XTC: A Throughput Control Mechanism for
Xen-based Virtualized Software Routers

Rodrigo S. Couto, Miguel Elias M. Campista, andisiHenrique M. K. Costa
Universidade Federal do Rio de Janeiro - PEE/COPPE/GTA -/B@Ll
Email:{souza,miguel,luish@gta.ufrj.br

Abstract—Xen is a tool for hardware virtualization often used rity viewpoint. They monitor resource utilization and psimi
damental recuiremen of network solation among these routers, | onaving fouters.
amenta . H
This work p?oposes XTC (Xen Throughput Con’?rol) to fill this In this work, we propose XTC .(Xen Throughput Control),
gap, and therefore, to guarantee multiple network coexistence a SOﬂW&‘,re'based control meChan'Sm to O_rCheStrate therdmou
without interference. XTC sets the amount of CPU allocated Of machine resources provided to each virtual router. Oat go
to each virtual router according to the maximum throughput is to guarantee virtual network isolation, which is not poles
allc(;vxéed. é(en PhEhaVi?ft iS)?jl%iQ%d by Us(aing_exp;eri?bentsl da:a,lwith standard Xen. Unlike previous work, our mechanism
an aseda on tnese aata IS designeda using reeapack control. H :
Results obtained in a testbed demognstrate thge XTC ability to _controls the _CapaC|t)_/ of irtual router tq forward pa(?l.(ets
isolate virtual network capacities and to adapt to system changes instead OT ‘%§'”9 per 'nterff_i_ce control. This charactergties
more flexibility and scalability to XTC. We tackle the probie
|. INTRODUCTION using Xen because of its high programmability power and
flexible resource management, such as memory and CPU. To
Today, more and more researchers are engaged in a digntrol the virtual router packet forwarding capacity, XTC
cussion about future Internet directions. Some advocage #ontrols the amount of CPU time assigned to each virtual
clean-slate architecture, which is based upon the idea theliter to achieve a desired throughput. Our proposal thus
the Internet must be redesigned to accommodate requiremgitbvides isolation by limiting the throughput that a virttua
not initially considered, such as security, reliabilityc ¢1]. router can forward, preventing this router from interfgrion
Embracing all current Internet requirements in a unique asther virtual routers on the same machine. In addition, XTC
chitecture may not be feasible, though. Therefore, anoth&in be used to perform virtual router differentiation dgrin
solution is to allow multiple independent networks runningontention periods by limiting the throughput of each \aftu
in parallel using a virtualized substrate. In this case,heagouter. XTC controls the amount of CPU given to each virtual
network would be a virtualized network configured to suifouter on the fly, allowing the system to adapt to dynamic
specific requirements [2]. network conditions. To analyze the performance of XTC, we
A key requirement of a virtualized infrastructure is to keefirst conduct experiments to tune its parameters. Then, we
isolation among the different virtual networks [2]. Nevershow that XTC can be used to differentiate virtual routers
theless, providing adequate isolation is still an opendsstand, finally, that XTC can adapt to system changes.
Xen [3], often used to build virtual routers, virtualizes ma This paper is organized as follows. Section Il reviews CPU
chine hardware among different operating systems runmingscheduling in Xen. Section Il gives an overview of our
parallel. In Xen, the virtual machines (VMs) play the role oproposed system. Our testbed is described in Section IV and
virtual routers, allowing different networks to run conently. Section V shows the mathematical model used to analyze the
Nevertheless, only one privileged VM, using hypervisois;al behavior of Xen. Section VI shows the design of XTC, while
is responsible for granting access to I/O resources to tBection VII evaluates it experimentally. Finally, Sectigtl
other VMs. Consequently, this privileged VM may become eoncludes this work and points out future directions.
bottleneck for certain operations, breaking down the isma
Up to date, resource sharing between VMs is a subject
well investigated in data centers [4] [5], but an open issue The Xen hypervisor manages the amount of resources
in virtual networks. Anweret al. [6] use a hardware-basedthat each virtual machine (VM) can use. Concerning CPU
control to reduce the network bottleneck in Xen. They use tladlocation, the hypervisor uses by default the Xen Credit
NetFPGA platform to limit incoming packets in each virtuaBcheduler [7], which controls the slice of CPU time given
interface before they reach the hypervisor. Consequeiftly,to each VM. The amount of CPU time is adjusted based on
a virtual machine is receiving more packets than permittedlyo parametersweightand cap The former defines weights
their control mechanism blocks them, making sure that rior each VM and the scheduling decision gives priority to
extra packets go to the hypervisor and waste resourcE¥dds with higher weights, in case of contention for CPU. On
Fernandes and Duarte [3] propose a control mechanism tha other hand, cap imposes a hard limit on CPU utilization
handles resource sharing among virtual routers from the-seby indicating the maximum percentage of CPU time given

II. XEN CREDIT SCHEDULER

XTC

~
- TG TF TR
Controller Self-Tuning
Parameters Regulator NIC2
Throughput g) @I NIC2

Setpoint .

Error H -
—>®—> Controller c 9 Xen System — e Control
i ap [NICT)}----- (_ Ethernet Switch }** Traffic

Achieved Throughput Experimental
Traffic

Fig. 1. XTC Feedback Control Loop. Fig. 2. Experimental Testbed.

to each VM. The two parameters are configured on the fliyne. A shorter settling time could be achieved by using a
from a privileged VM, called Domain 0 (Dom0O). DomO isPID (Proportional Integral Derivative) controller. Hoveay
also responsible for managing shared I/O operations. the derivative factor of PID can cause oscillation in thel rea

Limiting the slice of CPU is useful to control the runtimeimplementation of systems with high output variabilitychu
of the tasks running on each VM. Tasks such as processiag,computer networks. XTC samples the achieved throughput
disk writing, packet forwarding etc. can have their runtimevery 1 second. The Xen System block represents the behavior
controlled. In this work, the VM concept is used to createf the virtual router throughput according to the cap estitio
routers which have as their main task packet forwarding. We model this block using experimental data. This block
Hence, when controlling the CPU slice given to each virtu@d important to the Controller design, because it represent
router, we can limit the maximum throughput each one cahe basis on which the Pl controller parameters are chosen.
achieve forwarding packets. We limit CPU using cap becaugée first manually evaluate the parameters and later we use
this parameter gives more control to our mechanism: cagsgivbe Self-Tuning Regulator to autonomously evaluate the Xen
a hard limit as opposed to weight which acts only when tt&ystem model and choose new Pl controller parameters.
CPU is saturated. For a complete resource allocation system we have one XTC
per virtual router and a policing mechanism which controls
[1l. XEN THROUGHPUTCONTROL . ;)

all XTCs. This mechanism can configure the throughput

This work proposes Xen Throughput Control (XTC), whicketpoint, activate or deactivate each XTC and tune other XTC
controls the throughput of Xen-based virtual routers. XS aparameters. The actions taken by the policing mechanism are
justs the cap of each virtual router according to the maximupsed on its knowledge about the system environment obttaine
throughput desired. In this work, we define throughput as the resource utilization measurements and policies speldify
total bit rate forwarded by a virtual router. In other wortt® the system administrator. These policies can be based os SLA
throughput is the aggregated bit rate forwarded through gdervice Level Agreements). As an example, this mechanism
virtual router interfaces. Using throughput limitation wan can detect a bottleneck situation and then activate XTC to
provide isolation among the different hosted virtual rosite |imit the throughput of a virtual router in order to meet athe
XTC is as flexible proposal for throughput control in virtualouters’ requirements. In this paper we focus on XTC design

networks because it does not individually control the tigfou and thus the policing mechanism is manually executed.
put of each virtual router network interface. Instead, XTC

controls the aggregated traffic, acting on the virtual route IV. EXPERIMENTAL TESTBED
capacity to forward packets using CPU slice assignment. OurFigure 2 illustrates our testbed, composed of four PCs,
mechanism then orchestrates the aggregated throughput efhéch is used to model the Xen System block and to perform
virtual router, limiting only its influence on DomO, leavitg experimental analysis of XTC. The Traffic Generator machine
the administrator of a virtual router the liberty to manabe t (TG) produces all data traffic destined to the Traffic Reaeive
traffic on each interface. Furthermore, XTC is scalable beea (TR) machine. The Traffic Forwarder (TF) machine hosts the
the number of controllers does not increase with the numbeértual routers used in our experiments. In our Xen configura
of network interfaces on each router. tion DomO has two exclusive CPU cores while virtual routers
XTC uses a feedback control loop that acts on the capare another core. TF runs the Xen hypervisor version 3.4.2
entitled to each virtual router in order to achieve a thrqugh and has instantiated virtual routers which forward packets
setpoint, depicted in Figure 1. To accomplish that, XTCG to TR. The Traffic Controller (TC) machine runs XTC.
periodically measures the achieved throughput in the afirtuNote that the Traffic Generator (TG) and Traffic Receiver (TR)
router and computes the error between this measure amd directly connected to the Traffic Forwarder (TF) whereas
the throughput setpoint. This setpoint represents theratbsiTC is connected to TF and TR through different links to avoid
throughput in a virtual router. The error is then used by thaixing control and data traffic.
Controller block where we implement a Proportional Intégra TG, TR, and TC are general-purpose PCs equipped with
(PI) controller to compute and adjust the virtual router cagn Intel Core 17 860 2.80 GHz processor in a Intel DP55KG
according to this error. The PI controller was chosen bexausotherboard. These machines run Debian Linux kernel versio
it has zero steady-state error, combined with short sgttli2.6.32. The TF machine is an HP Proliant DL380 G5 server

equipped with two Intel Xeon E5440 2.83 GHz processors. 90 20kpls

This machine runs Debian Linux paravirtualized kernel icers @ ol aokre s

2.6.26. On the one hand, TG and TR are connected to £ 60| Regionofinterest 1000a.

TF via their on-board Intel PRO/1000 PCI-Express network g %0¢ ettt

interfaces. TF, on the other hand, is connected to TG and to g 28 .;;:i-v:_:_'_: . eoerse i aareod

TR via the two interfaces of a PCI-Express x4 Intel Gigabit £ 20! ' JE———

ET Dual Port Server Adapter. 18 i t' R X R
V. XEN SYSTEM MODELING ° % Cap(%fo .

The Xen System block models the behavior of virtual router _ o
throughput according to the cap entitled to it. We use a black Fig. 3. Cap variation with 64-Byte packets.
box approach to model the system [8] based on experiments

using the following framework.
As we are modeling a non-linear system using a linear model,

A. Training Data Acquisition we consider the system as linear over an operating point: Con

Using the testbed described in Section IV, with the T&€equently, the signatgk) = y(k)—y andu(k) = u(k)—u are
machine turned off, we model the Xen System by usirffset values from their operating points, Wh@‘l(é:) andu(k)
an experiment to capture the relationship between cap #4& the actual values of the Xen System signals gasd u
throughput. We send packets from TG to TR through orike operating points. The operatmg pomts are the megmyalu
virtual router inside TF using fixed packet rate and fixed packo 9(k) and a(k) over the region of interest. In Equation 1,
length. This flow consists of UDP segments generated by Ipé&ff) andu(k) indicate, respectively, the throughput achieved
during 30 seconds. The experiment is repeated for differdi the router and théng(cap) in the system input at the*"
cap values assigned to the virtual router. Figure 3 shows fFRMPle. We uséng(cap) instead of absoluteap because the
throughput achieved using 64-Byte packets for differeckpa rélationship between cap and throughput has approximately
rates. The X axis shows the cap assigned to the virtual rout@garithmic behavior over the region of interest. Consedjye
Note that the relationship between cap and throughput dispef€ first-order model of Equation 1 suits our purposes and
on the packet rate forwarded by the virtual router. The highgimplifies the control system design.
the rate, the more CPU is needed. The next step to model the Xen System is to obtain the

Figure 3 also shows that from a certain cap entitled oMariablesa andb that characterize this system on Equation 1.
the throughput stops increasing. In this case, the thraughg N® Xen System behavior and thus the variabiesnd b
obtained matches the bit rate produced, because the virtd@Pend on the packet rate and on the packet length of the
router receives enough CPU resources. Nevertheless, bef@ptrolled flow. Th? parameters and b can also model one
these cap values, the throughput changes according to fggregated flow with average packet r_ate and packet length.
cap in a log-scale fashion. Thus, this region is considened i Y& model the Xen System forwarding a 64-Byte flow at
our system modeling. We perform the same experiment wisgnstant packet rate of 100 kp/s to. show that a first-order
1470-Byte packets and we also observe the same behaR#tem suits well our purposes. To estimatndb, we employ
seen in the 64-Byte packet experiment unless by the f4Bf least squares regression method [8] using as an input the
that the throughput achieved is higher for each cap value, @@ obtained in Section V-A for the 64-Byte packet flow at
expected. Consequently, in the remainder of this paper we J&0 kp/s. We evaluate andb over the operating poiny =
flows of 64-Byte packet to allow higher packet rates on 40 Mb/s andu = 1.39. This region was chosen because cap
Gigabit link. Nevertheless, our results could extend tgear Still acts and the throughput does not saturate. In our el&mp
packets on 10 Gigabit links. It is important to note that, as othiS region corresponds t@p < 60 as indicated in Figure 3.
experiment uses cap, which is a percentage of CPU, the valf¥g obtaina = 0.0915 and b = 32259 using MATLAB. To
of throughput obtained will depend on the hardware use@valuate our model accuracy regarding the data collected, w
However, the behavior shown in the experiment will remaifompute thek?. This metric quantifies the variability of the
the same. As the design of XTC depends on the model diitPut explained by the model and varies from O (worst.model)
tained with this experiment, our mechanism requires aialnit 10 1 (best model). In our case, we obtdif = 0.9399 which
training for a certain hardware specification. Yet, congidg Sugdgests a very good fit.
the Self-Tuning regulator, which adjusts XTC according to VI. XTC DESIGN

h hi i i tacle. . .
system changes, this requirement is not an obstacle The design of the main parts of XTC, the Controller and

B. Model Evaluation the Self-Tuning Regulator, are described below.

Using the results from Section V-A, we model the Xemn\ controller
System as a linear first-order system given by Equation

1. . . .
This model will be useful in the Controller design. The Controller must decide which value of cap will be

given to the virtual machine based on the difference between
y(k +1) = ay(k) + bu(k). (1) the throughput setpoint and the achieved throughput. We

implement this block as a Proportional Integral (PI) coliérp where 0(k) = [b,a]T, e(k) = %% and
which evaluates periodically the cap using Equation 2. I8 thy (k) = [u(k — 1), y(k — 1)]7.
equation,u(k) is the controller decision in thé* sample,
denoted adog(cap), ande(k) is the error computed by the VII. EXPERIMENTAL RESULTS
difference between the setpoint and the achieved throughpu In this section, unless stated otherwise, the experimesgs u
XTC with the Self-Tuning Regulator block disabled.
u(k) =u(k — 1) + (K, + K;)e(k) — Kpe(k —1). (2)
A. Practical Implementation

The design issue of a PI controller is to chookg and e implement our proposed mechanism in the testbed of
K; parameters to meet the system requirements, SUCh g, 1e > Packets are sent from TG to TR at a fixed rate using
stability and small settling time. The first indicates tha€ t ot A virtual router hosted in TF forwards these packets.
_sys_tem CONVerges to a steady-state value, whereas t_hedse(-:l% Traffic Controller (TC) measures the throughput acldeve
indicates the time when the system would meet this valug, 16 virtual router and plays the role of the Controller as
Using the pole placement method we evaluate manually gq, i Figure 1. To measure the achieved throughput, TC
controller parameters using the 64-Byte packet at 100kp[Ryigdically collects the output of the Iperf Server repdrby
This method considers variablesand b of the model eval- 1g |y practice, the throughput measurement and also the XTC
uated in Section V-B. The controller parameters that lead .. tion have to be performed on the machine with Xeg. (
the system to a small 6settlmg time and a stablﬁe behawﬁ';) to provide more scalability. We choose to separate these
are K, = —3.422 x 107_ and Ki = _22'158 X 107°. The functions from TF to guarantee that our results are indepeind
complete system seen in Figure 1, disregarding the eﬁeCtd?fthis machine, which may be overloaded by high packet
the Self-Tuning Regulator, was simulated with Simulinknfrp rates. TC executes XTC, computing the cap of the virtual
MATLAB. Results, not shown here, show that the theoretical, ior hased on Equation 2 and remotely acting on the virtual
system is stable and has a settling time of 10 seconds. . ar cap. Note that Equation 2 computeslthg cap), rather

Our proposed Controller also uses the concept of degfhn, the absolute cap, and thus the actuator must compute the
zone, where it decides to act only when the error exceefigerse of log(cap) The complexity of this computation is
a threshold. As the Controller acts using Dom0 calls, lingti egligible in our testbed. XTC relies on simple operations,
the Controller actions reduces these calls. In systemsenduer allowing the control of large number of virtual routers.
external machine performs these calls, this concern begomer,q experiment consists of sending 64-byte packets from
more important because it reduces the control overhead kg to TR at 100 kp/s during 100 seconds, which corresponds
tween the control machine and the machine running Xen. The, flow of 51.2 Mb/s. The TC machine must adjust the cap of
threshold chosen in our implementation is 10% of the setpoife virtual router to track the throughput setpoint of 20 81b/

] This value of setpoint is chosen to show the behavior of the

B. Self-Tuning Regulator system when it is quite far from the operating point but not so

The manual evaluation of Controller parametdts and far as to cause undesired system behavior. Our first evatuati

K; is not suitable in systems with fast dynamics, such &aeasures the average throughput achieved and the root mean
routers, as it requires a prior evaluation of several paragduare error (RMSE) with respect to this average, as seen in
eters that are appropriated to each system behavior, drigure 4. These measurements are computed using the values
the Controller should detect when it will use each of thegbtained during the interval from 20 to 100 seconds of each
values. Furthermore, undetected Changes in System dyﬂanl'm_/erf run. We use this interval to discard the System trartsie

or even unknown may cause undesirable behavior. To avéighavior before 20 seconds. The average throughput iedicat
these problems, XTC uses adaptive control techniques fto séthether the system achieved the throughput of 20 Mb/s
tune according to system changes. The Self-Tuning Regula® required. The RMSE, on the other hand, quantifies the
block is responsible for adapting the Controller to changes Oscillatory behavior of the system showing how the system
Xen System characteristics. This block periodically eates response deviates from the average throughput.

constantsz and b of Equation 1 based on the observation of We evaluate separately three different configurations. The
the Controller decision:(k) and the output(k) of the Xen first one, called FC (Fixed Cap), consists of turning off XTC
System. This estimation uses the Gradient Projectionihgor and adjusting a fixed cap of 14% to the virtual router. This
given by Equation 3, wheree = 0.001 and ¢ = 0.0001. value is chosen because we expect an average throughput
Using the constants that characterize the Xen System, the Selose to 20 Mb/s. In practice, this implementation is not
Tuning Regulator automatically evaluate new valueskof recommended because one must know in advance the fixed cap
and K; using the Pole Placement method, as in Section VI-Xalue that leads to the specific throughput. Furthermore, th
Therefore, the Self-Tuning Regulator aims at keeping tif¥stem behavior may vary because of traffic dynamics, which

system properties, thus meeting the desired requiremeets gustifies the use of a feedback controller to periodicalljuat
when the system changes. the cap. We use, however, this result as a reference to &nalyz

XTC performance. Figure 4 shows that FC implementation
0(k) =0(k — 1)+ ae(k)o(k), (3) obtains a high RMSE value, which indicates that the system

. 25 Average Throughput===1 307 XTC Off ==
2 RMSE L o5 XTC On mmmm |

20 g
= =
= = 207 1
S 15+ 5
2 10 ¢ S 10| |
= F 5} 1

0 0

FC EP APD VR1 VR2 VR3
Fig. 4. Average throughput and RMSE measurement. Fig. 6. Traffic differentiation using XTC

@ 50 Fachieved Throughput—— o . . .
S 40 Average=20Mb/s------ which is not possible with native Xen. In the default network
Z 30l implementation of Xen, all packets sent and received by the
= virtual routers are forwarded by DomO0. According to [9],
] 20 T AAV SN IPL Y PRI Dom0 consumes a lot of CPU resources when doing this
£ 104, task and, even when reserving more CPU cores to Dom0, the

0 : : ‘ ‘ performance of network-related tasks do not increase Isecau

0 20 40 60 80 100 they are single-threaded. Hence, Dom0 becomes a bottleneck
Time (s) and the packet rate of each virtual network influence each

other. We conduct an experiment using TF hosting threealirtu

routers (VR1, VR2, and VR3) forwarding packets. In this

experiment, TG sends to TR three 64-byte packet flows at

oscillates when the throughput is limited using Xen’s Cagl.z Mb/s during 100 seconds. Each virtual router forwards
parameter. Therefore, the Controller will have to cope witn€ of these flows. Although the virtual routers share the
this particular behavior of cap adjustment. The EP (EvaiiatSame CPU core, there is no contention for this core. Domo0, in
Parameters) configuration uses the XTC controller parasiet!™, has two reserved CPU cores. First, we neither use XTC
K, = —3.422 x 106 and K; = 22.158 x 10~ as already "Or simple cap adjustment to measure the average throughput
evaluated. Results show that the average throughput eutaiﬁbtained in the Iast_80 §econds of each run. This configuratio
is close to the throughput setpoint showing the effectisergé 1S named XTC Off in Figure 6.
our proposal. The EP implementation, however, inserts moreResults show that the virtual routers cannot forward packet
oscillation as compared with FC. Finally, we implement that the full rate, 51.2 Mb/s, because of the high contention fo
APD (Adjusted Parameters with Dead Zone) configuratioesources at DomO. Consequently, the maximum throughput
which has the controller parameters manually adjustedy wigbtained in a virtual router is 23 Mb/s. To allow VR1 to
K, = —3.422 x 1075 and K; = 10.158 x 1079, in order to forward more packets, we can limit the amount of packets
reduce the oscillation. This configuration also uses theepn that the other virtual routers can send to Dom0. As a conse-
of dead zone to reduce message exchange between TC andjlience, VR1 has more opportunity to send packets to DomO,
In this experiment, we can supprez®+ 2.4% of the control increasing its throughput. We use XTC on each virtual router
messages using the dead zone concept. As seen in Figurangl repeat the latter experiment. For VR1, XTC uses the same
the APD configuration reduces the RMSE and achieves thg and K; used in APD configuration of Section VII-A. The
desired throughput. Figure 5 exemplifies the system outpenly difference is that we now limit the throughput to 30 Mb/s
obtained in a single run of the APD configuration. For VR2 and VR3, XTC is configured to limit the throughput

In this section, XTC achieves a throughput extremely cloge 15 Mb/s. Because this rate is far from the model’'s opegatin
to the desired throughput. Nevertheless, the system respopoint used in Section VII-A, we also evaluate, for VR2 and
oscillates around this value because of cap adjustmenghwhVR3, a system model for the operating point of 27 Mb/s,
represents a tradeoff of the Xen platform (independent tfsulting ina = 0.00339 and b = 34816. We then evaluate
XTC). In spite of this, we show that APD configuration add#e controller parameters, as explained in Section VI-A] an
negligible oscillation compared with the FC configuration. we find K, = —4.825 x 107¢ and K; = 18.530 x 107°.
Results are labeled as XTC On in Figure 6. They demonstrate
that it is possible to assign priority to a virtual routerngsi

In this section we show the ability of XTC to provide trafficXTC. In our experiments, XTC was used in Xen's default
differentiation between virtual routers. XTC can dynartlica configuration, where DomO is the bottleneck. Nevertheless,
guarantee higher throughput to a virtual router by limitthg XTC can also be used when DomO is not the bottleneck,
amount of resources used by the other routers. This feattmg when there is contention for resources on the CPU core
is also used to guarantee isolation among virtual routeshared by the virtual routers. This situation may occur when

Fig. 5. Achieved throughput - APD XTC experiment.

B. Traffic Differentiation

using Direct 1/0 techniques [10] where the network tasks

are not intermediated by Dom0. In this case, XTC can also g 25| Average T“V%U&E%“‘E
reduce the maximum throughput allowed to a virtual router, =
freeing some CPU resources from the shared core to improve E
the performance of the other routers. In the case of network §>
virtualization with plane separation [11], where the dd&np 2
is implemented within Dom0O whereas control planes reside =

in DomUs, XTC must be redesigned, since it assumes that
packets are forwarded by the virtual router.

N 20 A_20 N_15 A_15

C. Adaptability to System Changes Fig. 7. Adaptability to system changes.

In this section we discuss the ability of XTC to adapt
to system changes, using the Self-Tuning Regulator of Segtjusts the amount of CPU entitled to each virtual router
tion VI-B. The experiment of Section VII-A is repeated usingccording to the desired throughput. The experimentallteesu
the sameK,, and K; parameters and, in the case of the Selshow that, with the obtained isolation, XTC provides difier
Tuning Regulator, these are the initial values of the Cdletro tiation between virtual routers and can adapt itself toesyst
parameters. First, a flow of 51.2 Mb/s is generated and tbeanges. Furthermore, XTC is a flexible and scalable s@lutio
setpoint of XTC is 20 Mb/s. In this scenario, the XTGo control aggregated flows, avoiding the fine-grained @bntr
performance is analyzed with and without the Self-Tuningf individual virtual network interfaces. XTC can also be
Regulator block. Results shown in Figure 7 are representeded as a building block for a larger virtual network reseurc
respectively, with the labels 20 and N 20. As in the case of allocation system, combined with a policing mechanism.
Section VII-A, results show that XTC without the Self-Tugin Our future work includes building a policing mechanism
Regulator block can achieve the desired throughput. Thistisat adjusts the throughput of each virtual router based on
true because the distance of this throughput value compaggvice level agreements and knowledge about the network.

with the operating point does not cause undesirable system
behavior. Using the Self-Tuning Regulator, the throughput
of 20 Mb/s is also achieved but with an oscillation greater

same experiment is performed again but using a throughput
setpoint of 15 Mb/s, which has a greater distance from th&!
operating point. This result is shown in Figure 7 labeled 5|

ACKNOWLEDGEMENT

This work was partially funded by CNPq, CAPES, FAPERJ,
than with static parameters, as seen by the RMSE value. T FINEP.

REFERENCES

J. Rexford and C. Dovrolis, “Future Internet architeetuClean-slate
versus evolutionary researchCommunications of the ACMvol. 53,
no. 9, pp. 36—40, 2010.

where the throughput achieved is ten times less than the oif# J. Carapinha and J. Jémez, “Network virtualization: a view from

desired. Using the Self-Tuning Regulator, thus, the Cdietro
parameters are evaluated automatically in order to adaf XT3
to the new system requirements. The obtained results are
labeled A 15 in Figure 7, showing the performance of the4
adaptive control. The system achieves 15 Mb/s even Whén]
the initial controller parameters are evaluated to an djpgya
point far from the desired. These experiments demonstraﬁ
the ability of XTC to adapt itself to system changes withou
needing to evaluate parameters in advance for each opgeratin
point or system state. The Self-Tuning Regulator can als |
be used to evaluate new controller parameters when traff(%c
dynamic changes. However, the adaptive control introduces
more oscillation in XTC when the controller parameters d(T?]
not need to be adjusted, as in the case oP@ experiment.

the bottom,” inProceedings of the 1st ACM workshop on Virtualized
infrastructure systems and architecturesACM, 2009, pp. 73-80.

N. C. Fernandes and O. C. M. B. Duarte, “XNetMon: A netwarknitor
for securing virtual networks,” iffroceedings of the IEEE International
Conference on Communications (ICC'1Iun. 2011.

M. Kjaer, M. Kihl, and A. Robertsson, “Resource allocati and
disturbance rejection in web servers using slas and vireghlservers,”
Network and Service Management, IEEE Transactions/oh 6, no. 4,
pp. 226-239, 2010.

P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. SinghalMerchant,
and K. Salem, “Adaptive control of virtualized resources itility
computing environments,ACM SIGOPS Operating Systems Reyiew
vol. 41, no. 3, pp. 289-302, 2007.

M. Anwer, A. Nayak, N. Feamster, and L. Liu, “Network I/Oifaess in
virtual machines,” inProceedings of the second ACM SIGCOMM work-
shop on Virtualized infrastructure systems and architetu ACM,
2010, pp. 73-80.

D. Ongaro, A. Cox, and S. Rixner, “Scheduling 1/O in vatumachine
monitors,” inACM VEE 2008, pp. 1-10.

This behavior is acceptable because, in this case, we havdsh Z. Wang, X. Zhu, and S. Singhal, “Utilization and SLO-bascontrol

generic system that is not specific for a certain operatirigtpo

VIIl. CONCLUSIONS ANDFUTURE WORK [l

In this paper we have addressed the issue of traffic isolation
a key challenge for network virtualization using Xen. Oupg,
preliminary results show that the traffic forwarded by Xen
virtual routers interfere with each other using Xen’s défaull1l
implementation based on Dom0. To minimize this problem,
we have proposed a traffic control mechanism (XTC) which

for dynamic sizing of resource partitiong¥mbient Networksvol. 3775,
no. 1, pp. 133-144, 2005.

N. C. Fernandes, M. D. D. Moreira, |. M. Moraes, L. H. G. =,
R. S. Couto, H. E. T. Carvalho, M. E. M. Campista, L. H. M. K. Gogst
and O. C. M. B. Duarte, “Virtual networks: Isolation, perfeance, and
trends,” Annals of Telecommunicationgp. 1-17, 2010.

J. Liu, W. Huang, B. Abali, and D. Panda, “High performan¢MM-
bypass 1/O in virtual machines,” iIISENIX 2006, pp. 29-42.

P. S. Pisa, N. C. Fernandes, H. E. T. Carvalho, M. D. D. éitar
M. E. M. Campista, L. H. M. K. Costa, and O. C. M. B. Duarte, “Open
flow and Xen-based virtual network migrationThe World Computer
Congress 2010 - Network of the Future Conferermge 170-181, 2010.

