
XTC: A Throughput Control Mechanism for
Xen-based Virtualized Software Routers

Rodrigo S. Couto, Miguel Elias M. Campista, and Luı́s Henrique M. K. Costa
Universidade Federal do Rio de Janeiro - PEE/COPPE/GTA - DEL/POLI

Email:{souza,miguel,luish}@gta.ufrj.br

Abstract—Xen is a tool for hardware virtualization often used
to build virtual routers. Xen, however, does not assure the fun-
damental requirement of network isolation among these routers.
This work proposes XTC (Xen Throughput Control) to fill this
gap, and therefore, to guarantee multiple network coexistence
without interference. XTC sets the amount of CPU allocated
to each virtual router according to the maximum throughput
allowed. Xen behavior is modeled by using experimental data,
and based on these data, XTC is designed using feedback control.
Results obtained in a testbed demonstrate the XTC ability to
isolate virtual network capacities and to adapt to system changes.

I. I NTRODUCTION

Today, more and more researchers are engaged in a dis-
cussion about future Internet directions. Some advocate the
clean-slate architecture, which is based upon the idea that
the Internet must be redesigned to accommodate requirements
not initially considered, such as security, reliability, etc [1].
Embracing all current Internet requirements in a unique ar-
chitecture may not be feasible, though. Therefore, another
solution is to allow multiple independent networks running
in parallel using a virtualized substrate. In this case, each
network would be a virtualized network configured to suit
specific requirements [2].

A key requirement of a virtualized infrastructure is to keep
isolation among the different virtual networks [2]. Never-
theless, providing adequate isolation is still an open issue.
Xen [3], often used to build virtual routers, virtualizes ma-
chine hardware among different operating systems running in
parallel. In Xen, the virtual machines (VMs) play the role of
virtual routers, allowing different networks to run concurrently.
Nevertheless, only one privileged VM, using hypervisor calls,
is responsible for granting access to I/O resources to the
other VMs. Consequently, this privileged VM may become a
bottleneck for certain operations, breaking down the isolation.

Up to date, resource sharing between VMs is a subject
well investigated in data centers [4] [5], but an open issue
in virtual networks. Anweret al. [6] use a hardware-based
control to reduce the network bottleneck in Xen. They use the
NetFPGA platform to limit incoming packets in each virtual
interface before they reach the hypervisor. Consequently,if
a virtual machine is receiving more packets than permitted,
their control mechanism blocks them, making sure that no
extra packets go to the hypervisor and waste resources.
Fernandes and Duarte [3] propose a control mechanism that
handles resource sharing among virtual routers from the secu-

rity viewpoint. They monitor resource utilization and punish
misbehaving routers.

In this work, we propose XTC (Xen Throughput Control),
a software-based control mechanism to orchestrate the amount
of machine resources provided to each virtual router. Our goal
is to guarantee virtual network isolation, which is not possible
with standard Xen. Unlike previous work, our mechanism
controls the capacity of avirtual router to forward packets
instead of using per interface control. This characteristic gives
more flexibility and scalability to XTC. We tackle the problem
using Xen because of its high programmability power and
flexible resource management, such as memory and CPU. To
control the virtual router packet forwarding capacity, XTC
controls the amount of CPU time assigned to each virtual
router to achieve a desired throughput. Our proposal thus
provides isolation by limiting the throughput that a virtual
router can forward, preventing this router from interfering on
other virtual routers on the same machine. In addition, XTC
can be used to perform virtual router differentiation during
contention periods by limiting the throughput of each virtual
router. XTC controls the amount of CPU given to each virtual
router on the fly, allowing the system to adapt to dynamic
network conditions. To analyze the performance of XTC, we
first conduct experiments to tune its parameters. Then, we
show that XTC can be used to differentiate virtual routers
and, finally, that XTC can adapt to system changes.

This paper is organized as follows. Section II reviews CPU
scheduling in Xen. Section III gives an overview of our
proposed system. Our testbed is described in Section IV and
Section V shows the mathematical model used to analyze the
behavior of Xen. Section VI shows the design of XTC, while
Section VII evaluates it experimentally. Finally, SectionVIII
concludes this work and points out future directions.

II. X EN CREDIT SCHEDULER

The Xen hypervisor manages the amount of resources
that each virtual machine (VM) can use. Concerning CPU
allocation, the hypervisor uses by default the Xen Credit
Scheduler [7], which controls the slice of CPU time given
to each VM. The amount of CPU time is adjusted based on
two parameters:weight and cap. The former defines weights
for each VM and the scheduling decision gives priority to
VMs with higher weights, in case of contention for CPU. On
the other hand, cap imposes a hard limit on CPU utilization
by indicating the maximum percentage of CPU time given

Fig. 1. XTC Feedback Control Loop.

to each VM. The two parameters are configured on the fly
from a privileged VM, called Domain 0 (Dom0). Dom0 is
also responsible for managing shared I/O operations.

Limiting the slice of CPU is useful to control the runtime
of the tasks running on each VM. Tasks such as processing,
disk writing, packet forwarding etc. can have their runtime
controlled. In this work, the VM concept is used to create
routers which have as their main task packet forwarding.
Hence, when controlling the CPU slice given to each virtual
router, we can limit the maximum throughput each one can
achieve forwarding packets. We limit CPU using cap because
this parameter gives more control to our mechanism: cap gives
a hard limit as opposed to weight which acts only when the
CPU is saturated.

III. X EN THROUGHPUTCONTROL

This work proposes Xen Throughput Control (XTC), which
controls the throughput of Xen-based virtual routers. XTC ad-
justs the cap of each virtual router according to the maximum
throughput desired. In this work, we define throughput as the
total bit rate forwarded by a virtual router. In other words,the
throughput is the aggregated bit rate forwarded through all
virtual router interfaces. Using throughput limitation wecan
provide isolation among the different hosted virtual routers.
XTC is as flexible proposal for throughput control in virtual
networks because it does not individually control the through-
put of each virtual router network interface. Instead, XTC
controls the aggregated traffic, acting on the virtual router
capacity to forward packets using CPU slice assignment. Our
mechanism then orchestrates the aggregated throughput of a
virtual router, limiting only its influence on Dom0, leavingto
the administrator of a virtual router the liberty to manage the
traffic on each interface. Furthermore, XTC is scalable because
the number of controllers does not increase with the number
of network interfaces on each router.

XTC uses a feedback control loop that acts on the cap
entitled to each virtual router in order to achieve a throughput
setpoint, depicted in Figure 1. To accomplish that, XTC
periodically measures the achieved throughput in the virtual
router and computes the error between this measure and
the throughput setpoint. This setpoint represents the desired
throughput in a virtual router. The error is then used by the
Controller block where we implement a Proportional Integral
(PI) controller to compute and adjust the virtual router cap
according to this error. The PI controller was chosen because
it has zero steady-state error, combined with short settling

Fig. 2. Experimental Testbed.

time. A shorter settling time could be achieved by using a
PID (Proportional Integral Derivative) controller. However,
the derivative factor of PID can cause oscillation in the real
implementation of systems with high output variability, such
as computer networks. XTC samples the achieved throughput
every 1 second. The Xen System block represents the behavior
of the virtual router throughput according to the cap entitled to
it. We model this block using experimental data. This block
is important to the Controller design, because it represents
the basis on which the PI controller parameters are chosen.
We first manually evaluate the parameters and later we use
the Self-Tuning Regulator to autonomously evaluate the Xen
System model and choose new PI controller parameters.

For a complete resource allocation system we have one XTC
per virtual router and a policing mechanism which controls
all XTCs. This mechanism can configure the throughput
setpoint, activate or deactivate each XTC and tune other XTC
parameters. The actions taken by the policing mechanism are
based on its knowledge about the system environment obtained
via resource utilization measurements and policies specified by
the system administrator. These policies can be based on SLAs
(Service Level Agreements). As an example, this mechanism
can detect a bottleneck situation and then activate XTC to
limit the throughput of a virtual router in order to meet other
routers’ requirements. In this paper we focus on XTC design
and thus the policing mechanism is manually executed.

IV. EXPERIMENTAL TESTBED

Figure 2 illustrates our testbed, composed of four PCs,
which is used to model the Xen System block and to perform
experimental analysis of XTC. The Traffic Generator machine
(TG) produces all data traffic destined to the Traffic Receiver
(TR) machine. The Traffic Forwarder (TF) machine hosts the
virtual routers used in our experiments. In our Xen configura-
tion Dom0 has two exclusive CPU cores while virtual routers
share another core. TF runs the Xen hypervisor version 3.4.2
and has instantiated virtual routers which forward packetsfrom
TG to TR. The Traffic Controller (TC) machine runs XTC.
Note that the Traffic Generator (TG) and Traffic Receiver (TR)
are directly connected to the Traffic Forwarder (TF) whereas
TC is connected to TF and TR through different links to avoid
mixing control and data traffic.

TG, TR, and TC are general-purpose PCs equipped with
an Intel Core I7 860 2.80 GHz processor in a Intel DP55KG
motherboard. These machines run Debian Linux kernel version
2.6.32. The TF machine is an HP Proliant DL380 G5 server

equipped with two Intel Xeon E5440 2.83 GHz processors.
This machine runs Debian Linux paravirtualized kernel version
2.6.26. On the one hand, TG and TR are connected to
TF via their on-board Intel PRO/1000 PCI-Express network
interfaces. TF, on the other hand, is connected to TG and to
TR via the two interfaces of a PCI-Express x4 Intel Gigabit
ET Dual Port Server Adapter.

V. X EN SYSTEM MODELING

The Xen System block models the behavior of virtual router
throughput according to the cap entitled to it. We use a black-
box approach to model the system [8] based on experiments
using the following framework.

A. Training Data Acquisition

Using the testbed described in Section IV, with the TC
machine turned off, we model the Xen System by using
an experiment to capture the relationship between cap and
throughput. We send packets from TG to TR through one
virtual router inside TF using fixed packet rate and fixed packet
length. This flow consists of UDP segments generated by Iperf
during 30 seconds. The experiment is repeated for different
cap values assigned to the virtual router. Figure 3 shows the
throughput achieved using 64-Byte packets for different packet
rates. The X axis shows the cap assigned to the virtual router.
Note that the relationship between cap and throughput depends
on the packet rate forwarded by the virtual router. The higher
the rate, the more CPU is needed.

Figure 3 also shows that from a certain cap entitled on,
the throughput stops increasing. In this case, the throughput
obtained matches the bit rate produced, because the virtual
router receives enough CPU resources. Nevertheless, below
these cap values, the throughput changes according to the
cap in a log-scale fashion. Thus, this region is considered in
our system modeling. We perform the same experiment with
1470-Byte packets and we also observe the same behavior
seen in the 64-Byte packet experiment unless by the fact
that the throughput achieved is higher for each cap value, as
expected. Consequently, in the remainder of this paper we use
flows of 64-Byte packet to allow higher packet rates on a
Gigabit link. Nevertheless, our results could extend to larger
packets on 10 Gigabit links. It is important to note that, as our
experiment uses cap, which is a percentage of CPU, the values
of throughput obtained will depend on the hardware used.
However, the behavior shown in the experiment will remain
the same. As the design of XTC depends on the model ob-
tained with this experiment, our mechanism requires an initial
training for a certain hardware specification. Yet, considering
the Self-Tuning regulator, which adjusts XTC according to
system changes, this requirement is not an obstacle.

B. Model Evaluation

Using the results from Section V-A, we model the Xen
System as a linear first-order system given by Equation 1.
This model will be useful in the Controller design.

y(k + 1) = ay(k) + bu(k). (1)

0

10

20

30

40

50

60

70

80

90

 0 30 60 90

T
hr

ou
gh

pu
t (

M
b/

s)

Cap (%)

Region of Interest

20kp/s
40kp/s
60kp/s
80kp/s

100kp/s

Fig. 3. Cap variation with 64-Byte packets.

As we are modeling a non-linear system using a linear model,
we consider the system as linear over an operating point. Con-
sequently, the signalsy(k) = ỹ(k)−ȳ andu(k) = ũ(k)−ū are
offset values from their operating points, whereỹ(k) andũ(k)
are the actual values of the Xen System signals andȳ and ū

the operating points. The operating points are the mean values
of ỹ(k) and ũ(k) over the region of interest. In Equation 1,
y(k) andu(k) indicate, respectively, the throughput achieved
by the router and thelog(cap) in the system input at thekth

sample. We uselog(cap) instead of absolutecap because the
relationship between cap and throughput has approximatelya
logarithmic behavior over the region of interest. Consequently,
the first-order model of Equation 1 suits our purposes and
simplifies the control system design.

The next step to model the Xen System is to obtain the
variablesa andb that characterize this system on Equation 1.
The Xen System behavior and thus the variablesa and b

depend on the packet rate and on the packet length of the
controlled flow. The parametersa and b can also model one
aggregated flow with average packet rate and packet length.

We model the Xen System forwarding a 64-Byte flow at
constant packet rate of 100 kp/s to show that a first-order
system suits well our purposes. To estimatea andb, we employ
the least squares regression method [8] using as an input the
data obtained in Section V-A for the 64-Byte packet flow at
100 kp/s. We evaluatea and b over the operating point̄y =
40 Mb/s andū = 1.39. This region was chosen because cap
still acts and the throughput does not saturate. In our example,
this region corresponds tocap ≤ 60 as indicated in Figure 3.
We obtaina = 0.0915 and b = 32259 using MATLAB. To
evaluate our model accuracy regarding the data collected, we
compute theR2. This metric quantifies the variability of the
output explained by the model and varies from 0 (worst model)
to 1 (best model). In our case, we obtainR2 = 0.9899 which
suggests a very good fit.

VI. XTC D ESIGN

The design of the main parts of XTC, the Controller and
the Self-Tuning Regulator, are described below.

A. Controller

The Controller must decide which value of cap will be
given to the virtual machine based on the difference between
the throughput setpoint and the achieved throughput. We

implement this block as a Proportional Integral (PI) controller,
which evaluates periodically the cap using Equation 2. In this
equation,u(k) is the controller decision in thekth sample,
denoted aslog(cap), and e(k) is the error computed by the
difference between the setpoint and the achieved throughput.

u(k) = u(k − 1) + (Kp +Ki)e(k)−Kpe(k − 1). (2)

The design issue of a PI controller is to chooseKp and
Ki parameters to meet the system requirements, such as
stability and small settling time. The first indicates that the
system converges to a steady-state value, whereas the second
indicates the time when the system would meet this value.
Using the pole placement method we evaluate manually the
controller parameters using the 64-Byte packet at 100kp/s.
This method considers variablesa and b of the model eval-
uated in Section V-B. The controller parameters that lead
the system to a small settling time and a stable behavior
are Kp = −3.422 × 10−6 and Ki = 22.158 × 10−6. The
complete system seen in Figure 1, disregarding the effect of
the Self-Tuning Regulator, was simulated with Simulink from
MATLAB. Results, not shown here, show that the theoretical
system is stable and has a settling time of 10 seconds.

Our proposed Controller also uses the concept of dead
zone, where it decides to act only when the error exceeds
a threshold. As the Controller acts using Dom0 calls, limiting
the Controller actions reduces these calls. In systems where an
external machine performs these calls, this concern becomes
more important because it reduces the control overhead be-
tween the control machine and the machine running Xen. The
threshold chosen in our implementation is 10% of the setpoint.

B. Self-Tuning Regulator

The manual evaluation of Controller parametersKp and
Ki is not suitable in systems with fast dynamics, such as
routers, as it requires a prior evaluation of several param-
eters that are appropriated to each system behavior, and
the Controller should detect when it will use each of these
values. Furthermore, undetected changes in system dynamics
or even unknown may cause undesirable behavior. To avoid
these problems, XTC uses adaptive control techniques to self-
tune according to system changes. The Self-Tuning Regulator
block is responsible for adapting the Controller to changeson
Xen System characteristics. This block periodically estimates
constantsa and b of Equation 1 based on the observation of
the Controller decisionu(k) and the outputy(k) of the Xen
System. This estimation uses the Gradient Projection algorithm
given by Equation 3, whereα = 0.001 and c = 0.0001.
Using the constants that characterize the Xen System, the Self-
Tuning Regulator automatically evaluate new values ofKp

andKi using the Pole Placement method, as in Section VI-A.
Therefore, the Self-Tuning Regulator aims at keeping the
system properties, thus meeting the desired requirements even
when the system changes.

θ(k) = θ(k − 1) + αǫ(k)φ(k), (3)

where θ(k) = [b, a]T , ǫ(k) = y(k)−θT (k−1)φ(k)
c+φT (k)φ(k)

and
φ(k) = [u(k − 1), y(k − 1)]T .

VII. E XPERIMENTAL RESULTS

In this section, unless stated otherwise, the experiments use
XTC with the Self-Tuning Regulator block disabled.

A. Practical Implementation

We implement our proposed mechanism in the testbed of
Figure 2. Packets are sent from TG to TR at a fixed rate using
Iperf. A virtual router hosted in TF forwards these packets.
The Traffic Controller (TC) measures the throughput achieved
by the virtual router and plays the role of the Controller as
seen in Figure 1. To measure the achieved throughput, TC
periodically collects the output of the Iperf Server reported by
TR. In practice, the throughput measurement and also the XTC
execution have to be performed on the machine with Xen (e.g.
TF) to provide more scalability. We choose to separate these
functions from TF to guarantee that our results are independent
of this machine, which may be overloaded by high packet
rates. TC executes XTC, computing the cap of the virtual
router based on Equation 2 and remotely acting on the virtual
router cap. Note that Equation 2 computes thelog(cap), rather
than the absolute cap, and thus the actuator must compute the
inverse of log(cap) The complexity of this computation is
negligible in our testbed. XTC relies on simple operations,
allowing the control of large number of virtual routers.

The experiment consists of sending 64-byte packets from
TG to TR at 100 kp/s during 100 seconds, which corresponds
to a flow of 51.2 Mb/s. The TC machine must adjust the cap of
the virtual router to track the throughput setpoint of 20 Mb/s.
This value of setpoint is chosen to show the behavior of the
system when it is quite far from the operating point but not so
far as to cause undesired system behavior. Our first evaluation
measures the average throughput achieved and the root mean
square error (RMSE) with respect to this average, as seen in
Figure 4. These measurements are computed using the values
obtained during the interval from 20 to 100 seconds of each
Iperf run. We use this interval to discard the system transient
behavior before 20 seconds. The average throughput indicates
whether the system achieved the throughput of 20 Mb/s
as required. The RMSE, on the other hand, quantifies the
oscillatory behavior of the system showing how the system
response deviates from the average throughput.

We evaluate separately three different configurations. The
first one, called FC (Fixed Cap), consists of turning off XTC
and adjusting a fixed cap of 14% to the virtual router. This
value is chosen because we expect an average throughput
close to 20 Mb/s. In practice, this implementation is not
recommended because one must know in advance the fixed cap
value that leads to the specific throughput. Furthermore, the
system behavior may vary because of traffic dynamics, which
justifies the use of a feedback controller to periodically adjust
the cap. We use, however, this result as a reference to analyze
XTC performance. Figure 4 shows that FC implementation
obtains a high RMSE value, which indicates that the system

0

5

10

15

20

25

FC EP APD

T
hr

ou
gh

pu
t (

M
b/

s)

Average Throughput
RMSE

Fig. 4. Average throughput and RMSE measurement.

0

10

20

30

40

50

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

Achieved Throughput
Average=20Mb/s

Fig. 5. Achieved throughput - APD XTC experiment.

oscillates when the throughput is limited using Xen’s cap
parameter. Therefore, the Controller will have to cope with
this particular behavior of cap adjustment. The EP (Evaluated
Parameters) configuration uses the XTC controller parameters
Kp = −3.422 × 10−6 and Ki = 22.158 × 10−6 as already
evaluated. Results show that the average throughput obtained
is close to the throughput setpoint showing the effectiveness of
our proposal. The EP implementation, however, inserts more
oscillation as compared with FC. Finally, we implement the
APD (Adjusted Parameters with Dead Zone) configuration
which has the controller parameters manually adjusted, with
Kp = −3.422 × 10−6 andKi = 10.158 × 10−6, in order to
reduce the oscillation. This configuration also uses the concept
of dead zone to reduce message exchange between TC and TF.
In this experiment, we can suppress29± 2.4% of the control
messages using the dead zone concept. As seen in Figure 4,
the APD configuration reduces the RMSE and achieves the
desired throughput. Figure 5 exemplifies the system output
obtained in a single run of the APD configuration.

In this section, XTC achieves a throughput extremely close
to the desired throughput. Nevertheless, the system response
oscillates around this value because of cap adjustment, which
represents a tradeoff of the Xen platform (independent of
XTC). In spite of this, we show that APD configuration adds
negligible oscillation compared with the FC configuration.

B. Traffic Differentiation

In this section we show the ability of XTC to provide traffic
differentiation between virtual routers. XTC can dynamically
guarantee higher throughput to a virtual router by limitingthe
amount of resources used by the other routers. This feature
is also used to guarantee isolation among virtual routers,

0

5

10

15

20

25

30

VR1 VR2 VR3

T
hr

ou
gh

pu
t (

M
b/

s)

XTC Off
XTC On

Fig. 6. Traffic differentiation using XTC

which is not possible with native Xen. In the default network
implementation of Xen, all packets sent and received by the
virtual routers are forwarded by Dom0. According to [9],
Dom0 consumes a lot of CPU resources when doing this
task and, even when reserving more CPU cores to Dom0, the
performance of network-related tasks do not increase because
they are single-threaded. Hence, Dom0 becomes a bottleneck
and the packet rate of each virtual network influence each
other. We conduct an experiment using TF hosting three virtual
routers (VR1, VR2, and VR3) forwarding packets. In this
experiment, TG sends to TR three 64-byte packet flows at
51.2 Mb/s during 100 seconds. Each virtual router forwards
one of these flows. Although the virtual routers share the
same CPU core, there is no contention for this core. Dom0, in
turn, has two reserved CPU cores. First, we neither use XTC
nor simple cap adjustment to measure the average throughput
obtained in the last 80 seconds of each run. This configuration
is named XTC Off in Figure 6.

Results show that the virtual routers cannot forward packets
at the full rate, 51.2 Mb/s, because of the high contention for
resources at Dom0. Consequently, the maximum throughput
obtained in a virtual router is 23 Mb/s. To allow VR1 to
forward more packets, we can limit the amount of packets
that the other virtual routers can send to Dom0. As a conse-
quence, VR1 has more opportunity to send packets to Dom0,
increasing its throughput. We use XTC on each virtual router
and repeat the latter experiment. For VR1, XTC uses the same
Kp andKi used in APD configuration of Section VII-A. The
only difference is that we now limit the throughput to 30 Mb/s.
For VR2 and VR3, XTC is configured to limit the throughput
to 15 Mb/s. Because this rate is far from the model’s operating
point used in Section VII-A, we also evaluate, for VR2 and
VR3, a system model for the operating point of 27 Mb/s,
resulting ina = 0.00339 and b = 34816. We then evaluate
the controller parameters, as explained in Section VI-A, and
we find Kp = −4.825 × 10−6 and Ki = 18.530 × 10−6.
Results are labeled as XTC On in Figure 6. They demonstrate
that it is possible to assign priority to a virtual router using
XTC. In our experiments, XTC was used in Xen’s default
configuration, where Dom0 is the bottleneck. Nevertheless,
XTC can also be used when Dom0 is not the bottleneck,
but when there is contention for resources on the CPU core
shared by the virtual routers. This situation may occur when

using Direct I/O techniques [10] where the network tasks
are not intermediated by Dom0. In this case, XTC can also
reduce the maximum throughput allowed to a virtual router,
freeing some CPU resources from the shared core to improve
the performance of the other routers. In the case of network
virtualization with plane separation [11], where the data plane
is implemented within Dom0 whereas control planes reside
in DomUs, XTC must be redesigned, since it assumes that
packets are forwarded by the virtual router.

C. Adaptability to System Changes

In this section we discuss the ability of XTC to adapt
to system changes, using the Self-Tuning Regulator of Sec-
tion VI-B. The experiment of Section VII-A is repeated using
the sameKp andKi parameters and, in the case of the Self-
Tuning Regulator, these are the initial values of the Controller
parameters. First, a flow of 51.2 Mb/s is generated and the
setpoint of XTC is 20 Mb/s. In this scenario, the XTC
performance is analyzed with and without the Self-Tuning
Regulator block. Results shown in Figure 7 are represented,
respectively, with the labels A20 and N 20. As in the case of
Section VII-A, results show that XTC without the Self-Tuning
Regulator block can achieve the desired throughput. This is
true because the distance of this throughput value compared
with the operating point does not cause undesirable system
behavior. Using the Self-Tuning Regulator, the throughput
of 20 Mb/s is also achieved but with an oscillation greater
than with static parameters, as seen by the RMSE value. The
same experiment is performed again but using a throughput
setpoint of 15 Mb/s, which has a greater distance from the
operating point. This result is shown in Figure 7 labeled N15,
where the throughput achieved is ten times less than the one
desired. Using the Self-Tuning Regulator, thus, the Controller
parameters are evaluated automatically in order to adapt XTC
to the new system requirements. The obtained results are
labeled A 15 in Figure 7, showing the performance of the
adaptive control. The system achieves 15 Mb/s even when
the initial controller parameters are evaluated to an operating
point far from the desired. These experiments demonstrate
the ability of XTC to adapt itself to system changes without
needing to evaluate parameters in advance for each operating
point or system state. The Self-Tuning Regulator can also
be used to evaluate new controller parameters when traffic
dynamic changes. However, the adaptive control introduces
more oscillation in XTC when the controller parameters do
not need to be adjusted, as in the case of A20 experiment.
This behavior is acceptable because, in this case, we have a
generic system that is not specific for a certain operating point.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper we have addressed the issue of traffic isolation,
a key challenge for network virtualization using Xen. Our
preliminary results show that the traffic forwarded by Xen
virtual routers interfere with each other using Xen’s default
implementation based on Dom0. To minimize this problem,
we have proposed a traffic control mechanism (XTC) which

0

5

10

15

20

25

N_20 A_20 N_15 A_15

T
hr

ou
gh

pu
t (

M
b/

s)

Average Throughput
RMSE

Fig. 7. Adaptability to system changes.

adjusts the amount of CPU entitled to each virtual router
according to the desired throughput. The experimental results
show that, with the obtained isolation, XTC provides differen-
tiation between virtual routers and can adapt itself to system
changes. Furthermore, XTC is a flexible and scalable solution
to control aggregated flows, avoiding the fine-grained control
of individual virtual network interfaces. XTC can also be
used as a building block for a larger virtual network resource
allocation system, combined with a policing mechanism.

Our future work includes building a policing mechanism
that adjusts the throughput of each virtual router based on
service level agreements and knowledge about the network.

ACKNOWLEDGEMENT

This work was partially funded by CNPq, CAPES, FAPERJ,
and FINEP.

REFERENCES

[1] J. Rexford and C. Dovrolis, “Future Internet architecture: Clean-slate
versus evolutionary research,”Communications of the ACM, vol. 53,
no. 9, pp. 36–40, 2010.

[2] J. Carapinha and J. Jiḿenez, “Network virtualization: a view from
the bottom,” inProceedings of the 1st ACM workshop on Virtualized
infrastructure systems and architectures. ACM, 2009, pp. 73–80.

[3] N. C. Fernandes and O. C. M. B. Duarte, “XNetMon: A networkmonitor
for securing virtual networks,” inProceedings of the IEEE International
Conference on Communications (ICC’11), Jun. 2011.

[4] M. Kjaer, M. Kihl, and A. Robertsson, “Resource allocation and
disturbance rejection in web servers using slas and virtualized servers,”
Network and Service Management, IEEE Transactions on, vol. 6, no. 4,
pp. 226–239, 2010.

[5] P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant,
and K. Salem, “Adaptive control of virtualized resources in utility
computing environments,”ACM SIGOPS Operating Systems Review,
vol. 41, no. 3, pp. 289–302, 2007.

[6] M. Anwer, A. Nayak, N. Feamster, and L. Liu, “Network I/O fairness in
virtual machines,” inProceedings of the second ACM SIGCOMM work-
shop on Virtualized infrastructure systems and architectures. ACM,
2010, pp. 73–80.

[7] D. Ongaro, A. Cox, and S. Rixner, “Scheduling I/O in virtual machine
monitors,” in ACM VEE, 2008, pp. 1–10.

[8] Z. Wang, X. Zhu, and S. Singhal, “Utilization and SLO-based control
for dynamic sizing of resource partitions,”Ambient Networks, vol. 3775,
no. 1, pp. 133–144, 2005.

[9] N. C. Fernandes, M. D. D. Moreira, I. M. Moraes, L. H. G. Ferraz,
R. S. Couto, H. E. T. Carvalho, M. E. M. Campista, L. H. M. K. Costa,
and O. C. M. B. Duarte, “Virtual networks: Isolation, performance, and
trends,”Annals of Telecommunications, pp. 1–17, 2010.

[10] J. Liu, W. Huang, B. Abali, and D. Panda, “High performance VMM-
bypass I/O in virtual machines,” inUSENIX, 2006, pp. 29–42.

[11] P. S. Pisa, N. C. Fernandes, H. E. T. Carvalho, M. D. D. Moreira,
M. E. M. Campista, L. H. M. K. Costa, and O. C. M. B. Duarte, “Open-
flow and Xen-based virtual network migration,”The World Computer
Congress 2010 - Network of the Future Conference, pp. 170–181, 2010.

