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Multi-Access Edge Computing (MEC) attracts much attention from the scientiic community due to its scientiic, technical,

and commercial implications. In particular, the ETSI standard convergence consolidates the discussions around MEC. Still,

the existing MEC practical initiatives are incomplete in their majority, hardening or invalidating their efective deployment.

To ill this gap, it is essential to understand a series of experimental prototypes, implementations, and deployments. The

early implementations can reveal the potential, the limitations, the related technologies, and the development tools for MEC

adoption. In this context, this work irst brings a discussion on existing MEC initiatives regarding the use cases they target

and their vision (i.e., whether they are more network-related or more distributed systems). Second, we survey MEC practical

initiatives according to their strategies, including the ETSI MEC standard. Besides, we compare the strategies according to

related limitations, impact, and deployment eforts. We also survey the existing tools making MEC systems a reality. Finally,

we give hints to issues yet to be addressed in practice. By bringing a better comprehension of MEC initiatives, we believe this

survey will help researchers and developers design their own MEC systems or improve and simplify the usability of existing

ones.

CCS Concepts: · Networks→ Cloud computing; Network experimentation.

Additional Key Words and Phrases: Multi-Access Edge Computing, experimentation, edge computing, mobile edge computing

1 INTRODUCTION

The edge of the current Internet consists of dense deployment of wireless devices ranging from smartphones
to smart vehicles and sensors/actuators to intelligent appliances. Consequently, individuals are immersed in a
highly connected and ubiquitous cyber-physical context. The satisfaction of network end-users and the provision
of numerous services have thus become the main focus. All such factors challenge application developers and
service providers.
One of these challenges lies in the fact that, even though the connected devices are typically resource-

constrained, their users run resource-hungry applications [6]. This situation means that the applications need
computing and storage support from some other source, for instance, the cloud. However, the cloud and its
resources are usually far away from the devices. Consequently, cloud resource consumption implies higher
latency in the application-cloud-application communication interaction while increasing upstream Internet traic.
For delay-sensitive applications, high latency degrades the Quality of Experience (QoE) [109].
A solution to provide users with the expected QoE is to aford cloud-like resources close to the edge of the

network [116]. To the users, the edge resources are topologically closer than the cloud. For this reason, the
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constrained devices can consume edge resources with a lower communication latency than those associated
with the cloud. Moreover, bringing computing and storage resources to the network edge can also beneit the
Mobile Network Operators (MNOs) in many ways: higher QoE for users, iner network resource control and
management, independence from big data centers, cost decrease.
Applications running on the edge of the network serve the applications running on devices. For this reason,

there is no need for their traic to reach the cloud, and the core of the network is then relieved from this traic.
The resources deployed on the edge of the network can ofer diferent services to lower the operating costs or
add value to the business. As a consequence, the edge resources enable or improve the usage of applications such
as X-reality [28], autonomous driving [77], low-latency stream processing [87], to cite a few. Finally, one very
impacting beneit favored by MEC deployment is the overall decrease in the energy consumption related to the
Internet core usability.
To coordinate the eforts of bringing computing resources closer to the edge of the network, the European

Telecommunications Standards Institute (ETSI) started designing the standard for Mobile Edge Computing in
2015 [31]. The speciications for MEC were irstly deined and uniquely intended for 5G networks. Later, the ETSI
broadened its focus to consider other networking technologies and use cases (i.e., WiFi, LTE, MuLTEireTM) [36].
Therefore, MEC is referred to as Multi-Access Edge Computing [61, 93] since 2018.

There are other paradigms ofering resources close to the edge of the networks: transparent computing
(TC) [109], fog computing [133], and Cloudlets [135]. The main distinguishing diference between these paradigms
and MEC is the fact that MEC resources are usually tied to the telecommunication operator or the network
administrator [102]. Typically, TC, fog, and Cloudlets resources are managed by diferent stakeholders. As a
consequence, MEC is more network-aware than the other paradigms.

The convergence of the ETSI standard consolidates the discussions aroundMEC. The expected step beforeMEC‘s
full adoption is the analytical survey of small and large-scale prototypes, enabling tools, and implementations.
This was also the case for previous technologies, such as Software Deined Networks (SDN) [54, 55, 112, 115],
outdoors-indoors localization [79], segment routing [134] and homomorphic encryption [4]. The early initiatives
can reveal the potential, the limitations, the related technologies, and the development tools for MEC adoption,
pointing to the directions to which MEC research and development should take in the following years.
The expectations around the MEC paradigm instigate a number of discussions, culminating in interesting

literature. Therefore, it is possible to ind surveys elaborating on diferentMEC aspects. In general, to the best of our
knowledge, related surveys (1) discuss MEC’s fundamentals, architecture, orchestration options [78, 127] as well
standardization eforts [3, 101, 122], (2) enumerate computing- and communication-related models [83, 108, 137]
or (3) investigate and compare other diferent edge paradigms [24, 144]. Besides, in an IoT context, some works
survey the IoT-MEC relationship, in particular: (1) the applications and possibilities of MEC for IoT [102] and
(2) the availability of edge computing systems for IoT [68, 96]. Table 1 lists the publication year and main
contributions of MEC-related surveys in literature.
In this paper, we survey MEC literature from a practical point of view, a diferent perspective from related

surveys mentioned here above. We aim to understand the functionalities that MEC systems ofer and the issues
targeted in diferent practical implementation initiatives. We center our eforts on the broad paradigm of Multi-
Access Edge Computing systems. Therefore, this work ofers the following novel contributions:

• We review diferent literature’s visions and deinitions of MEC and how researchers and developers
implement MEC architectures, taking them from a more theoretical level to a more practical one.
• We particularly survey and compare MEC practical initiatives according to their strategies, including the
ETSI MEC standard. We compare the strategies according to related limitations and impact. In the practical
context, we target MEC working prototypes.
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Table 1. Related literature surveys and their main contributions.

Year Main contributions Main diferences to present work Reference

2017
Edge evolution, use cases, and enabling Enabling tools, architectures, technologies.

[127]
Architecture, orchestration and deployment. and deployment in practice.

2017
MEC for computing oloading. Oloading decision Oloading implementations. Applications

[78]
and applications partitioning. Mobility issues. compatibility. Open issues on decision.

2017
MEC communication aspects. Task and MEC implementations communication

[83]
communication models. Resource management. aspects. Network adaptations.

2017
Comparison between fog, cloudlets, and MEC MEC implementations, their goals,

[24]
architectures. Expected implementations and design decisions.

2018
Applications, technical aspects, enabling Focus on MEC implementations,

[102]
technologies, and projects on MEC-enabled IoT. not related speciic applications.

2018
MEC concepts, deinitions, technologies, Practical MEC aspects. Materialization of

[3]
and architectures. Security and privacy. theory and implementation-related issues.

2018
Techniques and strategies for VM, Focus on complete MEC

[137]
containers, and services migration, implementations and architectures.

2019
Comparison between fog and related paradigms. Focus on MEC standard implementations,

[144]
Fog classiication, frameworks, tools, and testbeds. their use cases and enabling tools.

2019
Mobility-related migration for edge. Migration Focus on complete MEC

[108]
architectures, prototypes, and simulations. standard implementations

2020
Review of the MEC research themes. MEC Challenges, solutions, technologies, and

[101]
ainity with other technologies and paradigms. design decisions of MEC implementations.

2020
MEC standardization. Provisioning and Survey of MEC implementations

[122]
deployment on vertical industries. regardless of targeted applications.

2020
Analysis of MEC for IoT. Commercial Survey of MEC implementations

[68]
MEC systems for IoT applications. regardless of targeted applications.

2020
Edge computing deinitions and their general Deinitions and use cases of

[96]
framework. Applications overview. existing implementations for MEC.

2021
MEC architectures and technical aspects Architectures of MEC implementations

[120]
for applications on augmented reality. regardless of the target application.

2021
Security aspects of MEC on 5G and MEC implementations regardless of

[104]
projects for MEC security and privacy security level and networking technology.

• We outline the deployment impact of the surveyed MEC systems and overview the tools employed in their
implementation.
• We conclude this survey with a discussion on the open issues related to MEC systems, which provides a
vision on the maturity level of MEC-related opportunities as well as on the development eforts.

We believe that a better understanding of MEC practical initiatives will help researchers and developers design
their own MEC systems or improve and simplify the usability of existing ones.

For clarity, we illustrate the organization of this work in Figure 1. Section 2 discusses MEC basic concepts, the
diferent deinitions found in the literature, the use cases that existing MEC initiatives target, and the visions that
drive their implementation. In Section 3, we describe the ETSI standard and its architectures. In Section 4, we
survey the practical MEC systems in the literature, classifying them according to the followed strategies. Section 5
discusses the deployment efort for each MEC system. In Section 6, we describe the tools authors used to build
the MEC implementations. In Section 7, we discuss the issues that MEC systems are yet to address. Section 8
concludes this paper. Table 2 lists the abbreviations we use in this text.
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Fig. 1. The outline of this paper.

Table 2. Abbreviations in this work and their meanings.

Abbreviation Term Abbreviation Term

AP Access Point NFVO
Network Function

Virtualization Orchestrator

CDN Content Delivery Network OS Operating System

CFS portal Customer Facing Service portal OSS Operations Support System

en-gNB Enhanced Next Generation NodeB QoE Quality of Experience

EPC Evolved Packet Core QoS Quality of Service

ETSI
European Telecommunications

RAN Radio Access Network
Standards Institute

GTP GPRS Tunneling Protocol SDN Software Deined Networks

ICN Information-Centric Networking SEG Service Execution Gateway

LCM Life Cycle Management SGW-LBO Serving Gateway with local Breakout

MANO Management and Orchestration TC Transparent Computing

MEC Multi-Acces Edge Computing UE User Equipment

MEO
Multi-Access User App User application life

Edge Orchestrator LCM Proxy cycle management proxy

MEPM-V MEC Platform Manager for NFV VAF Virtual Application Function

MNO Mobile Network Operator VIM Virtualization Infrastructure Manager

NAT Network Address Translation VM Virtual Machine

NDN Named Data Networking VNF Virtual Network Function

NFV Network Function Virtualization VNFM Virtual Network Function Manager

2 MULTI-ACCESS COMPUTING FUNDAMENTALS ś MEC

This section describes the context of MEC systems. We present a general model of the networks ofering
MEC services and the deinitions related to MEC practical implementations. Besides, we discuss the scientiic
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communities related to the research and development of MEC systems and the use cases that MEC can serve. In
our discussions, we use the surveyed MEC systems as examples.

2.1 Rationale

As depicted in Figure 2, a general use case of a MEC system is a mobile user running a latency-sensitive and
resource-intensive applicationwithin their User Equipment (UE). Since UEs are typically constrained in computing,
energy, and storage resources, it might be convenient for the UE to leverage external resources. In a situation
without using the MEC, the UE sends a request to the cloud. To reach the cloud, the request travels through the
diferent networks between the UE and the server in the cloud that fulills the request. This means that the UE
has to wait for a delay from the instant when it performs a request until the instant it receives a response. We
can divide this delay into three parts. The irst is the time from the request to travel the network from the UE to
the cloud server. The second is the time the cloud server takes to process the request and generate a response.
The third is the time the response takes to travel from the cloud server to the UE. The irst and third parts of this
delay are named network delay.
When the UE runs latency-sensitive applications, the network delay between UE and the cloud might sig-

niicantly degrade the user experience or even entirely hinder the application. A possible solution to fulill the
latency requirement of the application is that an application running on a cloud-like infrastructure topologically
closer to the UE answers the request. Therefore, a MEC system is a system capable of running applications and
services at the edge of the network, such that it is close to the UE.

Internet

MEC

Cloud

Core 

network

User 

and UE

Access 

network

...
...

...
...

Fig. 2. The general use case of MEC Systems1.

MEC is meant to work with diferent networking technologies, such as WiFi, LTE, and 5G. In Figure 2, we bring
a general model of these networks. In this general model, we divide the network into three main hierarchical
parts: the access network, the core network, and the Internet. MEC can operate in the access network or in the
core network. Usually, the same MNO owns and operates these two networks. The function of each network
depends on the used technology.
In WiFi, the access network is usually an access point (AP), installed inside users’ houses, companies, or

in public places. The core network forwards traic from several users to the Internet. This means that MEC
implementations working in the access or core network can behave similarly, mostly handling IP traic.

In LTE (often called 4G), the Radio Access Network (RAN) serves as the irst contact with the UE, and its main
component is the eNodeB. The core network, namely Evolved Packet Core (EPC), forwards packets from the
RAN to the Internet and deals with user mobility, billing, lawful interception, and other functions. The interface
between the RAN and the EPC is the S1 interface [1]. The eNodeB encapsulates the traic from each UE in a GTP
tunnel (GPRS Tunneling Protocol) [2], which is decapsulated by the EPC before sending the packets through
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the Internet. Therefore, MEC implementations working in the LTE must deal with the tunneling and sending
information to the LTE functions to work correctly.
Finally, in 5G networks, RAN slicing supplies RAN slice subnets [34, 37] and relies on optimizations of its

main component, the en-gNBs (enhanced Next Generation NodeBs), i.e., the base stations directly connected to
UEs. Similar to the LTE case, the en-gNBs also use GTP tunnels to send the data generated by UE to the core
network. The 5G core network is diferent from the LTE core network, but it is also responsible for user mobility,
billing, and lawful interception. Consequently, MEC systems operating in 5G have to deal with tunneling and
communicating with 5G functions.

2.2 Definitions

Most of the survey literature deines MEC by referencing other paradigms that bring the cloud services physically
and topologically closer to the UE [24, 83, 96, 102, 122, 127]. We believe this approach is essential to highlight
the diferences between MEC and other similar concepts. The comparison makes it possible to understand the
possibilities and the limitations of each approach, their use cases, their evolution, and their perspectives for the
future. To get a diferent view from MEC systems, we grasp from the literature the deinitions researchers use
when they claim to develop MEC implementations and prototypes. In this sense, we can discuss the de facto
deinition and how it relects on the design of practical MEC systems.
ESTI deines a MEC system as the set of hardware and software components necessary to run mobile edge

applications in the domain of an MNO [38]. Their deinition also states that a MEC system consists of MEC hosts
together with the management and virtualization infrastructure needed to support MEC applications. We detail
the ETSI MEC standard in Section 3.

The MEC system and the MEC platform have diferent deinitions according to the ETSI standard. Nevertheless,
we observe in the literature that the term platform is often treated as an equivalent to the term system. Therefore,
when comparing the deinitions from diferent authors, we took the initiative of using the ETSI nomenclature to
refer to the closest concept mentioned by each author.
As expected, all the works we review ofer resources and make the deployment of applications possible

to the edge of the network. In almost every case, these are virtual resources. The works that follow ETSI
standard ofer virtualized hosting to third-party applications and services regarding service discovery, context
information, or network conditions to these applications [20, 38, 58, 124]. Some works ofer optimized oloading
for applications [17, 84]. Some other works help applications to ine-tune the network services according to
their needs [131, 145]. Other works can perform traic redirection to the beneit of the applications and of the
MNOs [51, 52, 74]. We discuss the details of each of these works in Section 4.
Based on what we observe from the surveyed MEC practical implementations, we deine the MEC systems

as network-aware infrastructures for application deployment at the edge of the network. Because of their network
awareness, MEC systems can extrapolate the provision of computing infrastructure, creating an ecosystem of
services to optimize what deployed applications can ofer.

2.3 Use Cases

MEC can help to solve diferent categories of problems. These problems are often modeled as use cases and, more
speciically, applications. The ETSI deines certain use cases for MEC, divided into the categories: (1) consumer-
oriented services; (2) operator and third-party services; and (3) network performance and QoE improvements [36].
In the following, we describe the use cases and the applications found in the MEC implementations so far.
The consumer-oriented services are the ones that improve the end-user experience directly. However, these

services are considered too computationally intensive to be executed by the UE and too latency-sensitive for

1Figure 2, Figure 3, Figure 4, and Figure 5 have been designed using resources from Flaticon.com.
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execution in the cloud. Among the surveyed MEC systems, ACACIA [17] implements an X-reality [82] application
that leverages MEC computing, feeding the MEC with the context gathered in the UE. MEC-ConPaaS [131]
implements another example of consumer-oriented service. In their service, the UE captures video that contains
text in a language unknown to the user and sends it to the MEC application. The MEC application identiies the
text in the video and then translates the text.
The operator and third-party services use the MEC infrastructure to create services that are not directly

aimed at the end-user. They ofer services to the applications that are end-user-oriented. These services can take
advantage of the low latency of MEC infrastructure, but also of the redundancy reduction of generating a single
service that can serve several users.
One important use case is related to smart objects, since they are often resource-constrained, working for

latency-sensitive applications. OpenNESS ofers an example application for smart cameras [57], while LightEdge
focuses their proof-of-concept in an autonomous driving application [20]. The work from Cattaneo et al. imple-
ments a MEC application that converts the format of videos as a network service, for UEs or IoT cameras. The
MEC also helps to distribute the video to users that are close to the streaming device [14]. Application oloading
can further improve UE battery life and even create multi-platform compatibility. The implementation of eRAM
makes it possible that applications oload their tasks to the MEC [84].

The network performance and QoE improvements are oriented to enhance the network and the QoE without
ofering new applications or services to end-users. These services can reduce the costs of the MNOs while
improving the network’s eiciency. Information-Centric Networking (ICN) is a service that keeps track of the
location of information, so users can search for information, instead of searching for its location [143]. PiCasso
implements an ICN using smart MEC gateways [72]. Content Delivery Networks (CDNs) are related to ICNs,
working in the application layer and using caches to provide content to users [100]. OpenNESS provides a certain
CDN application for caching, as a proof-of-concept [57]. The work from Li et al. uses MEC to cache applications
of web browsing, audio, and video streaming [74]. The work P4EC uses the computing capabilities at the edge of
the network to perform traic oload decision [51], optimizing the network usage.

2.4 Visions

The existing practical MEC systems place diferent efort levels to tackle diferent challenges. This section discusses
the point of view of two distinct scientiic communities ś i.e., the networking and distributed systems community ś
that might help grasp the expectations that every implementation aims to meet. While the networking community
considers MEC as a network service, the distributed systems community is most concerned about MEC application
execution and the related entities’ integration. Of course, these points of view do not limit the systems, and works
guided by one of the visions also address other points of view. We use exemplify with MEC implementations
from the literature, which we detail in Section 4.

The vision of the networking community: The networking community regards MEC mainly as a service
that the network ofers to the users. These users can be either the inal users or the developers that want to deploy
their applications at the edge. Consequently, this vision recognizes a central role for the MNOs. Works that share
the network vision often take advantage of the MEC knowledge about the network to improve the network itself.
In this sense, MEC can run and provide input for routing and cache applications or as infrastructure for Network
Function Virtualization (NFV) [29]. In this last scenario, MEC hosts can run Virtual Network Functions (VNFs),
such as irewalls, virtual routers, and network address translation (NAT). In Section 3, we discuss further the
association between NFV and MEC.
The MEC ETSI standard is an example of the network vision. It recognizes a central role to the MNO and

concentrates resources in the network’s services while using MEC. Naturally, the works implementing MEC as
deined by ETSI are also examples of the networking community vision [14, 20, 58, 124].
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Table 3. Approaches of the diferent communities.

❵
❵
❵
❵
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❵

❵
❵

❵
❵ETSI-

Community
Network

Distributed

compliance Systems

Compliant
[20, 58, 124]

ś
[14, 145]
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[14, 51, 74] [17, 84]

[10, 72, 117] [131]

MEC host n

MEC host 2

MEC host 1

MEC app

Device app

Radio

network

Core 

network Cloud

User

Equipment

MEC management

Fig. 3. MEC general use case1.

There are also non ETSI-compliant MEC implementations that follow the networking community vision. The
works that implement MEC as a middlebox, improving network eiciency [51, 74], the works that integrate
MEC applications and VNFs [10, 14, 117], and also the work using smart gateways to ofer MEC services [72].
According to the networking community, these works relect the entanglement between MEC and the other
elements managed by the MNOs. However,M2

EC [145] is between the two communities. We consider this work
part of the network community becauseM2

EC recognizes MEC as a network service. Nevertheless, the fact that
it works in the integration between MEC applications and the applications running in the UE brings this work
close to the distributed systems community vision.

The vision of the distributed systems community: Here, MEC is a distributed system in which MEC hosts
should cooperate to ofer network-aware oloading services with low latency. To this vision, MEC does this by
serving users and applications directly with resources or with more high-level services. Additionally, MEC is also
an element of a more large distributed system composed of UE, MEC, and cloud. This approach raises questions
regarding the execution of the MEC applications, orchestration, resource sharing, battery life saving, and user
experience, to cite some.

The work MEC-ConPaaS [131] aims to facilitate the deployment of MEC applications modeling MEC applica-
tions as a collection of services, orchestrating services among diferent applications the services that are common
to them. ACACIA [17] and eRAM [84] focus on the integration between UE applications and the MEC. These
works place an efort in helping the UE applications to oload their computation to resources in the MEC system.

The networking community and the distributed systems community visions steer MEC implementations to
behave more as a network service or a service ofering distributed computing resources. Even though compatible,
these visions afect the problems and the proposed MEC solutions.
MEC presents a heterogeneity of deinitions, use cases, and visions. To create a more uniform environment,

ETSI deined a standard, a deinition, and a set of use cases for MEC [31]. Nevertheless, not every implementation
follows the ETSI standard. Table 3 divides the works within the network and the distributed systems, indicating
whether they are ETSI-compliant or not. Since the ETSI standard is network-oriented, no works sharing the
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distributed systems community vision implement the standard. In the next session, we discuss the ETSI standard
before presenting the diferent strategies for implementing MEC systems.

3 ETSI STANDARD

There are diferent initiatives to bring computing resources to the edge of the network [119, 133, 135]. The ETSI
deines a standard that serves as a ground stone for authors to build their MEC systems, for MNOs to deploy
their infrastructure, and also for MEC application developers to understand the available services. The main idea
is to provide compatibility between applications, implementations, and building blocks.
As described in Section 2.3, the standard is meant to operate within a large number of use cases. This means

that a great number of protocols should inluence its inal standardization. For instance, ETSI states that MEC
architecture should take into consideration the 5G, the TCP, the V2I, SDN, and NFV [36]. Additionally, literature
shows that it is also important to consider the evolution from 4G to 5G [44], the standards involving cloud
services [39], and IoT application protocols [26].

To tackle the challenges, the standard describes two architectures. One guides the implementation of a stand-
alone MEC system, the other guides an implementation based on NFV. This section presents and discusses the
ETSI standard for MEC, together with its two architectures.
As discussed in Section 2, ETSI deines a Multi-Access Edge System (MEC system) as the set of hosts and

management infrastructure necessary to run MEC applications on a network. Additionally, ETSI deines a Multi-
Access Edge Platform as a collection of services that enable mobile edge applications, also working as an interface
between the MEC applications and the rest of the MEC system [31]. ETSI also deines MEC applications as
applications that can take advantage of MEC resources, including its infrastructure and services. The user MEC
applications are the applications instantiated in the MEC system to fulill requests from UEs. ETSI standard
requires that MEC ofers at least radio network information, location, and bandwidth manager services. MEC
applications can ofer services themselves suited for other applications. Since the standard does not limit the
number of services, implementations can ofer additional services.
In a typical scenario, as we illustrate in Figure 3, an application running in the UE (Device App) requests the

MEC management for the instantiation of a latency-sensitive application. The MEC management then decides
whether to fulill the request or not, based on MNO’s policies. The MEC management also decides which of
the MEC hosts should run the application or replicate the MEC application on several MEC hosts. The MEC
management then instantiates the MEC application in the selected MEC host(s). Finally, the MEC management
conigures the traic redirection on the network so that the UE can reach the MEC application. Even though
MEC hosts are on the access network or the core network, the MEC management can be in the cloud. This is
because the management of MEC applications is not always latency-sensitive. The ETSI architecture divides
the MEC into diferent entities that run closer or further from the end-users, executing the necessary tasks to
implement a MEC system [38].

3.1 ETSI Architecture

The ETSI MEC architecture divides a MEC system into two levels: the MEC system level and the MEC host level.
These levels hold the building blocks that compose the MEC system. We illustrate this architecture on Figure 4.
By convention, the reference points labeled as Mp are related to the MEC platform functionality; the reference
points labeled as Mm are interfaces related to the management of the platform; the reference points Mx provide
an interface with external entities. In the sequence, we deine each of the entities in this architecture as well their
interactions, also depicted in Figure 4.
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Fig. 4. ETSI MEC architecture1. Adapted from [38].

The MEC system level manages the diferent hosts of a MEC system. It is expected that a MEC system controls
several MEC hosts. In this sense, the MEC system level holds the following entities that are not replicated to all
the MEC hosts.

• Device application: (Device app) it is any application running in the UE that is capable of interacting
with the MEC. It can request the User application life cycle management proxy (user app LCM proxy) to
instantiate a MEC application.
• Customer Facing Service portal: (CFS portal) receives requests regarding the instantiation or termination
of MEC applications. The CFS portal forwards these requests to the Operations support system (OSS) of the
MNO through the user app LCM proxy.
• User application life cyclemanagement proxy: (user app LCM proxy) is the entity that receives requests
from the applications running on the UE to trigger the instantiation, termination, and relocation (when
supported) of MEC applications. The user app LCM proxy also exposes to the UE the state of the applications
running in the MEC system. It interacts with the OSS to make sure that the MNO authorizes the fulillment
of the requests.
• Operations support system: (OSS) is the entity responsible for receiving and validating the requests
from UE applications or from the CFS portal. The OSS decides whether it should grant each request or
not, based on the MNO policies. When the OSS authorizes a request, the OSS forwards the request to the
Multi-access edge orchestrator (MEO) or to theMEC platform manager. The user app LCM proxy can bypass
the OSS for already authorized operations.
• Multi-access edge orchestrator: (MEO) is the functional block that keeps a global overview of the MEC
system. Additionally, it receives the MEC applications packages, validates them, and chooses the MEC
host(s) to allocate each application. It also initiates the instantiation, termination, and possible relocation
of the applications. When the OSS authorizes, the MEO communicates to the MEC platform manager to
instantiate a MEC application, authorizing the Virtualization infrastructure manager (VIM) to orchestrate
the resources.

The MEC host level is composed of the following entities instantiated to each MEC host.
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• MEC platform manager: this entity performs three tasks. The irst consists of managing the life cycle of
applications, communicating to the MEO the relevant events. The second relates to providing and exposing
the entity management functions to the MEC platform. The third is to manage application rules and
requirements, such as traic rules or service authorization. When triggered by the MEO and authorized by
the OSS, the MEC platform manager orders the MEC platform to instantiate a MEC application, informing
the Virtualization infrastructure manager VIM about the necessary resources.
• Virtualization infrastructure manager: (VIM) this entity manages the virtualization life cycle of the
MEC applications (allocation, instantiation, releasing), applying the rules of the MEO and of the MEC

platform manager. If the MEC system supports application relocation, the VIM is responsible for relocating
the application to another host or the cloud. When it receives from the MEC platform manager a request
for virtual resources, it checks with the OSS for authorization and, if positive, sets the virtual resources in
the MEC host.
• MEC host: an entity providing compute, storage, and network resources to the MEC applications. To
achieve that, it runs a virtualization infrastructure as well as a MEC platform. A MEC system is supposed to
have at least one, but often many more MEC hosts. In addition, it hosts the MEC applications services.
• MEC platform: ofers a service registry, so applications can advertise, discover, consume, and ofer MEC
services. When triggered by the MEC platform manager, the MEC platform instantiates a MEC application
or a MEC service in the virtualization infrastructure and also conigures the data plane of the virtualization
infrastructure. According to the traic rules from the MEC platform, internal or external entities should
reach a certain MEC application or service. The data plane coniguration enforces the MEC platform traic
rules.
• Virtualization infrastructure: ofers the compute, storage, and network resources to the MEC applica-
tions. The data plane routes the traic between MEC applications and all the other entities, applying the
rules received from the MEC platform. It receives requests for resources from the VIM and data plane rules
from the MEC platform.

The stand-alone ETSI MEC architecture uses many services and structures that are similar to services and
structures that already exist in the context of the MNOs. The MNOs use these services and structures to implement
NFV. For this reason, the ETSI also designed an architecture joining MEC and NFV.

3.2 MEC and NFV Integration

To runMEC applications in the network, a MEC system needs to manage a virtualization infrastructure, instantiate
applications in this virtual infrastructure, install the correct data plane conigurations, manage the applications
life cycle, and ofer MEC services. These requirements are very similar to the requirements to implement the
Network Function Virtualization (NFV).
NFV is a paradigm that decouples the network functions from the physical equipment running these func-

tions [89]. The advantages of decoupling are threefold. First, making network functions independent from the
hardware executing them makes their evolution and maintenance independent from the hardware evolution and
maintenance. Second, the deployment of functions is more lexible since software deployment is more lexible
than hardware deployment. Third, the scaling of network functions is also more lexible since the virtualization
can grow or shrink the hardware slice executing each function [90].

The implementations of NFV provide some virtualization infrastructure and services. For example, developers
can deploy their software that performs network functions, namely Virtual Network Functions (VNFs). In
addition, NFV infrastructure is responsible for the Management and Orchestration (MANO) of the VNFs, life
cycle management, and traic redirection. These duties have a signiicant intersection with the ones expected
from a MEC implementation.
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The NFV design and adoption predates MEC conception and framing. For this reason, MEC implementations
can reuse and take advantage of NFV deployments and their existing software and hardware infrastructure. There
are many design possibilities and, to provide compatibility, ETSI also proposes a standard to implement MEC and
NFV together.

In the ETSI integration, the MEC platform is instantiated as a VNF, as well as the MEC applications [35]. The
MEC platform can delegate some management functions to the NFV MANO Life Cycle Management (LCM).
According to the standardization, the NFV MANO remains unchanged to support the deployment of MEC
applications. The MEC platform, running as a VNF, ofers MEC-related functions. It can implement the functions
itself or leverage the management and orchestration services that the NFV MANO provides.
We illustrate the architecture in Figure 5, adapted from the ETSI standard [38]. In the following, we list the

entities from the MEC in NFV that are not in the original MEC standard or that are somehow modiied.

• MEC application orchestrator: logically, this entity has the same functions as the MEO, from the stand-
alone MEC architecture. The diference is in the implementations domain since it only implements MEC-
speciic functions. It delegates to the NFVO functions that are general to the orchestration of MEC applica-
tions and VNFs.
• MEC platform manager - NFV: (MEPM-V ) this entity performs the same functions as the MEC platform

Manager from the original architecture. Nevertheless, it does not implement LCM functions, delegating
them to the VNF Manager.
• Network Function Virtualization Orchestrator: (NFVO) this entity is deined in [30]. It manages the
life cycle of the VNFs. It orchestrates MEC applications the same way it orchestrates VNFs.
• Virtual Network Function Manager: (VNFM) this architectural entity is deined in [30]. This entity
manages the life cycle of VNFs. In the case of the MEC-NFV architecture, it manages the life cycle of the
MEPM-V and the MEC applications.
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• Network Function Virtual Infrastructure: (Network Function Virtualization Infrastructure) this entity
provides the virtualization infrastructure for the VNFs [30]. In the case of the MEC-NFV architecture, it is
blind if it manages a VNF or a MEC application.

The ETSI MEC is an important reference for MEC authors. It deines two architectures, one stand-alone and
one NVF-based. It also deines building blocks and interfaces to instantiate MEC applications and to manage their
life cycle. Even though the ETSI standard is a relevant reference, not every initiative follows the ETSI standard.
We discuss next the implementations of MEC and their diferent guiding concepts.

4 PRACTICAL MEC SYSTEMS

To implement a MEC system, it is essential to have a guiding concept or strategy. The ETSI architecture is
an example of such a guiding concept. Nevertheless, the ETSI architecture is not the only possible guiding
concept. Table 3 lists the implementations that are ETSI-compliant and the implementations that are not ETSI-
compliant, following some other strategies. This section describes theMEC implementations found in the literature,
classifying them according to the concept guiding their implementation. We identify ive main concepts. The irst
concept follows the ETSI standard. The second leverages the NFV infrastructure to implement a MEC system.
The third enhances gateways, making them smart enough to run MEC applications. The fourth adds an agent
to the UE to optimize the oloading to the MEC. The ifth strategy consists of developing middleboxes that
execute MEC applications. Table 4 lists the strategies, the name, a short description, and the references for each
implementation we survey in the following.

4.1 ETSI-Compliant Initiatives

As we describe in Section 3, a MEC system is the set of hosts and management infrastructure to enable MEC
applications, while the MEC platform is the part of the system that provides the services for MEC applications.
We consider that a system is ETSI-compliant if it follows the deinition of the ETSI architecture at least to some
level. Hence, ETSI-compliant systems inherit the properties of the ETSI architecture, especially the compatibility
with LTE and 5G environments. In the following set of works, some implement the whole MEC system, and some
others implement just some entities of the ETSI architecture.

LightMEC implements the ETSI architecture of a MEC system [124]. LightMEC models the mobile edge services
running on the mobile edge platform as Light Virtual Network Functions. With this model, it is possible to use
Network Function Virtualization (VNF) tools to deliver the services. LightMEC hosts run MEC applications using
a container-based infrastructure. The authors design the deployment of lightMEC on the aggregation points
of the LTE network, intercepting the packets in the GTP tunnels that traverse the aggregation points. They
use the messages exchanged in the attachment and handover procedures to discover the state of UE and to
properly forward incoming packets. When a UE performs a request, lightMEC uses DNS to verify whether some
hosted MEC applications can serve the request. If one of the MEC applications can serve the packet, the traic is
forwarded to the application. Otherwise, the request is rerouted to its original path. LightMEC implements the
MEO, the MEC platform manager, the VIM, the MEC platform, and lightweight virtualization infrastructure.

LightEdge is designed to work in LTE and 5G environments so that it can operate during the transition between
the two technologies [20]. Their architecture implements an ETSI-compliant MEC platform and the virtualization
infrastructure. LightEdge also implements a MEC Platform Manager, but it is not ETSI-compliant. LightEdge
sits on top of the S1 interface and hosts copies of applications that originally run in the cloud. As we discuss in
Section 2, the S1 interface is the contact between the RAN and the core network in the 4G. LightEdge decapsulates
the traic passing by S1 and uses DNS to intercept traic that the hosted applications can serve. Among other
things, LightEdge ofers RAN information for hosted applications and a REST interface for Operation Support
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Table 4. Surveyed MEC initiatives in a glance.

Strategy Name Short description Reference

ETSI-

Compliant

LightMEC
Lightweight virtualization,

[124]
with services as light VNFs

LightEdge
ETSI MEC system with traic

[20]
decapsulation for S1 interface

M
2
EC

MEC broker for users to
[145]

access MEC management

MEC-NFV MEC platform as a VNF,
[14]

with LBO with SGW-LBO deployment

OpenNESS
Infrastructure management and

[21, 58]
MEC application orchestration

NFV-Based

MANO+
MANO for VNF and MEC

[117]
applications orchestration

NFV-based MEC VNF-capable
[10]

with Open Baton MEC infrastructure

Gateway-

Based

MEC-ConPaaS
PaaS in the edge with low

[131]
cost single-board computers

Container-Based Enhanced gateways for
[52, 53]

MEC for IoT container-based virtualization

PiCasso
MEC on information-centric

[72]
community mesh networks

Middlebox-

Based

MEC as a Cloud application replication in
[74]

middlebox for LTE the edge, with traic redirection

P4EC
Traic oload from

[51]
the core network

Client-

Server-

Based

ACACIA
MEC with UE client for

[17]
MEC services discovery

eRAM
MEC with UE client for

[84ś86]
oloading management

Systems (OSS). The system also proposes a strategy for billing, sending information to the respective entities of
the LTE that are in the core network.

M
2
EC is an orchestrator for MEC systems [145]. It is not a complete system but a building block of a MEC system.

They propose a MEC Broker, an entity that can grant privileges for MEC tenants (i.e., third-party developers) over
the infrastructure. The broker exposes users to theMm1,Mm2, andMm8 interfaces of the ETSI MEC architecture.
This allows users to have access to the MEC orchestrator and the MEC platform manager. The broker decides
which requests to fulill based on the privileges and policies related to each user. The MEC Broker is located
between the UE and the rest of the ETSI architecture.M2

EC is, therefore, designed to change the ETSI architecture
and the way applications interact with it. To ensure compatibility with ESTI MEC, the authors suggest that the
broker is implemented as an extension of the CFS portal, the OSS, the MEC orchestrator, the MEC platform, and
the User app LCM proxy working together.

MEC-NFV with local breakout, from Cattaneo et al., implements a MEC platform using the NFV integration
standard [14]. They use an approach called "Distributed Serving Gateway with Local Breakout" (SGW-LBO), one
of the deployment options described by the ETSI standard [45]. Cattaneo et al. implements a MEC platform as a
VNF running in an NFV infrastructure. Their work focus on a video streaming application that can eiciently
oload the video processing from the UE to the MEC. The UE records the video and uploads it to the edge. They
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show that the upload time to the edge is several times smaller than the upload time to the cloud. To process the
video, the MEC application can use GPUs at the edge. Therefore, Cattaneo et al. uses a descriptor to indicate to
the NFV orchestrator and the VIM that the application needs GPU nodes.

OpenNESS implements a MEC system that ofers a virtualization infrastructure, a data plane and a virtualization
manager [21, 58]. OpenNESS also implements the ETSI MEC platform and the ETSI MEC platform manager.
Users can deploy applications, and OpenNESS handles the virtualization. It also installs tools to manage the
virtualization aspects of ETSI architecture. OpenNESS has two distributions: one is fully open-source, and the
other is a licensed distribution from Intel®. For this reason, some functions are optimized to run on Intel®

hardware.

4.2 NFV-Based Initiatives

As discussed in Section 3.2, the ETSI standard has an architecture for MEC-NFV integration [38]. Nevertheless,
MEC implementations can take the present NFV infrastructure to their advantage but not abide by the standard.
Another alternative is to use MEC infrastructures to run VNFs, using the MEC implementation to replace the
NFV infrastructures.

MANO+ is an architecture enhancement to allow the traditional NFV MANO to orchestrate and manage VNFs
and MEC applications [117]. The MEC applications are modeled as Virtual Application Functions (VAFs), which
describe the application’s needs from the point of view of the orchestrator. Since NFV MANO and MEC are
coupled to each other, they can cooperate to achieve diferent optimization levels. The main diference between
the ETSI NFV-MEC standard described in Section 3.2 and MANO+ [117] is that in the ETSI proposal, the MEC
orchestration is deployed as a VNF. In contrast, in their work, the MEC orchestration is deployed in a modiied
version of the NFV MANO. The main advantage of the ETSI approach is that it is compatible with previous
versions of NFV MANO.

NFV-based MEC with Open Baton is a prototype by Carella et al. of a MEC infrastructure to deploy Virtual
Network Functions (VNFs) [10]. Their work implements an interface that allows the VNF MANO to instantiate
containers in the MEC infrastructure and run VNFs as MEC applications. Since the MEC system manages the
virtualization infrastructure, it goes in the opposite direction of the ETSI standard that instantiates the MEC
applications in the NFV infrastructure.

4.3 Gateways-Based Initiatives

A common strategy is to use gateways as MEC hosts. This means that gateways are enhanced to be capable
of instantiating MEC applications. Since coordination between gateways is possible, a gateway that receives a
request does not need to treat the request. An advantage to this approach is that gateways are already deployed
and often can run applications. A disadvantage is that gateways are usually limited in resources, which means
that they can not run very intensive applications.

MEC-ConPaaS ofers a PaaS running on single-board computers [131]. They argue that the low cost of single-
board computers canmake it possible to ofer computing resources in the same spot as the radio access, simplifying
the system’s architecture. In their architecture, hardware and a network layer ofer computing, storage, and
networking to a container-based virtualization layer. A cloud computing layer orchestrates the containers. On
top of these layers, the ConPaaS layer manages the deployment of MEC applications.

Container-Based MEC for IoT is designed by Hsieh et al. and targeted to IoT applications [52, 53]. The authors
enhance IoT gateways, providing container-based virtualization with gateway hardware. Then, these containers
host functions related to the data low between IoT equipment and the cloud.
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PiCasso is aMEC system designed to deployMEC services on information-centric communitymesh networks [72].
PiCasso proposes a special type of node, called Service Execution Gateway (SEG), and incorporates these nodes into
information-centric community mesh networks. These gateways are single-board computers capable of executing
computing and storage services. PiCasso builds a virtualization layer on the SEGs, enabling the deployment of
containers to ofer services. The main component of PiCasso is its decision engine that chooses the SEG in which
to deploy each service. The decision engine bases its decision on the service speciications and the availability of
the hosting devices. The availability is an important metric because nodes of community mesh networks are
prone to failure. A Service Controller stores all the possible services and installs the services in the edge hosts,
following the decision engine. The services are exposed to the users using the Information-Centric Networking
(ICN), decoupling the services to speciic hosts.

4.4 Middlebox-Based Initiatives

Some works implement MEC as a middlebox. A middlebox is an entity in the path between source and destination
host, performing any function on data that is not a normal IP function [11]. Middleboxes are usually conceived
as independent and self-contained. These attributes ensure minimal interference with the rest of the network
entities. The ETSI MEC architecture is a distributed system, where a single MEC orchestrator deals with many
MEC hosts. In the MEC middlebox architectures, each middlebox works as an independent MEC system with a
single MEC host. This brings some challenges to the middlebox approach related to scalability, load balancing,
and user mobility.

MEC as a middlebox for LTE, from Li et al., is a MEC system located on the S1 interface [74]. Their middlebox
hosts copies of applications running in the cloud. Then, it intercepts requests from the UE to the applications
in the cloud, redirecting the request to the local applications. One important thing is that UE’s IP packets are
encapsulated in GTP packets when they traverse the S1 interface. Therefore, the middlebox deals with depackaging
and repackaging these packets when no hosted application can answer the request.

P4EC is another approach for edge as a middlebox [51], addressing some issues not regarded in [74]. In their
work, the MEC application oloads traic from the core network. P4EC works in the interface between the radio
access network and the core network. Additionally, P4EC has a local exit that is capable of bypassing the core
network. P4EC recognizes delay-sensitive traic using the transport layer header. It also receives from the core
network a list of the UEs that are authorized to perform traic redirection and bypass the core network. When
delay-sensitive traic comes from authorized UE, this traic is redirected to the local exit. The authors show that
this approach can reduce the latency when compared to the approach of [74].

4.5 Client-Server-Based Initiatives

The QoE is very sensitive to the interaction between the UE applications and the MEC applications. Additionally,
MEC applications can signiicantly improve their performance if they have context information about the UE.
Some implementations use applications running in the UE as clients to the MEC to improve the performance of
the MEC implementation as a whole.

ACACIA implements a device manager that helps the interaction between applications running on UE and
applications running on servers in the edge [17]. ACACIA works with a device manager that runs in the UE and
registers the UE interests in the edge services. When there is a match between the services UE requirements
and the MEC server’s services, ACACIA oloads the computation to the server. Additionally, ACACIA provides
user context to the MEC application, arguing that this information is crucial to lowering the latency of the user’s
experience.
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eRAM uses a client oloading middleware running in the UE to identify applications to oload [84ś86]. The
middleware runs a proiler that keeps track of each application’s hardware and network resources usage and
decides to oload the application to a MEC host.

5 ECOSYSTEM COMPLIANCE FOR MEC DEPLOYMENT

MEC systems operate inside networks, interacting with infrastructure, devices, and applications that are already
developed. To deploy these MEC implementations, modifying the network infrastructure, the UE, or the applica-
tions to some level might be necessary. In this section, we discuss such modiications required when deploying
MEC systems. In each subsection, we organize the implementations that require fewer adjustments to existing
infrastructures to the ones that require more adjustments.

5.1 Network-Side Adaptation

The edges of the network deliver the MEC. Hence, changes to the network are inherent to a MEC implementation.
We can think of a network as connected elements. A MEC implementation deployment might afect the elements
of a network, the connections between them, or both. The strategy each implementation uses can signiicantly
inluence the level of network changes required to deploy the implementation.
The works that implement MEC as a middlebox [51, 74] require the insertion of MEC in some interface of

the networks. These implementations are speciically designed to have a minimal impact on the other network
elements, making them very easy to deploy.
MANO+ [117] and the work from Carella et al. [10] make changes to the existing NFV infrastructure, taking

advantage of it to deploy a MEC system. Therefore, the deployment of these implementations is a software
update to the existing NFV infrastructure. Of course, this is only possible in networks that already have an NFV
deployment. Once this is achieved, the efort to deploy the MEC system is a software update.
The ETSI standard dictates that authors can deploy the MEC system inside the RAN, the core network,

or sitting on top of some interface. Among the ETSI-compliant works, LightMEC [124] and the work from
Cattaneo et al. have some speciic deployment options. The other ETSI-compliant works [20, 58, 145] can modify
existing elements of the networks, such as gateways or nodes in the core network. The same goes for the work
ACACIA [17]. Nevertheless, these implementations can also sit on an interface and behave similarly to the
middleboxes. Given this reasoning, their deployment efort is subjected to the deployment complexity.

PiCasso [72], eRAM [84], MEC-ConPaaS [131], and the work from Hsieh et al. [52] implement smart gateways
that are capable of serving MEC applications to the UE or to IoT objects. This means that the area covered by MEC
should also be covered by these smart gateways. In order to mitigate this impact, eRAM [84], MEC-ConPaaS [131],
and PiCasso [72] use single-board computers to act as both as MEC hosts and gateways. These single-board
computers are low cost and, therefore, have low deployment costs. Nevertheless, their deployment efort requires
updating a number of gateways or, in a more complicated arrangement, even changing equipment.

MEC implementations adopt some measures to cope with the diferent networking protocols. The work from
Hsieh et al. [52] and ACACIA [17] use OpenFlow for traic redirection. The protocols for DNS are important
for LightEdge [20] and Li et al. [74]. The works from Li et al., ACACIA [17], and LightEdge [20] use the GTP to
intercept traic from the network. All the implementations must adapt their interfaces to the protocols used in
their ecosystems.

5.2 UE-Side Adaptation

The UE is in the best position to know its local resources state. Therefore, it is necessary to make changes to the
UE to give it the possibility to decide whether it is more interesting to oload an application or not, according to its
requirement and locally available resources. The ETSI standard poses no modiications to the UE. This facilitates
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the MEC adoption from the UE developers perspective. Furthermore, it is possible to develop ETSI-compliant
MEC applications that can beneit from UE changes if or when they are available.
ACACIA [17] runs a device manager inside the UE that controls which part of each application ACACIA

should oload to a MEC host. The work MEC in NFV for Immersive Video uses a UE application to help in the
interaction with the MEC application [14]. This means that users must download and install speciic applications
in the UE before being able to beneit from the MEC application.
Changing the UE can prove risky if it requires user intervention. The implementation of eRAM [84] runs a

daemon in the operating system (OS) of the UE, something that can be present without the intervention of the
user. This daemon follows the resources’ usage of each application and sends the applications to oload in the
MEC. To implement this modiication, it is necessary to update the OS running in the UE. An OS update is not
highly complex, but it is not as simple as installing or updating an application.

5.3 UE-Application Adaptation

Applications running in the UE are usually designed to interact with the cloud. MEC ofers possibilities that
are diferent from those in the cloud. To interact with the MEC, it might be necessary to add some changes to
the applications. For instance, UE applications can consider communication delay when deciding whether to
perform a request to diferent servers. Another option is that UE applications have annotations into their code to
explicitly inform the OS about the possibility to execute such a block in a MEC host.

A possible strategy to avoid UE application changes is to use the MEC to replicate the cloud [52, 74]. This way,
developers can beneit from the MEC lower latency without modifying the UE application.
Van Lingen et al. require that the MEC receives a model from the UE applications, so their orchestrator can

decide which MEC resources should run the applications [132]. Van Lingen et al. uses the language YANG to
model the UE applications [56]. This means that the application developers have an additional burden, and older
applications must be adapted.

6 DEVELOPMENT TOOLS

The implementation of MEC systems requires tools, either hardware or software, to perform diferent tasks
related to the MEC services. For instance, it is necessary to have hardware for computing power and software for
virtualization and management. This section lists the tools employed in the implementation, development, and
testing of the MEC systems we survey in this paper. Table 5 presents the complete list of the tools, with their
names, a brief description of the tools, the works that use each tool, and a reference to a paper describing the tool
or to a website where the tool is available. We also divide the tools according to their type or, more speciically,
their role in the MEC implementations. In the following section, we follow the sequence presented in Table 5 to
detail the role each tool plays in the diferent implementations.

6.1 Hardware

Most of the surveyed works do not target speciic hardware. Any general-purpose hardware can run their
implementations. However, some implementations develop MEC functionalities that target low-cost hardware.

Raspberry Pi is a single-board computer with a quad-core, 1.2 GHz 64 bit CPU and 1GB RAM [106]. The works
eRam [84ś86], MEC-ConPaaS [131], and PiCasso [72] use Raspberry Pi 3 Model B as hardware infrastructure.
eRam deploys Android virtual machines in the Raspberry to replicate the UE. Then, eRAM runs the Android-native
applications Linpack [25], CPUBENCH [123], and PiBench [71], that make loating-point calculations such as
inding the nth digit of π . PiCasso and MEC-ConPaaS deploy container-based virtualization services and run
applications on top of it. PiCasso runs ApacheBench [129] and Cloudsuite Web Serving benchmark [99], both web
servers benchmarks. MEC-ConPaaS uses a face detection application [63] working on top of Apache Flink [128].
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Table 5. Tools used by the surveyed MEC initiatives.

Type Name Short description Works that use Reference

Hardware Raspberry Pi III Single board, low cost computer [72, 84, 131] [106]

Virtualization

Kubernetes Orchestrator for container-based virtualization [20, 58, 124] [18]

Docker Container-based virtualization engine [72, 124] [88]

KVM Virtualization for Linux distributions [14] [64]

Hypriot OS Container-based virtualization on Raspberry Pi [72] [46]

OpenStack OS for IaaS deployment [14, 131] [97]

LXC Containers for Linux distributions [131] [75]

Networking

Open vSwitch Virtual L2 and L3 switch [52, 58, 124] [130]

Click modular router Packet processing elements for routing [124] [66]

NDN Routing over named content [72] [59]

srsLTE LTE software suite [20, 124] [121]

nextEPC 3GPP-compliant EPC for LTE and 5G [20, 51, 124] [94]

5G-EmPOWER Controller for RANs [20, 124] [19]

OpenAirInterface Experimentation platform for LTE and 5G [74] [95]

Athonet SGW-LBO Connection between MEC and the network [14] [7]

MANO
LightMANO MANO for edge and scattered environments [124] [111]

OpenBaton MANO ETSI-compliant MANO framework [10, 14] [9]

These applications are very diferent in terms of resource needs. In all the works, the authors claim that, despite
the low cost, Raspberry Pi 3 can serve the desired applications.

6.2 Virtualization

Most MEC initiatives trust virtualization to deploy applications. For this reason, the implementations employ
many tools related to virtualization. The works use both virtual machine- and container-based virtualization
since both technologies present diferent trade-ofs [43, 139].

Kubernetes is an open-source software to deploy, scale, and manage container-based virtualization. It creates
a cluster from one or several hosts, enabling container instantiation and management. Kubernetes also ofers
automatic scaling and error recovery. The implementations of lightMEC [124], LightEdge [20], and OpenNESS [58]
use Kubernetes [18] to orchestrate containers. OpenNESS enhances Kubernetes to deal with the speciics of MEC
containers, such as considering latency when choosing a host to instantiate a container.

Docker is a software that provides container-based virtualization [88]. LightMEC [124] and PiCasso [72] use
Docker explicitly to provide a PaaS for the applications running in their MEC hosts. Until version 1.20, Kubernetes
used Docker as its container runtime engine [13]. Therefore, technically, all the projects that use older versions
of Kubernetes also use Docker.

KVM is an acronym for Kernel-based Virtual Machine [64]. It can instantiate virtual machines (VMs) on a
Linux environment when hardware support is present. The work from Cattaneo et al. uses KVM as a hypervisor,
capable of instantiating VMs to the VIM [14].

Hypriot [41, 46] is an OS that enables container-based virtualization on the Raspberry Pi. The OS enables the
deployment of Docker [88] applications on top of the single-board computer. PiCasso [72] uses Hypriot together
with Docker to provide a PaaS for users’ applications.

OpenStack is an OS to facilitate the deployment of an IaaS cloud. It can instantiate, orchestrate, and manage
VMs, using pools of computing, storage, and networking resources [97]. Even though OpenStack is a popular
virtualization solution, not many MEC implementations use it. Carella et al. argue that MEC needs a solution more
lightweight than OpenStack [10]. MEC-ConPaaS [131], leaves the virtualization to LXC, but uses OpenStack to
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orchestrate the containers. The work from Cattaneo et al. uses OpenStack as the VIM in the MEC-NFV integration
architecture [14].

LXC is an interface for Linux kernel that allows users to instantiate containers hosted by Linux OS [75].
MEC-ConPaaS [131] uses LXC together with Raspberry Pi’s to ofer containers to users.

6.3 Networking

Networking is an essential part of MEC systems. It is important to interconnect MEC applications with the UEs,
the cloud, and other MEC applications - which can be in the same MEC host or other MEC hosts. In some cases,
it is also essential to provide networking services to the MEC applications.

Open vSwitch (OVS) is a virtual switch [130], redirecting traic between virtual machines and the outside
world. LightMEC uses OVS to implement traic rules that connect the eNodeB, the MEC applications, and the
EPC [124]. OpenNESS uses OVS to their virtualization runtime, steering traic from the containers [58]. The
work from Hsie et al. [52] uses OVS to redirect requests from UE to applications running in MEC hosts or to send
the requests to hosts in the cloud.

Click modular router is a set of packet processing elements, modular in their nature, that can be arranged
in diferent ways to provide several routing functionalities [66]. LightMEC uses the click processing elements to
ofer the MEC platform services [124]. It also uses the processing elements to decapsulate or encapsulate traic
that comes from and to UE.

Named Data Networking (NDN) is a Information-Centric Networking implementation [59]. It identiies
content on the Internet rather than hosts, as IP protocol does. For example, PiCasso uses NDN to identify services
ofered in the network, so users are not tied to a speciic server for a given service [72].

srsLTE is a software suite for UE, eNodeB, EPC, and other entities of LTE architecture. For example, light-
MEC [124] and LightEdge [20] use srsLTE to deploy a RAN and test the performance of their implementations
on an LTE testbed, together with nextEPC.

nextEPC is a 3GPP-compliant EPC for the LTE and 5G. It provides the interfaces between EPC and the other
entities of the LTE and 5G architecture. The implementations lightMEC [124], LightEdge [20], and P4EC [51]
employ nextEPC to the EPC in their testbeds.

5G-EmPOWER is a controller for RANs [19]. It provides a series of abstractions for the RAN and makes
these abstractions accessible through an API. In lightMEC, 5G-EmPOWER is responsible for interacting with the
backhaul controller and deploying light virtual network functions to the edge hosts [124]. LightEdge [20] uses
5G-EmPOWER to manage the radio resources and for its Radio Network Information service [110].

OpenAirInterface is an experimentation platform for LTE and 5G [95]. It implements the RAN and the core
networks. Li et al. use OpenAirInterface to provide a testbed for their middlebox-based MEC [74].

Athonet SGW-LBO solution for MEC is a tool to enable the MEC deployment in the SGW Local Break Out
(SGW-LBO) [7]. The software can extract IP packets from the GTP tunnels and give them directly to the MEC
Platform or applications. For example, the work from Cattaneo et al. uses Athonet SGW-LBO to connect the MEC
applications and platform to the rest of the network [14].

6.4 MANO

In a certain sense, NFV represents the joint usage of networking and virtualization, contributing to integration
proposals between MEC and NFV. Due to these proposals, some implementations use MANO tools to develop
MEC systems.

LightMANO is a MANO for NFV deployment in scattered hosts [111]. Its design is similar to the ESTI NFV
architecture and is supports basic NFV operations [40]. LightMEC employs LightMANO as its mobile edge
platform orchestrator to deal with the scattered nature of MEC systems [124].
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OpenBaton MANO [9] is a framework to orchestrate NFV services running on top of heterogeneous infras-
tructures. This feature motivated Carella et al. to use OpenBaton in their prototype [10]. The authors show that it
is possible to use OpenBaton to manage and orchestrate resources for NFV and MEC applications. The work
from Cattaneo et al. uses OpenBaton as an NFV orchestrator, and to manages the life cycle of the MEC platform
and the MEC applications [14].

7 OPEN ISSUES

Although an evolving research ield with varying commercial and business interests, MEC practical initiatives still
lack enhancements that can signiicantly improve the user experience and the costs for MNOs. The ETSI standard
mentions mobility awareness, oloading decision, and privacy as challenges that need answers [33, 36, 113].
Hereafter, we advance the ETSI statements by bringing a much more detailed discussion on ive current MEC
challenges. Additionally to the ETSI description, we provide discussions on implementations and tools ine-tuning
challenges and commercial solutions’ weaknesses. Per challenge, we enumerate open questions, discuss existing
works, and highlight non-tackled requirements.

7.1 Mobility Awareness

The MEC quality of service (QoS) is highly correlated with the proximity between a UE and its serving MEC
host. When a UE requests the service of a MEC host, the MNO can choose the optimal MEC host to serve the
UE, starting a MEC application instance in this MEC host. Nevertheless, as a UE moves, it can move further
away from the serving MEC host, reducing the QoS. Mobility can also make the UE approach other MEC hosts,
changing the optimal MEC host location to the new one. When this happens, the MEC system can trigger the
migration of a MEC application instance from the previous optimal MEC host to the current optimal one. In this
situation, the MEC system instantiates the MEC application in the new MEC host by transferring the application
context and reconiguring the network to forward the traic accordingly.

According to the literature, we can summarize the mobility-related open issues as:

(1) How to allocate MEC applications instances to MEC hosts on a mobility-perceptive basis, improving QoE
and reducing costs?

(2) How to statically distribute MEC resources to reduce the migration overhead?
(3) What is the best instant to migrate an application?
(4) What exactly to migrate?

The diferent mobility patterns are essential factors to consider. For instance, it may not be optimal to perform
immediate MEC application migrations in moving vehicles [69]. However, in cases where movement decisions
can be planned, inluenced, or intuitively anticipated, such as the case of UE-like tourists in a city, it is possible to
suggest optimal itineraries, leading through paths thatmaximize the availableMEC resources [22, 42]. Furthermore,
contextual information (e.g., periods of the day, occasional special events, or still weather conditions) impacting
mobility decisions of UEs can be leveraged in anticipation of high-probable movements to assist resource allocation
in MEC systems adaptively.

The deployment of MEC systems can follow a static strategy, taking UE mobility into account to optimally and
in advance choose the region that every MEC host should serve [47]. Otherwise, such development can anticipate
or leverage UE mobility to migrate the MEC application when the current MEC host is not optimal anymore [83].
Besides, mobility afects the services that are shared among users.

It is not trivial to migrate MEC applications in real-time. First, the MEC system must migrate the application
and its context. Then, it must conigure the network so that UE requests are forwarded to the new MEC host.
These procedures can hinder the performance of latency-sensitive applications. Therefore, the ETSI standard
recommends that authors trigger the migration when applications are not in latency-sensitive periods [33]. The
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work of Kondo et al. is an interesting approach for MEC application migration. Their work acts in the network
layer, making sure the MEC application instance mobility is seamless [67].
Some MEC applications can be divided into tasks. It is possible to migrate a part of the tasks, avoiding the

migration of the complete application [49]. When UE moves, and this triggers a MEC application migration, it
may be interesting to migrate the application partially by only migrating the tasks that mobility afects.

The survey of Rejiba et al. brings an interesting list of works that deal with mobility within the context of edge
paradigms. Nevertheless, in the context of MEC, the works are still in very early stages. The literature on MEC
lacks mobility-perceptive MEC allocation strategies. Proposing and implementing MEC systems addressing this
issue is crucial for full-scale deployments, where UEs can have varying mobility degrees.

7.2 Ofloading Decision

Task oloading is an important functionality of MEC systems [36]. Consider the case where it is possible to
divide a UE application into tasks. The task oloading consists of executing one or more tasks of a UE application
into external resourced locations (i.e., the MEC or the cloud). Oloading presents a trade-of. On the one hand,
oloading an intensive task to a more resourceful device can improve the battery life of the UE and the time
for task completion. On the other hand, oloading a task to some resource too far from the UE can increase the
time for the task result to be available to the user, hindering QoE [49, 78]. The oloading decision is to decide
whether and where to oload a certain task, and these are two separate problems [15]. ESTI standard does not
deine which entities should take the oloading decision. In this sense, the standard leaves for the implementation
the responsibility for the oloading strategies. Therefore, four questions become important when considering
oloading strategy:

(1) Which tasks should the UE oload?
(2) Given that the UE should oload a task, should it oload the task to the MEC or to the cloud?
(3) Given that the UE should oload a task to the edge, which MEC host should run the task?
(4) Which of the entities should take the oloading decision?

Diferent entities can take the oloading decision, holding diferent information that can help this decision.
The UE OS is aware of the UE resources, so it knows when resources are critical. The UE application holds
essential information about its intensive and latency-sensitive tasks. The MEC system knows its resources, their
heterogeneity, and availability. Therefore, it is important to enforce interactions between MEC systems, UE OS’,
and UE applications to provide a robust oloading decision. One interesting example of dealing with these aspects
is the work from Van Lingen et al., proposing an architecture to unify NFV, 5G, and fog computing [132]. In their
architecture, resources in the cloud or the edge are part of the same resources pool, and user applications are
modeled using the data modeling language YANG [56]. An orchestrator then uses the data models to match the
applications with the resources that should run them.
Oloading to the edge is similar to oloading to the cloud, but there are relevant diferences. In both cases,

network utilization, UE energy, and external resources availability are aspects to consider. In the speciic case of
edge oloading, network latency, UE mobility, and even context-awareness are imperative [136].

When deciding whether to oload a task, it is important to know the conditions of the network connecting the
UE to the external resources [16]. Finally, mobility can alter the trade-of between the cost of local and external
task execution, changing the oloading decision [50].
When choosing which MEC host should handle the oloading, choosing a MEC host with good network

conditions for the requesting UE is crucial [15]. Nevertheless, the heterogeneity of MEC resources is also relevant
to oloading decision [147]. The diferent resources and diferent network conditions between MEC hosts can
present a trade-of that is not trivial to manage.
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Mobility efects can also hinder computation oloading [62]. Some initiatives propose solutions to mitigate
these problems. Hoang et al. propose an oloading decision strategy for vehicular networks [50]. Wei et al. study
a scenario where MEC hosts are the ones moving, mounted on unmanned aerial vehicles (UAVs) [138]. They
propose a method with deep reinforcement learning to optimize oloading decision. Another initiatives aim to
reduce the time for handof. Zhou et al. propose Comp-HO, an algorithm for faster handof [148]. Implementations
are yet to incorporate such solutions.
The ETSI MEC standard does not deine which entity should perform the oloading decision. Nevertheless,

it suggests that the UE or the UE application decides whether to oload a task to the MEC [32], and the MEC
system decides which of the MEC hosts should execute the task [38].

The literature needs works that can properly orchestrate the tasks between UE, diferent MEC hosts, and cloud
while adapting to UE’s communication and mobility behavior and its needs.

7.3 Artificial Intelligence for and on the Edge

Artiicial Intelligence (AI) can have a signiicant impact on MEC implementations, for two main reasons. First,
AI can help the MEC system with the oloading decision [23]. Second, AI can help the MEC system with the
scheduling of the tasks on a host level [60, 107]. Another important aspect of AI is that, since it can be an intensive
task, the MEC system can ofer an AI service for the UE, creating an AI service on the edge [23]. Among the
several important questions that can be considered, we can highlight:

(1) How can MEC use AI to manage itself?
(2) How can MEC use AI to improve oloading?
(3) What are the limits of MEC to provide AI as a service?

Jiang et al. propose a MEC resource scheduling framework based on reinforcement learning [60]. In their
framework, centralized training helps each MEC host to take its scheduling decisions in a distributed fashion.
Their work shows that MEC implementations can use AI to decide on resource scheduling.

To improve the MEC oloading , Sun et al. develop ATOS, the Application-driven Task Oloading Strategy [125].
Their strategy uses deep reinforcement learning to perform oloading decision when tasks have dependency
relations. Their goal is to optimize the costs in terms of delay, energy, and QoS. Li et al. follow a similar approach
for vehicular networks [73]. Wei et al. propose a method with deep reinforcement learning to optimize oloading
decision with mobile MEC hosts [138]. These solutions can form the core of the MEC applications orchestrator to
allow intelligent placement of tasks among the possible MEC servers.
Finally, since the objective of a MEC infrastructure is to meet the computing needs of user applications, this

also includes AI-based applications. Indeed, MEC AI-based use cases [36] introduce many challenges that need
to be tackled by the community and have a direct impact on the used MEC architecture. For example, one of
the challenges is how to divide the AI models between UE, MEC hosts, and cloud [98, 118, 140]. Basically, let’s
consider an AI-based application such as a Neural Network model. The question is then how to split and deploy
this model on multiple entities (end device and MEC server) with multiple computational capabilities instead of
using various models based on the capabilities of the hosting device. To answer this question, the MEC scheduling
orchestrator plays an essential role in splitting the model into a subset of tasks (each one corresponds to a set of
NN layers) and selecting the MECs where to deploy them.
Another critical aspect that should also be considered in future works on the MEC infrastructure design is

how to cope with applications privacy requirements [91]. AI applications emphasize this need since they require
access to data provided mainly by the user. A irst solution is to divide the application into a task and have the
task corresponding to the feature extraction performed by the user’s terminal, which leads to improved privacy.
Unfortunately, this solution can not hold if the user’s device resources do not support the required processing or
where the data comes from several sources. A second approach is to supply the MEC architecture with privacy
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solutions such as the use of data safes (data vaults), which are not currently supported by the architectures and
implementations that we can ind in the literature.
As a conclusion, the literature shows a strong interaction between MEC and AI. Nevertheless, there is still

room for MEC systems implementations to use AI in practice.

7.4 Privacy Compliance

Privacy is a common concern to cloud computing since it means sending data and applications to a third-party
custody [141]. MEC brings similar, but nor precisely the same concerns. We sum up MEC privacy issues as:

(1) How can diferent access networks (i.e., 5G, WiFi, LTE) inluence users’ privacy?
(2) How vulnerable is MEC when compared to the cloud?
(3) How much MEC hosts are heterogeneous when it comes to privacy vulnerability?

Since MEC is embedded into the network, it increases the value of compromising the security of the access
and core networks [105]. In addition, MEC systems can operate within diferent networks, that can ofer diferent
security levels [146]. Moreover, the networks’ users can have diferent privacy requirements.

The UE is usually owned and controlled by the user. Therefore, oloading a task to third-party equipment and
software also incurs privacy issues [126]. Furthermore, in edge environments, hosts are geographically scattered.
This distribution makes it harder to provide physical protection, leaving hardware more exposed to attackers.
However, the attacks are geographically limited, limiting their possible proits as well [146]. Additionally, the
security level of MEC hosts can be heterogeneous [27]. One possibility is to send sensitive tasks to a MEC host
that has improved security infrastructure and is in a safer location.

Privacy is also related to mobility and oloading decision. If the MEC system leverages mobility information
to predict the user trajectory, the MEC system must treat it as sensitive. From the oloading perspective, it is
possible to adopt policies accordingly, adjusted to desired levels of privacy. As a result, user-sensitive data is not
exchanged with MEC, while the user beneits from the MEC oload in other contexts [48].
Even though literature studies privacy for edge systems, MEC implementations still lack privacy-embedded

services. For MEC adoption, MEC implementations must conform to users’ privacy concerns and choices.

7.5 Networking Aspects

MEC is a service provided by the MNOs, playing the following roles: MEC needs the connectivity from the
network it works within, at the same time it can provide services that improve the same network. This means
that some MEC implementation’s challenges come from networking challenges. In this context, some important
questions to consider are:

(1) What are the limits that networks impose on MEC?
(2) How can MEC implementations improve networking services?

For the UE to beneit from the proximity of MEC hosts, it is important for the network to be capable of low
latency communication. In some scenarios, this can be challenging. One important example is vehicular networks,
projected to make extensive use of edge computing [76]. Vehicles move fast, therefore they perform hand-ofs
frequently. This hinders the proximity of the edge servers. Siyu et al. propose a MEC-based architecture that
makes a fast hand-of [149].
MEC also shows a great potential to improve connectivity, by ofering networking services on the edge.

Makris et al. show that MEC can help 5G to optimise radio parameters, improving latency for UEs [80]. Iborra et
al. use MEC to provide network slicing for IoT devices. General-purpose MEC implementations should take into
account these sort of services [114].
We believe the MEC systems implementations should take into account the network challenges. Addressing

these challenges can create signiicant incentives for MNOs to adopt MEC and some speciic implementation.
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Table 6. Examples of commercial initiatives.

Product name Developer Scope Keywords Reference

OpenNESS Intel®
MEC software ETSI-compliant,

[58]
implementation software

Athonet
Athonet®

Private LTE or 5G edge nodes,
[8]

Connectivity Platform with edge nodes SGW-LBO

Airmed
Airmed®

MEC software traic steering
[5]

Cloud Edge implementation software

MobiledgeX
MobiledgeX® Multiple edge cloud

[92]
Edge-Cloud Platform sites management replication

7.6 Commercial Initiatives

For users and MNOs to beneit from MEC, it is essential to have commercially available MEC systems and
implementations. Commercial initiatives must enable MNOs to deploy MEC systems, but it is also important
that MNOs have access to edge-capable infrastructure. Moreover, a product might not deploy a complete MEC
system but a tool or a building block for a MEC system. Table 6 summarizes the commercial initiatives discussed
hereafter. The commercial initiatives raise some questions:

(1) Is it possible to ind real of-the-shelf initiatives?
(2) Which commercial initiatives are compatible with the ETSI standard?
(3) How complete are the commercial initiatives?

One of the most promising commercial products is OpenNESS, a software for deploying MEC systems. We
discuss the open version of OpenNESS in Section 4, but it also has a commercial distribution, licensed by Intel® [58].
It follows the same principles and architecture as its open version, except it is optimized to run on Intel® hardware.
Just like its open counterpart, OpenNESS sticks to the ETSI standard.

Athonet has a product suite for MEC development [8]. They provide a private LTE or 5G network, with the
possibility of edge nodes. Even though their product is not a MEC system, they claim that it is possible to easily
build an ETSI MEC system on top of their suite. Athonet also has a tool, mentioned in Section 6, to allow the
SGW-LBO deployment of MEC [7].
Airmed has a MEC implementation that does not follow the ETSI architecture. Their MEC sits in the S1

interface and ofers two main functionalities [5]. The irst, similar to ETSI MEC, is to host MEC applications. The
second is to steer traic so that critical applications can bypass certain functions from the core network. It is
possible to implement a traic steering functionality as a MEC application in the ETSI MEC, but it is native to
the Airmed MEC implementation.
MobiledgeX is a solution to manage multiple edge sites and facilitate the deployment of applications [92].

MobiledgeX creates the applications in the cloud and migrates them to the edge, so they beneit from low latency.
MobiledgeX also has a software development kit that allows applications in the UE to discover and use edge
resources when they are available. However, MobiledgeX is not compatible with the ETSI standard. Additionally,
MobiledgeX is not immediately suitable for MEC applications because it can instantiate in the edge applications
copied from the cloud, but not stand-alone MEC applications.
The initiatives mentioned above show that the maturity level of MEC implementations is starting to reach

the shelves. They also show that there is room in the commercial distributions for the development of MEC
applications and UE applications that are MEC-aware. Nevertheless, it is not yet possible to ind ETSI MEC
solutions capable of deploying a MEC system from the infrastructure to its software.
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7.7 Implementations and Tools Fine-Tuning

MEC implementations are not simply extensions of the cloud. Their distribution, heterogeneity, and ecosystem
are signiicantly diferent. For this reason, tools meant to deploy clouds are not always adequate for deploying
MEC systems. We believe it is important to answer these questions:

(1) How do software and hardware tools relate to ETSI and non-ETSI architectures?
(2) How tools currently available need to change so they provide better building blocks for MEC?
(3) Is it possible to have tools that are robust enough to the (most intensive) MEC use case but light enough (to

the most constrained use case)?

The building blocks in software and hardware available for authors are not necessarily designed as the entities
in the ETSI architecture [20, 58, 124, 145]. Non-ETSI initiatives also extrapolate virtualization tools to work in
the edge [10, 14]. In both cases, implementations could beneit from edge-speciic tools. The case of OpenNESS
shows that one can optimize the cloud orchestrator Kubernetes to the edge speciics [58].
Some tools come close to fulill the requirements of a MEC system but have a few problems. For instance,

OpenStack is a very popular tool for cloud development, but it is suited for a federated environment, leading to
signiicant overhead [70]. Kubernetes works with container orchestration, but it is not entirely adequate for the
edge environment. Kubernetes has no native support for mapping between applications and MEC hosts, forcing
its own MEC host orchestration policies [81].

In our survey, we ind implementations that use virtualization tools with level-varying robustness, as we show
in Table 5. It also shows some implementations using the lightweight Raspberry as main hardware, meaning that
the optimal trade-of between robustness and overhead is not yet achieved [72, 84, 131].

Serverless computing is a promising technology. With it, application developers can execute functions in the
cloud and edge without explicitly allocating the resources for it [142]. This means that the MEC infrastructure
should be able to allocate the resources for function execution, a much more ine-grained operation than the
traditional virtual machine or container virtualization. The literature gives special attention to the case of
serverless computing to the edge for IoT [12, 65]. It is possible to ind tools for serverless computing on the edge,
such as OpenWhisk [103]. Nevertheless, it is still necessary to integrate serverless computing into the MEC
implementations.

Most of available tools are aimed at cloud implementations. The success of MEC initiatives depends on relying
on tools that have their costs and beneits adjusted to the MEC requirements. Furthermore, the MEC network-
awareness enables several improvements. MEC initiatives can propose better solutions by supporting mobility,
optimizing oloading decisions, preserving privacy, and taking the best available tools.

8 CONCLUSION AND FINAL REMARKS

MEC can play an important role in ofering resources to the edge of the network. Users, application developers,
and MNOs can beneit from this arrangement. For this reason, the scientiic community has been making an
efort so that MEC can achieve its full potential. One important step in this efort is to provide prototypes,
proofs-of-concept, and implementations for the technology. The implementations can bring light into issues that
are not so clear when discussing theoretical models - or even bring new, unexpected questions.

In this survey, we searched the literature for MEC initiatives with practical implementations and discussed their
highlights. We examined their deinition for MEC, their broad vision, and their stance regarding the ETSI MEC
standard. We discuss the strategies and the tools authors used to develop these MEC implementations. Finally,
we pinpointed the open issues related to MEC implementation. Table 7 summarizes the main remarks from
the works we found. The column Name indicates the name of the implementation, the column ETSI-Compliant

indicates whether the implementation follows the ETSI MEC standard, the column Mobility Aware indicates
if the implementation takes UE mobility into account, the column Oloading Support indicates whether the
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Table 7. MEC practical initiatives final remarks.

Name
ETSI- Mobility Ofloading Privacy Com- Fine MNO-

Reference
Compliant Aware Support Support mercial Tuning Centric

LightMEC [124]

LightEdge [20]

M
2
EC [145]

MEC-NFV
[14]

with LBO

OpenNESS [21, 58]

MANO+ [117]

NFV-based MEC

[10]with Open Baton

MEC-ConPaaS [131]

Container-Based
[52, 53]

MEC for IoT

PiCasso [72]

MEC as a
[74]

middlebox for LTE

P4EC [51]

ACACIA [17]

eRAM [84]

implementation has native support to oloading, the Privacy Support column indicates if the implementation has
built-in privacy mechanisms, the Commercial column indicates whether the implementation has a commercial
distribution, the Fine Tuning column indicates whether the implementation makes an efort to adjust existing
tools to MEC environment, the column MNO-Centric indicates if the implementation is designed for the MNOs
requirements, inally the column Reference points to a reference to the implementation.

It is possible to conclude from Table 7 there is much space for improvement regarding MEC implementations.
This improvement can come in the form of new versions of existing implementations or even new implementations.
Some factors contributing to the slow down of practical MEC solutions are the hardness of their implementations,
the absence of tailored MEC systems providing high-level programming and modular software, the lack of
lexibility and integration of solutions, and the deiciency of extensive deployment of advanced cellular networks
(e.g., 5G), providing low latency communication capabilities. On the other side, MEC research is fast evolving,
and its deployment beneits are increasingly attracting commercial interests. In this context, we believe in a
future with large MEC deployment supporting what UEs and applications really need and ask for. We hope this
survey on existing MEC initiatives will provide a starting point for researchers and developers to build their own
MEC systems and validate their solutions. We also wish the signiicant limitations highlighted in our review can
help to improve and optimize the existing initiatives.
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