only latency due to
distance between server and client and their mobility, but also
resource availability, network utilization and other factors [5],
[15]. In this paper, we focus on the latency and mobility
aspects.

B. Latency Between Device and Edge Under Mobility

Figure 14 depicts a scenario in which a UE is executing a
UE application within a moving vehicle. At instant t = 1, the
MEC system instantiates the MEC application on the MEC
host that is the closest to the UE. Nonetheless, as the UE
moves, it moves away from the server that was previously
assigned to serve it and towards another server. At instant
t = 2, the UE is closer to another MEC host. As a result, the
optimal server to serve the UE is not the initial MEC host, in
term of latency.

In addition to the distance between the server and the UE,
the latency between the server and the client also depends on
the topology of the MNO’s internal network. The topologies
of MNO networks can vary significantly and may include not
only the access network but also the core network and, in some
cases, additional services. In practice, to avoid competitive
disadvantage and security breaches, MNOs treat their topolo-
gies as proprietary information and do not make it public.
Nevertheless, it is not necessary to know the exact internal
network topology to measure the latency between two devices.
It is sufficient that both are able to exchange information on
the same network, so that the round trip time can be obtained.

While ideal, it is not easy in practice to deploy a MEC host
in the edge of some MNO and then obtain communication
metrics from a UE. The direct access to a BS would be the
optimal scenario to avoid interference, wireless communica-
tion between devices is sufficient to emulate communication
between a user and a MEC server. The internal network of

4Figure with icons from Freepik, from Flaticon.com.

the MNOs is usually protected by firewalls and uses NAT to
block incoming requests. Section IV details our data collection
procedure to cope with these challenges.

IV. DATA COLLECTION PROCEDURE

To collect experimental data, we develop two applications
for Android devices [16]. The applications work as a client
and a server that exchange requests and responses collecting
network data during the procedure. We have named the
applications WolfClient and WolfServer. The code of the
WolfClient and WolfServer is available in a public repository5.

We have decided to perform the data collection within
the network of one of the three largest MNOs in Brazil, as
determined by Anatel’s market share ranking of operators [17]
(Anatel is the Brazilian National Telecommunications Agency,
“Agência Nacional de Telecomunicações”).

Our preliminary experiments revealed that, when a device
is within the the selected MNO network, it is not possible to
reach its IPv4 address, even if the other device is in the same
network. This situation was confirmed using the application
the ping command and also using HTTP requests. Therefore,
if two devices within the selected MNO network try to commu-
nicate using IPv4, the traffic between them is blocked for the
evaluated protocols. Nevertheless, the preliminary experiments
also showed that the IPv6 is reachable and the IPv6 traffic
is possible between two devices within the network. As a
consequence, we decide to use the IPv6 protocol to collect data
from two devices on the same mobile network, overcoming the
MNO’s barriers.

This paper presents the results obtained using the Wolf-
Client and WolfServer applications, which are responsible
for collecting data from the client device and the server
device, respectively. The applications are installed on two
UEs connected to the same cellular network and exchange
Hypertext Transfer Protocol (HTTP) requests [18] with each
other over IPv6.

A GET request is initiated by the client, which is running
the WolfClient application, and is transmitted to the server,
which is running the WolfServer application, using the IPv6
address of the server’s UE. The WolfServer receives the
request and responds with a basic web page to the WolfClient.
Both devices then proceed to store the network conditions
experienced by each UE. To infer the latency experienced
by the application, we consider the time between an HTTP
request is sent by the client and an HTTP response arrives
from the server. In addition to this HTTP application latency,
we also collect physical layer data using Android libraries.
After collecting the metrics and calculating the latency, the
client sends a POST to the server containing the collected
metrics in one line of information, so that it can also save
it as a backup and avoid loss. This POST is not included in
the latency calculation to avoid skewing the results. The data
generated from these experiments will aid decision making and
improve the accuracy of allocation strategies in future work.

5 https://github.com/GTA-UFRJ/WolfLatency
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Fig. 1. UE moving in relation to a MEC server.

A. Equipment Used

The experiments employ two UE devices. One device runs
WolfServer and is maintained in a fixed position to simulate a
potential MEC server. The other device runs WolfClient and is
moved through a trajectory, generating data over the network
conditions.

TABLE I
DEVICES USED IN THE EXPERIMENTS.

Device name Model Function

UE1 Galaxy A54 5G SMA546E/DS Server
UE2 Galaxy Tab A9+ 5G SM-X216B Client

Table I provides a summary of the devices utilized in our
experiments. Both devices are equipped with 5G connectivity
and are configured with SIM cards that are valid for use with
data plans.

B. Collected Metrics

The applications WolfClient and WolfServer exchange mes-
sages and collect relevant data about the communication in
both devices. The data collected is summarized in Table II.
They gather information about the transportation means (e.g.,
walking, train, or car), the date and the time of the measure-
ment (timestamp), the latency experienced by the application
(latency), and about the geographical location of the device
(latitude and longitude). Additionally, the application gathers
data regarding the specific mobile network utilized, including
the generation (5G, 4G, 3G, or 2G), the signal strength and
level, which are expressed in decibel-milliwatts (dBm), the
tracking area code (TAC) and location area code (LAC), the
mobile country code (MCC), the mobile network code (MNC),
and the cell identification (Cell ID). Furthermore, signal
quality data is gathered, including the following parameters:
Reference Signal Received Quality (RSRQ), Reference Signal
Signal to Noise Ratio (RSSNR), and channel identification
(New Radio - Absolute Radio Frequency Channel Number -
NRAFCN).

The data collected for identification purposes enables the
localization of devices using their latitude and longitude coor-

dinates via the Global Positioning System (GPS). The MCC
code is employed to ascertain the country where the device is
connected to the Internet, whereas the MNC code is utilized
to identify the MNO providing the Internet service. During the
course of the experiments, both codes remain constant, as they
belong to the same network. Nevertheless, they are retained for
comparison with datasets from other regions and other MNOs.
The area location codes, TAC/LAC, are employed to delineate
the region where the mobile network operator’s base station
is situated. This allows the base station to be identified by its
unique identification number, designated as cellId [19].

We use the cellId and the TAC/LAC as input to the Ap-
plication Programming Interface (API) provided by Unwired
Labs. The API returns the GPS coordinates of the BS to which
the UE is connected. We attach the coordinates of all the BSs
found to our dataset, to enhance future analysis.

The data collected for the purpose of measuring signal
quality includes the information on the channel conditions
between the UE and its BS. The dataset includes the re-
ceived signal strength indicator (Signal dBm), which varies
according to the generation of mobile networks to which the
UE is connected. The Signal dBm value corresponds to the
Received Signal Strength Indicator (RSSI) when the user is
connected to a 2G network, the Received Signal Code Power
(RSCP) when connected to a 3G network, and the Reference
Signal Received Power (RSRP) when connected to a 4G or
5G network. These signals are quantified in decibels relative
to one milliwatt (dBm) and are represented in the signal level
indicator for interpretation by the user. The user interface
typically displays this indicator in the form of bars ranging
from levels 0 to 4. In addition to data regarding the strength
of the signal experienced by users, we collect indicators that
reflect the quality of the signal received (RSRQ) and the mean
value of the signal-to-noise ratio of the cell in question, the
Reference Signal Signal to Noise Ratio (RSSNR) [20]. We
also collect the new radio absolute radio frequency channel
number (NRARFCN), that is available for 5G-NR networks.
This measurement is used to identify a specific channel in 5G
links. Both the WolfClient and the WolfServer capture signal
quality information about the device running them.



TABLE II
METRICS CAPTURED BY THE WOLFCLIENT AND WOLFSERVER.

Field Definition Field Definition

Transportation Means of transport used TAC/LAC Cell area code
Timestamp Date and time of request MCC Country mobile code
Latency HTTP Request/Response time in ms MNC Country operator code
Latitude GPS Latitude Coordinate CellId Identification of the connected cell
Longitude GPS longitude coordinate RSRQ Received signal quality
Mobile Network Connected to 2G, 3G, 4G or 5G RSSNR Amount of noise in communication
Signal dbm Power of the signal obtained, in dBm NRARFCN Radio channel number
Signal level Signal dbm translation in levels - -
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Fig. 2. Route used for the experiments.

C. Data Capture on the Move

We conduct the experiments in the city of Rio de Janeiro,
Brazil. In all experiments, the server remains stationary in an
open space, while the client moves onboard a vehicle. A map
illustrating the positions of the UE and the paths traversed is
shown in Figure 2.

Table III presents the number of data points collected in
the experiment, the number of cells identified, and the mean
values for other variables, including total travel time, distance
traveled, and average speed.

In the experiments, device UE1 hosts the server application,
and device UE2 hosts the client application. The server is
located at an open space on the university campus, while the
client drives to another neighborhood, in the same region of
the city, traveling a distance of to 5.8 km from the server.
Figure 2 illustrates the position of the server and the path of
the client. The experiment covers both high speed roads and
slow areas.

To initiate the experimental procedure, the IPv6 address
of the WolfServer device and the mode of transportation
employed are entered manually in the WolfClient application.
The client initiates one HTTP request per second to the server,
except in instances where the server’s response exceeds one
second. With each request, the client updates its location and
network condition information. Similarly, with each received
request, the server updates its own dataset with its continuous
location and respective network data, thereby establishing a
difference in connection status between the two ends of the
communication. Furthermore, the data captured by the client

is stored in a backup file on the server to prevent the client’s
data from being lost.

TABLE III
DATASET OVERVIEW.

Attribute Value

Number of data points 4,825
Traveled distance (mean) 5.7 km
Total time (all routes) 82 min
Average speed 23.61 km/h
Number of cells 96

V. DATASET ANALYSIS

Section IV-C outlined the methodology for capturing net-
work traces under mobility, resulting in the creation of a
dataset. In this section, we evaluate the experimental results
to understand the relationship between UE proximity to edge
resources and communication latency.

A. Relationship between Latency and Distance

Figure 4 shows the latency as a function of distance,
with latency presented on a logarithmic scale. The red line
represents a least-squares linear fit, which surprisingly shows
a negative slope of -51.56 ms/km, indicating a reduction in
latency with increasing distance. Nonetheless, the low coeffi-
cient of determination (R2 = 0.0177) suggests that distance
is not the primary factor affecting latency. Latency varies
throughout the route, with most delays clustering within a
range which decreases with distance. Nevertheless, there is
a significant presence of higher latency, particularly at the
beginning of the route, though some outliers persist toward
the end. Some delays exceed 1 s, reaching up to 14 s, which
could critically impact QoE for latency-sensitive applications
like gaming or remote control of equipment. As highlighted
in [21], these latency values are far beyond the acceptable
threshold of critical applications, typically requiring latency
below 10 ms. We explore these unexpected delays in more
detail in Section V-C.

The figure 5 highlights that distance between UE and BS
is not a reliable predictor of latency in mobile networks. The
data points are mostly clustered around specific distances (0-2
km, 4-5 km, and 8 km). In urban settings, the typical distance
between a UE device and a MEC server is observed to range
between 5 and 10 km. Despite some clusters of lower latency
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Fig. 4. Latency as a function of the distance between server and client.

at short distances, the variability and presence of significant
outliers suggest that other factors, such as network congestion,
signal quality, multipath, or infrastructure issues, are more
influential in determining latency than the simple physical
separation between base stations and clients. The near-zero
value (R2 = 0.0003) supports this hypothesis.

Moreover, latency spikes at shorter distances may be at-
tributed to local network conditions, including interference,
high user density, or transmission errors that require packet
retransmissions, increasing delays. The observed lack of a
strong trend in the relationship between distance and latency
reinforces the notion that signal quality (influenced by factors
like obstructions, radio frequency interference, or weather
conditions) plays a much larger role than proximity alone.

The jitter (calculated according to RFC4689 [22]) is shown
in Figure 6. The figure illustrates how jitter varies with dis-
tance, revealing the effects of mobility on packet transmission.
High jitter can severely impact real-time services, such as
voice communications and video streaming, by causing delays
and dropped frames. The figure suggests that while there is
a slight downward trend in jitter with increasing distance,
distance alone does not significantly influence jitter. The high
level of variability indicates that jitter is likely driven by a
complex set of factors, including network conditions, interfer-
ence, and environmental dynamics, which are not captured by
distance alone. It was expected that other factors would affect
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Fig. 5. Latency as a function of the distance between base stations and client.

jitter, but not that distance would have such a small effect.
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Fig. 6. Jitter experienced along the routes.

Figure 7 shows the route taken by the vehicle and the loca-
tions of the BSs the client connected to during the experiments.
A total of 96 cells were observed across the route, with the UE
alternating between 4G and 5G technologies. Notably, the 5G
connections were based on 4G infrastructure, utilizing Non-
Standalone (NR-NSA) technology [23]. This configuration
causes the UE to recognize the network as 4G with 5G data
support. Of the 96 cells, 82 supported 5G connections, while
55 supported 4G, reflecting the current state of 5G deployment



of the MNO, which uses dual technology capabilities.
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Latency maps in Figure 8 depict the latency experienced
during the experiments. Higher latency areas are represented
by yellow, while lower latency regions are in blue. Higher
latency tend to cluster at the beginning of the route. This is at-
tributable to the high concentration of low-level signal data in
this area, oscillating between level 1 and level 0. Additionally,
there is a considerable amount of noise interference (RSSNR)
with a multitude of negative values, and the received signal
quality (RSRQ) remains in the -20 to -15 range and exhibits
several changes from 5G to 4G. These values collectively
contribute to an unfavorable connection experience.
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Fig. 8. Latency maps for the different experiments.

B. Evaluation of Minimum Latency per Window

Figure 9 presents the empirical cumulative distribution func-
tion (ECDF) of the latency values. In each experiment, an in-
flection region is observed, between 300 and 600 milliseconds.
Notably, Route 1 consistently shows higher latencies, while
Route 3 is the first to reach higher latency outliers. A potential
explanation is that the latencies stem from both transmission
delays and interference, as well as retransmissions due to
packet loss.
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Fig. 9. Cumulative probability function of latency across the routes.

C. Influence of Link Conditions

We also evaluated the effect of signal strength over the la-
tency measured. Figure 10 illustrates the distribution of signal
levels, with the majority of the experiment occurring under
strong signal conditions. Figure 11 shows a box plot of latency
versus signal level, on a logarithmic scale. As expected, lower
signal strength corresponds to higher latency, with extreme
deviations, such as latencies over 1000 ms, observed when the
signal falls below -100 dB.

0 2 4 6 8
Distance (km)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Signal Level
Signal Level 0
Signal Level 1
Signal Level 2
Signal Level 3
Signal Level 4

Fig. 10. Proportion of signal levels vs. UE-BS distance

The signal strength significantly influences latency, as
shown in Figure 11. Poor signal conditions lead to a wider
latency distribution, suggesting that retransmissions and packet
loss under poor connectivity contribute to elevated latency.
In weaker signal environments, the lower signal-to-noise ratio
(SNR) can cause frequent errors in transmission, necessitating
the retransmission of packets. This, in turn, increases the
latency and introduces jitter.

CONCLUSION

Multi-Access Edge Computing (MEC) is a standard devel-
oped by the European Telecommunications Standards Institute
(ETSI) that enables Mobile Network Operators (MNOs) to
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provide edge computing resources to their users. MEC pro-
vides the computing power of MEC servers (MEC hosts) to
offload tasks from User Equipment (UEs). Furthermore, MEC
relies on the proximity between UEs and MEC servers to
ensure low latency. However, the mobility of UEs can impede
the potential of MEC to provide low latency, as a moving UE
moves further away from the MEC server. This effect can be
accentuated by the mobility of vehicles.

The objective of this work is to assess the relationship
between distance and delay experienced by the UE and the
MEC server in the context of vehicle mobility and build a
dataset which can be used by other studies. To this end,
experimental data was collected from two moving UEs. One
UE was designated as the server, while the other acted as the
client. Data was gathered from the client’s movement, with
nearly 5,000 samples collected. In addition to latency samples,
signal quality data was also collected. The results are presented
on the relationship between distance and latency, as well as
the influence of signal strength on latency.

As future work, the dataset generated from the mobility
traces is expected to be used in simulation projects, with the
objective of creating allocation strategies based on the mobile
behavior of UEs in a real network. Thus, new studies should be
initiated with the aim of investigating the impact of mobility
in MEC system scenarios, emulating the expected behavior
and the optimal strategies for dealing with multiple users.
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