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Abstract

A common assumption in intermittently-connected (or opportunistic) mobile networks is that any contact has enough capacity to
transfer the required amount of data. Although such an assumption is reasonable for analytical purposes and when contents are
small, it does not hold anymore when users produce contents that are larger than the capacity of a contact. In such a case, users
must slice data and send fragments separately, which allowsbetter use of short contacts and progressive disseminationof large
contents data pieces. The main question here is to design thebest strategy for deciding which piece(s) to transmit whenever nodes
meet. In addition, although small pieces imply a better use of short contacts, they generate more overhead due to the headers
required at each piece. In this paper, we investigate these two issues: piece size selection and piece selection strategy. First, we
theoretically define the global goodput of the system that defines the tradeoff between the size of the shortest contact that can be
considered as useful and piece overhead. Results from real-world traces show that, for reasonable header size, the piece size can
be selected out of a large range of values without significantly impacting the results. Second, we present the design and evaluation
of PACS (Prevalence-Aware Content Spreading), a completely distributed algorithm that selects pieces to transfer based on their
popularity. We evaluate the performance of PACS using both synthetic and real traces from intermittently-connected networks.
When compared with sequential and randomized solutions, weshow that PACS significantly outperforms these approaches both in
terms of latency to achieve full dissemination and ratio of effective contacts. Moreover, PACS achieves performance levels that are
extremely close to a centralized oracle-based solution.
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1. Introduction

Important advances in the area of opportunistic networks
have been achieved including the conception of applications to
enable content sharing among users on the move [1, 2, 3]. In our
daily lives, users generate, consume, and share contents that are
becoming increasingly larger. We address the following ques-
tion: how to efficiently disseminate such large contents in op-
portunistic networks when contacts have limited capacity?This
is a realistic situation, as portable devices such as smartphones
and compact cameras are now able to generate high-definition
videos that are resource-consuming. As an idea, average stan-
dard videos on YouTube are 10MB long [4]; in HD quality, this
value goes up to 40MB. If we consider Bluetooth as the under-
lying transport technology (as suggested in several proposals),
transferring such amounts of data opportunistically wouldre-
quire contacts of 80 to 320 seconds, at best.

A few experimental initiatives have shown that most contact
durations in human-drivenopportunistic networks fall under the
minute [5, 6, 7].1 For example, Gaito et al. show in their ex-
periment that more than 50% of the contacts last for less than1
minute (they found a median contact time of 48 seconds). Try-
ing to transfer large contents during these short-lived encoun-

1Other fundamental papers could not show such a behavior as they relied on
beaconing periods of 120 seconds or more [8, 9].

ters becomes impractical, as two main limitations rise. First,
nodes that experience short contacts frequently might never re-
ceive the data. Second, transfer opportunities are wasted lead-
ing to poor overall performance. To optimize data dissemina-
tion in such scenarios, it is fundamental to adapt the amount
of transmitted data to the contact capacity. Hence, nodes must
slice the data and send fragments separately. The main chal-
lenge when disseminating fragmented data is to decide which
piece(s) should be sent when two nodes meet.2

Before addressing the piece selection problem, the first es-
sential point to investigate ishow to determine the fragment
(piece) size. One solution is to specifically adapt the piece size
to each contact capacity. In other terms, nodes must take into
account the capacity of each contact when sending any content.
If the content is small enough to be transmitted during the con-
tact, the content is fully sent. Otherwise, the content is divided
into several pieces so that at least one piece can be transmitted
during the contact. This solution is not straightforward since
the contact capacity characterization needs to be very accurate.
Therefore, it highly depends on the underlying technology.An-
other solution is to have a standard piece size; when nodes gen-
erate large contents, they automatically divide the contents into

2This paper is a significant extension of our previous paper “PACS: Chop-
ping and shuffling large contents for faster opportunistic dissemination”, pub-
lished atIFIP WONS2011 [10].
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pieces of equal size. In this paper, we consider this second solu-
tion to determine the standard piece size. In Section 4, we for-
mally bring out the tradeoff to deal with between turning small
contacts into useful and increasing the payload. We have used
movement traces obtained from RollerNet to study the impact
of piece size selection on a real world dissemination scenario.
RollerNet trace was collected from an intermittently-connected
mobile network formed between 62 people during a rollerblad-
ing tour in the streets of Paris, which lasts for 3 hours [5]. In-
terestingly, results show that as header remains reasonable, the
piece size can be selected from a large range of values without
significantly impacting the results.

To address the problem ofwhich piece(s) should be sent
when two nodes meet, one possibility is to rely on a naive ap-
proach and transfer pieces in a sequential order, i.e., nodes dis-
seminate the pieces with the lowest identifiers first (see Sec-
tion 5). As we will show later, the main problem with this
approach is that it does not capture the conditions of the net-
work and leads to poor dissemination ratio. Another possibility
is to disseminate pieces in a uniformly-distributed randomway,
but it does not capture contact patterns either. In this paper, we
show that: (i) the order of piece dissemination matters, (ii) bad
piece selection can lead to ineffective contacts, and (iii) uniform
random selection is not enough. To our knowledge, no previous
work has addressed this problem.

In order to counterpart the abovementioned issues, we pro-
pose PACS (Prevalence-Aware Content Spreading), a popularity-
based strategy to select pieces to be exchanged between neigh-
bors solely based on node-local information. Through theirsuc-
cessive contacts, nodes keep track of the dissemination level of
the pieces throughout the network and use this information to
transfer less prevalent pieces first. To this end, nodes exchange
a small boolean vector when in contact. By combining such
vectors over time, nodes are able to build a popularity map of
pieces in the network. We show that such a simple local strat-
egy significantly increases the system performance. We eval-
uate PACS using both synthetic and real-world mobility traces
from intermittently-connected networks. Synthetic user move-
ments are generated using the random trip model [11] and the
community-based mobility model proposed in [12]. Addition-
ally, we have also used the RollerNet trace described above.

In summary, the key contributions of PACS are:

• Higher heterogeneity of pieces in the network.PACS
prevents nodes form getting the same pieces first, which
leads to quick increase in the number of infected nodes.

• More useful contacts.PACS leads to much higher con-
tact effectiveness, i.e., it reduces the number of contacts
that cannot be used because nodes have the same pieces.

• Reduced dissemination delay.By turning more con-
tacts into effective opportunities, PACS significantly re-
duces the latency for the contents to be fully pushed to all
nodes.

The remainder of the paper is structured as follows. In Sec-
tion 2, we give an overview of related work. We briefly describe

the problem of content dissemination in opportunistic networks
and present our network model in Section 3. We formalize the
problem of piece dimensioning in Section 4 and describe the
basic piece dissemination strategies, namely sequential and ran-
dom strategies, in Section 5. We present PACS in Section 6 and
evaluate its features in Sections 7, 8, and 9. Finally, in Sec-
tion 10, we conclude the paper and raise future research direc-
tions.

2. Related work

Data broadcasting in opportunistic and ad hoc networks has
been the subject of several works. The proposed approaches can
be classified in four main categories: simple flooding, probabil-
ity based, area based, and neighbor knowledge [13]. In addi-
tion, a new data dissemination category based on network cod-
ing emerged recently [14, 15]. The main objective of all these
solutions is to achieve an efficient dissemination while mini-
mizing the number of transmissions in the network. This is
done by selecting the best relay nodes among all the neighbors
an infected node has. Nevertheless, all these approaches as-
sume that any contact is long enough to transfer the data under
consideration. This problem is somehow complementary to the
one addressed in our paper. Indeed, these solutions answer to
the question of how to select relay nodes while we address the
question of how to select the piece to transfer once the relay
node is already selected.

Pitkänen et al. studied the impact of data fragmentation in
one-to-one opportunistic network communications [16]. They
considered two fragmentation strategies: reactive fragmenta-
tion and proactive fragmentation. In reactive fragmentation,
the sender starts transmitting the data until it is interrupted by
the link failure caused by the end of the contact. In proactive
fragmentation, the source node divides the data into piecesof
standard size (based on the expected average contact capacity).
They concluded that the reactive fragmentation with predefined
fragment boundaries allows significant improvements in one-
to-one communications. In this paper, we show that even sim-
ple proactive fragmentation can improve one-to-all communi-
cations (data dissemination in our case). We found that a large
range of piece sizes allows reducing the overall dissemination
delay (for more details, please refer to Section 9.2).

As discussed in Section 6, PACS, our piece selection pro-
posal, is inspired by BitTorrent. Several solutions have been
proposed to adapt BitTorrent to opportunistic and ad hoc net-
works [17, 18, 19]. Most of these adaptations, however, aim at
constructing and maintaining an overlay network that enables
multi-hop message routing. In other terms, nodes do not need
to be direct neighbors to become peers. Our solution, in turn,
uses the network layer and the immediate communication ca-
pabilities of the nodes to disseminate data. Nadan et al. pro-
posed SPAWN, a cooperative strategy for content downloading
in vehicular networks [20]. The piece selection scheme usedin
SPAWN is based on a proximity-driven strategy called rarest-
closest. Such a strategy selects the rarest pieces and then ranks
them based on the distance to the closest peer that has that piece.
This solution shares with PACS the same motivations, i.e., they
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Figure 1: A motivating example. Selecting the pieces to transfer is fundamental to efficient dissemination of fragmented contents.

prioritize rarer pieces and consider peer location. SPAWN and
PACS differ however on a fundamental aspect. SPAWN, as
the abovementioned solutions, constructs an application-layer
overlay that does not limit the peer selection to the one-hop
neighborhood. Hence, it needs an underlay routing protocol
that maintains multi-hop routes between peers.

Some other solutions implemented file swarming by only
considering one-hop communications [21, 22]. Both solutions
use uniformly-distributed random piece selection. Neverthe-
less, they use network coding in order to mitigate the coupon
collection problem by increasing piece heterogeneity. Finally,
some papers presented different architectures to enable mobile
peer-to-peer distribution of large contents [23, 24]. In both
architectures, contents are exchanged opportunisticallywhen
nodes are within communication range. However, the piece
selection strategy differs. Jung and al. used the random se-
lection strategy [23] whereas Helgason et al. presented an im-
plementation of the sequential strategy using a pull-basedar-
chitecture [24]. We show in this paper that a more sophisticated
piece selection strategy can enhance such architectures.

3. Content Spreading in Opportunistic Networks

In this section, we provide all the necessary background be-
fore introducing the piece dimensioning problem and the dis-
semination algorithms. In our problem, a relatively largecon-
tentmust be disseminated to a population of mobile nodes that
communicate in an opportunistic fashion. To reduce the dis-
semination delay, the content is sliced into a number ofpieces
of equal size, which allows benefiting from shorter contacts
than the one necessary to transfer the entire content. In this
context, we address two problems. First, having a clue on the
contact capacities,how to efficiently select the piece size? Sec-
ond, given the pieces and a contact opportunity,which subset of
these pieces should be transferred if the contact is not sufficient
to transmit them all?

3.1. Piece Selection: A Motivating Example

We now illustrate why the proper selection of pieces to send
is important. The straightforward approach for a node to dis-
seminate content in an opportunistic network is to transferpieces
based on an increasing order of identifiers. We will call this
strategysequentialin the remainder of this paper.

We show in Fig. 1(a) the sequential approach at three con-
secutive time instants. In the very beginning, only noden1 has
the content (composed of four pieces). Att = t1, n1 meetsn2.
This latter has no pieces yet. The contact allowing the transfer
of two pieces,n1 sends then pieces 1 and 2. Att = t2, n1 meets
n3 (which does not have any pieces either). As for the previous
case,n1 transfers the first two pieces. Att = t3, noden1 has
left the network. Whenn2 andn2 meet, the contact opportunity
cannot be used because both nodes have the same pieces.

The ideal case would have been the one in Fig. 1(b). Node
n1, instead of disseminating the same pieces each time it meets
a node, applies some randomized strategy to avoid the situation
described above. Here, att = t3, nodesn2 andn3 are able to
exchange pieces turning the encounter into a useful contact.

In a real network composed of dozens or even hundreds of
nodes, contact patterns are expected to be much more complex
than the example above. As we will show later in this paper,
PACS is a generalization to the solution shown in Fig. 1(b).

3.2. Network model and assumptions

Let N = {n0, n1, . . . , nN} be the set ofN nodes in the net-
work. Nodes are mobile, but we do not assume any a priori
knowledge of mobility patterns. For the sake of simplicity,we
assume that all nodes in the network are interested in the unique
contentC that is initially only available at a single node. With-
out loss of generality, we call this node the data source and de-
note it asn0. The generalization to any number of data sources
and contents is straightforward.

The data source chops the content intoK pieces of equal
size. The number of pieces is deduced after selecting piece size
(See Section 4, for more information about how to accurately
determine the piece size). Pieces are sequentially identified as
C = {c0, c1, . . . , cK−1}. Nodes use their contact opportunities
to get pieces, i.e., we assume that there is no infrastructure to
help the dissemination process. Nodes can get pieces from the
data source and from any other node in the network having it.
Each nodeni stores locally anavailability bitmap vectorani =

{a0, . . . , aK−1}, whereak = 1 if the node has piececk, andak = 0
otherwise. The necessary contact time to transfer one pieceis
notedτ. We call this a contact slot. Thus, a contact durationt
can be used to transfer⌊ t

τ
⌋ pieces.

All the variables are summarized in Table 1.
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Table 1: Summary of the variables.

Variable Definition
N Set of nodes in the network
N Number of nodes inN
n0 Data source
C Content to be disseminated
K Number of pieces that composeC
ci ith piece ofC
τ Contact slot (time to transfer one piece)

anj Availability bitmap of noden j

C

dh

c1c0 c2 cK−1

Figure 2: Chopping a large content into several pieces.

4. Dimensioning content pieces

The first step to deal with when considering the dissem-
ination of large contents in opportunistic networks is the the
choice of the piece size. ContentC is chopped intoK pieces
of the same size (c.f., Fig. 2). In addition to a data block of
sized, each piece includes an overhead of fixed sizeh. Besides
the source ID, the overhead could include useful information
to line up the pieces into their correct positions when rebuild-
ing contents as the content ID and the sequence number of the
piece.

On one the hand, the size of the piece must be small to
take advantage from most of contact opportunities. Indeed,the
smaller the piece, the larger the percentage of contacts able to
transmit it. Nevertheless, when the piece is too small, the good-
put decreases since the overhead increases. On the other hand,
if the piece is large, the overhead introduced remains negligi-
ble – but the number of useful contacts decreases. Therefore,
there is a tradeoff to deal with when selecting the piece size.

As illustrated in Fig. 2,C is chopped intoK pieces{c0,

c1, . . . , cK−1} of size p. Each piece contains a data block of
size d and a header of sizeh. Hence,p = h + d. The dis-
tribution of contact capacity is represented by the complemen-
tary cumulative distribution functionF shown in Fig. 3. For
pieces of sizep, the proportion of useful contacts (those that
are enough to transfer a piece of sizep) is F(p). The trade-
off can be expressed as follows. As the piece size tends to the
minimum contact capacity (moving from the right to the left on
the x-axis), more contacts are used (F(p) increases) but more
overhead is introduced (dh+d decreases). As the piece size tends
to the maximum contact capacity (moving from the left to the
right on thex-axis), fewer contacts are used (F(p) decreases)
but less overhead is introduced (d

h+d increases).
Assuming that there is always at least one piece to exchange

each time a contact happens between two nodes (this gives us an
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Figure 3: Example of contact capacity CCDF. Dimensioning problem parame-
ters. p is the piece size.p = h+ d.

upper bound), the global goodputG can be expressed as follow:

G =
d× S

T
, (1)

whereT is the total contact time andS is the number of useful
contacts able to transmit one piece of sizep = h+ d.

If all the contacts had the same capacityp,Swould be equal
to m× F(p) (m being the total number of contacts). However,
a contact of more than 2p would be able to transmit 2 pieces.
This representsF(2p) of contacts. A contact of more than 3p
capacity could transmit 3 pieces (F(3p) of contacts), and so on.
Hence,S can be writen as:

S = m×

⌊

M
p

⌋

∑

i=1

F(i × p), (2)

whereM is the maximum contact capacity (c.f., Fig. 3). When
we replaceS in eq. 1, we get:

G = d×m×
1
T
×

⌊ M
h+d⌋
∑

i=1

F(i(h+ d)). (3)

T andm being fixed, we must find the maximum value of
the following functiong to maximize the global goodputG:

g(x) = x×
⌊ M

h+x⌋
∑

i=1

F(i(h+ x)). (4)

5. Basic content dissemination strategies

We now detail the operation of the basic piece selection
strategies. A piece selection strategy specifies the piece to trans-
fer during a contact slot. We call “basic” strategies the sequen-
tial one illustrated in Section 3.1 and a randomized one where
pieces to be transferred are selected following a uniform law.

5.1. Sequential content dissemination

In the sequential strategy, nodes transfer pieces to neighbors
in an increasing order of identifiers. This implies that if a node
has piecec j , it necessarily has piecesck, ∀0 ≤ k ≤ j. We
note ĉni as the largest identifier of pieces owned by nodeni,
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Algorithm 1 ni sequential strategy
1: while contactwith(nj ) do
2: receive f rom(nj , ĉ(nj ));
3: if (ĉ(nj) < ĉ(ni)) and (initiate connexionwith(nj)) then
4: csi→ j ← cĉ(n j )+1;
5: sendto(nj , csi→ j );
6: else
7: if (ĉ(nj) > ĉ(ni)) and (connexioninitiated by(nj )) then
8: receive f rom(nj , csj→i );
9: if (csj→i = cĉ(ni )+1) then

10: ĉ(ni)← ĉ(ni) + 1;
11: else
12: ignore(csj→i );
13: end if
14: end if
15: end if
16: end while

ĉ(ni)

ni nj

ĉ(nj)1 2

0 1 011 01 1

(a) State 1: selecting pieces.

ĉ(ni)

ni nj

ĉ(nj)2 2

0 1 011 1 11

!1

(b) State 2: updating local variables.

Figure 4: Piece selection using the sequential strategy. Initially, ni has pieces
{c0, c1} (ĉni=1). nj has pieces{c0, c1, c2} (ĉn j= 2).

i.e., ĉni = j if ak = 1,∀k ≤ j andak = 0,∀k > j. Initially,
all nodes in the network are looking for the first piece (i.e.,c0)
except the data sourcen0 that already has all pieces. Formally,
ĉni = −1,∀ni ∈ N\n0 andĉn0 = K − 1.

When two nodesni andn j meet, they exchange their cor-
responding ˆc. Consider first the case where ˆcni > ĉnj , which
means thatni has at least one piece thatn j does not have. As
long as the contact duration allows, nodeni transfers pieces
following the sequencecĉnj+1, cĉnj+2, . . . , cĉni

. If ĉni < ĉnj , the
same is done but fromn j to ni. At each transfer, the receiv-
ing node increments its corresponding ˆc. Note that ifĉni = ĉnj ,
the contact becomes useless as the nodes have exactly the same
contents. For a contact of durationt, the maximum number of
pieces transferred is min{|ĉi − ĉ j |; ⌊t/τ⌋}.

This strategy is illustrated in Fig. 4. The content is com-
posed of four pieces (K = 4). In this example, the only possible
exchange is transferring the piecec2 from n j to ni . Algorithm 1
details the strategy.

5.2. Uniform random content dissemination

The idea behind the uniform content spreading strategy is
to select, among the pieces a neighbor has not received yet, the
ones to be transferred in a uniformly-distributed random way.
When nodesni and n j meet, they exchange their availability
vectorsani andanj (as defined in Section 3.2). Nodeni (resp.n j)
computesani ∧ (¬anj ) (resp.anj ∧ (¬ani )), which gives the can-
didate pieces to be transferred (∧ stands for the “and” operator
and¬ is “not”). During the contact, one or more of these candi-
date pieces are chosen to be transferred based on a uniformly-

Algorithm 2 ni Uniform random strategy
1: while contactwith(nj) do
2: receive f rom(nj ,a j);
3: if (ai ∧ (¬aj) , ∅) and (initiate connexionwith(nj )) then
4: csi→ j ← radom selection f rom(ai ∧ (¬aj ));
5: sendto(nj , csi→ j );
6: end if
7: if (a j ∧ (¬ai) , ∅) and (connexioninitiated by(nj )) then
8: receive f rom(nj , csj→i );
9: i j→i ← {i0, . . . , iK−1}; ik = 0,∀k < K (k , sj→i) andisj→i = 1

10: ai ← ai ∨ i j→i ;
11: end if
12: end while

ani

ni nj

anj1 0 10 01 11

(a) State 1: selecting pieces.

ani
anj1 101 11 11

ni nj

!0!0

(b) State 2: updating local vectors.

Figure 5: Piece selection using the uniform random strategy. Initially, ni has
pieces{c0, c1, c2} andnj has pieces{c0, c3}.

distributed random way. After one round of exchanges, nodes
update their availability vectors as:

ani ← ani ∨ ic j→i ,

anj ← anj ∨ ici→ j .
(5)

whereici→ j andic j→i are vectors ofK elements with all positions
equal to 0 except the position relative to the piece just received,
which is set to 1 (∨ stands for the “or” operator).

We illustrate the algorithm in Fig. 5. Nodeni (resp. n j)
has pieces{c0, c1, c2} (resp. {c0, c3}) as shown in the availabil-
ity vectors (Fig. 5(a)). After exchanging their vectors, the only
piecen j could send toni is c3 whenni could randomly select
one of the pieces{c1, c2} to send it ton j. Assume that the con-
tact lasts for two slots. Hence, two pieces can be exchanged.
Suppose thatn j sendsc3 to ni during the first slot and thatni

sends piecec2 during the second slots. After piece transfers,
each node updates its vector. The availability vectors become
ani = {1, 1, 1, 1} andanj = {1, 0, 1, 1}. The strategy is fully de-
tailed in Algorithm 2.

6. PACS: Prevalence-Aware Content Spreading

The goals of PACS are to achieve fast content dissemina-
tion while keeping the overhead low and making better use of
contact opportunities. The challenges of conceiving such asys-
tem are mainly twofold. First, nodes must have a clue on the
dissemination progress of each piece, so that they can appro-
priately prioritize their transmissions. Second, the dissemina-
tion information must remain local to reduce the overhead and
achieve a scalable solution.

In PACS, in addition to the availability vector, nodeni also
keeps a prevalence vectorpni

= {p0, p1, . . . , pK−1}. As it will
become clearer later, the goal ofpni

is to give a local view of
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Algorithm 3 ni PACS strategy
1: while contactwith(nj ) do
2: receive f rom(nj ,an j );
3: pni

← pni
+ an j ;

4: if (ani ∧ (¬an j ) , ∅) and (initiate connexionwith(nj )) then
5: csi→ j ← prevalenceselectionf rom((ani ∧ (¬an j )),pni

);
6: sendto(nj , csi→ j );
7: end if
8: if (an j ∧ (¬ani ) , ∅) and (connexioninitiated by(nj )) then
9: receive f rom(nj , csj→i );

10: ic j→i ← {i0, . . . , iK−1}; ik = 0,∀k < K (k , sj→i), isj→i = 1
11: ani ← ani ∨ ic j→i ;
12: end if
13: end while

ani
anj1 1 0 10 0

p
ni

p
nj

1 1

1 3 425 7 11

ni nj

(a) State 1: select pieces.

ani
anj1 1 10

p
ni

p
nj

1 1

1 3 536 8 12

11

ni nj

!0!0

!7 !2 !4!5 !1

(b) State 2: update local vectors.

Figure 6: Piece selection using PACS. Initially,ni has pieces{c0, c1, c2} andnj

has pieces{c0, c3}.

the prevalent pieces in the network. Initially, all nodes have
an empty prevalence vector. When nodesni andn j meet, they
exchange their availability vectors, exactly in the same way as
the uniform content dissemination strategy. They also update
their prevalence vectors respectively as:

pni
← pni

+ anj ,

pnj
← pnj

+ ani .
(6)

Among the candidate pieces to be transferred, nodes select
the one with the lowest prevalence. In case of tie, a piece is
chosen in a uniformly distributed random way. Letcsi→ j be the
piece sent byni to n j andcsj→i be the piece sent byn j to ni .
Once this step done, nodes update their availability vectors as
indicated in Equation 5.

In the very beginning, the prevalence vector has a limited
influence on the selection algorithm but gains importance as
nodes move and exchange pieces. We show an example in
Fig. 6. After exchanging their availability vectors, nodesup-
date their prevalence vectors as indicated in Equation 6 (pni

=

{6, 1, 3, 2} andpnj
= {8, 3, 5, 1} ). Similarly to the previous ex-

amples, we assume that contact last for 2 slots. Then,n j trans-
fers toni the piecec3 that is the only piece it is able to select,
while ni chooses the less prevalent piece from{c1, c2} to send
to n j . According topni

, piecec1 is less prevalent than piece
c2. Nodeni sendsc1 to n j. Once the exchanges are done, the
respective availability vectors are set toani = {1, 1, 1, 1} and
anj = {1, 1, 0, 1}. The strategy is described in Algorithm 3.

Note that PACS has some similarities with peer-to-peer sys-
tems, notably BitTorrent [25, 26, 27]. Indeed, PACS uses a
BitTorrent-like content swarming where data is divided into
several pieces. When two nodes are in range of each other, they

try to exchange the pieces with the lowest prevalence first. This
corresponds somehow to the rarest-first algorithm used in Bit-
Torrent. Nevertheless, the notion of rarest piece is essentially
different in the two cases. In BitTorrent, each peer maintains
a list of the number of copies in its peer set. This list corre-
sponds to the prevalence vector described in PACS but contains
exactly the number of copies in the peer set (neighborhood).
In PACS, instead, nodes update their prevalence vector each
time they initiate a connection with another node. Even if both
strategies give the node an egocentric view of the rarest pieces,
PACS adapts the algorithm to counterbalance the instability of
a node’s neighborhood due to the dynamics of the environment.
Indeed, the nodes that are the most represented in the preva-
lence vector are those encountered often and/or during longer
time intervals.

7. Evaluation framework

In this section, we summarize the simulation and model pa-
rameters. We use the ONE [28] simulator with both mobility
models and real movement trace based simulations.

7.1. Simulation parameters
We study the impact of the following main parameters:

Area size. We consider two scenarios with the following area
sizes: 300m× 300m and 1,000m×1,000m. The first area is of
the size of a train station when the second area is large as a
downtown area.
Number of nodes. The number of nodes varies between 100
and 2,500. By default, the number of nodes is set to 250. This
parameter, associated to the area size, determines both thenet-
work density and the network diameter.
Number of data sources. By default, we consider a unique
content originally available at a single data source. When study-
ing the impact of the number of initial copies, we vary the num-
ber of data source between 1 and 250 nodes.
Number of piece sources. The content pieces are generated at
a single data source by default. When we evaluate the impact of
the initial piece dispersion on the dissemination delay, wevary
the source of the different pieces from all the pieces generated at
a single source (number of piece source set to 1) to each piece
generated at a different source (number of piece source set to
the number of pieces).
Content size. The content size is set to either 12MB or 48MB.
We consider these values to fit a realistic scenario of video dis-
semination. As observed in [4], videos in YouTube have a mean
duration of 4.15 minutes for an average size of 10MB. In our
simulations, a 12MB-file represents a standard definition video,
while a 48MB-file is a high-definition video.
Piece size. We investigate the impact of the piece size on the
effectiveness of the algorithms. The piece size is incremented
exponentially from 3kB to 3MB. By default, the piece size is
set to 384kB. The piece size together with the content size de-
termines the number of pieces.
Header size. When we evaluate the impact of the piece size,
we consider two header size values: 56B and 512B. By default,
we consider that pieces have no header.
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Table 2: Simulation parameters.

Factors

Area size 300m×300m,
1,000m×1,000m

Number of nodes 100, 250, 500, 1,000,
2,500

Number of data
sources

1, 2, 5, 10, 25, 50, 100,
150, 200, 250

Number of piece
sources

1, 2, 4, 8, 16, 32

Data size 12MB, 48MB

Piece size 3kB, 6kB, 12kB, 48kB,
96kB, 192kB, 384kB,
768kB, 1.5MB, 3MB

Header size 0B, 56B, 256B

Parameters
of the
models

Range 10m

Moving speed [0.5, 1.5] m/s

Throughput 125 kBps

RollerNet
configura-
tion

Number of nodes 62

Trace duration 3 hours

Throughput 125 kBps

These parameters are summarized in Table 2, where bold
values stand for the default ones.

7.2. Parameters of the mobility models

We used two mobility models for the simulations. First,
nodes follow the random trip model. We only consider the
steady state of the random waypoint by applying the formulas
described in [11]. The second model is the community-based
model formulated by Musolesi et al. [12].

For both models, nodes move at walking speed (between
0.5m/s and 1.5m/s). Two nodes are able to communicate when
within communication range of 10m. Data is transferred at
a throughput of 125KBps. In addition, each model has spe-
cific parameters. For random trip, nodes may pause between
two trips. Node pause time is uniformly picked in the interval
[0, 120]s. In the community-based model, nodes are grouped
together based on social relationship among individuals. The
initial number of groups is set to 50. Groups are mapped onto
a topographical space corresponding to cells. The number of
cells in the area is set to 3×3. Table 2 summarizes the parame-
ters of the models.

7.3. Real-world trace configuration

We use the RollerNet trace to evaluate the performance of
the spreading strategies in real-world environment [5]. The
trace has been generated through contact logs between Intel
iMote nodes (equipped with a Bluetooth interface). Each iMote
performs regular scans and registers the MAC addresses of the
responding devices around. The RollerNet trace has been col-
lected during a rollerblading tour in Paris. iMotes were dis-
tributed to 62 participants and the total duration of the tour was

about three hours. This trace is publicly available to the com-
munity through the Crawdad repository.3

The number of nodes is set to the number of participants
in the experiment (i.e., 62). The transmission throughput of
nodes is set to 125KBps that correspond to the nominal Blue-
tooth throughput. At each simulation run, we pick a different
node to play the role of the data source. The trace configuration
is also summarized in Table 2.

7.4. Benchmarking

We compare PACS with both the sequential and the uni-
form random strategies as described in Section 5. Besides these
strategies, we also consider a centralized strategy where acen-
tral entity maintains a global prevalence vector. The global
prevalence vector is used to select the piece to be transferred
by nodes in the same way as in PACS. Nevertheless, it is only
updated when a node receives a piece. The global prevalence
vector reflects exactly the current dissemination state of each
piece in the network. We call this strategy theOracle. Obvi-
ously, deploying such a centralized strategy is impracticable in
a real opportunistic network. We use it for comparison purposes
only.

8. Synthetic mobility evaluation

We use two mobility models to generate synthetic traces.
First, we study the simple case of mobility induced by the ran-
dom trip model. Second, we consider the community-based
mobility model, a more elaborated model founded on social net-
work theory. Plots represent average results upon 20 different
runs. Parameters are detailled in Section 7.2.

8.1. Impact of network density and diameter

We vary both the area size and the number of nodes to study
the dissemination delay of a 12MB-file (Fig. 7). We define the
dissemination delay as the required duration for the content to
be received by all the nodes in the network. It is the elapsed
time between the transmission of the first piece to the first node
and the reception of the last piece by the last node. We also
measure the contact effectiveness (Fig. 8). The contact effec-
tiveness is the ratio of the time used for transfers over the to-
tal contact durations (in the period comprised between the first
and the very last piece transfers). It indirectly measures the
availability of new pieces when nodes meet. An effectiveness
closer to zero means that nodes meet but seldom have pieces
to transfer, while effectiveness closer to one reflects frequent
exchanges. As expected, for the four strategies, the largerthe
number of nodes (denser network), the smaller the dissemina-
tion delay and contact effectiveness. This is due to the increase
of the number of contact opportunities in denser networks. The
sequential strategy leads to the worst performance. Even ifthe
difference between the strategies is accentuated in sparse zones
(with fewer nodes in the network), we can observe the same

3http://crawdad.cs.dartmouth.edu/meta.php?name=upmc/

rollernet
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Figure 7: Dissemination delay according to the number of nodes. Dissemina-
tion of a 12MB data divided on 32 pieces of 384KB. Random trip (RT) versus
community-based model (CB).

tendency in dense networks (Fig. 7(a) and Fig. 7(b)). Regard-
less of the number of nodes and the area size, PACS performs
better than the sequential and the random strategies, reducing
by about a half in average the dissemination delays. Further-
more, the results of PACS tend to the ones obtained using the
Oracle strategy.

8.2. Impact of the strategy on the evolution of piece dissemina-
tion

In order to understand the reason of such a difference in
the dissemination delay between the strategies, we first com-
pare the strategies regarding the piece dissemination evolution.
Fig. 9 shows the proportion of time required, out of the total
time, to fully disseminate a given percentage of pieces. The
total time corresponds to the dissemination delay. The piece
dissemination is faster with the random and sequential strate-
gies. Indeed, all the nodes get the first piece after 17% of the
total time for the random and only after 7% of the total time
for the sequential. This reflects the fact that all nodes start by
getting the same pieces with those strategies. Conversely,with
PACS and Oracle, nodes start by getting different pieces and no
pieces are fully disseminated before 82% of the total time for
Oracle and 71% of the total time for PACS.

But what matters is the global behavior of the dissemina-
tion evolution. Fig. 10 shows the proportion of time required,
among the total time, to infect a definite percentage of nodes.
A node is infected when it gets all the pieces. Regardless the
mobility model, we observe two different behaviors. Clearly,
with PACS and Oracle, nodes are infected very quickly com-
pared to the random and sequential strategies. With PACS and
Oracle, the first node is infected around half of the total time.
On the other hand, this first node is only infected at 80% of the
total time with the random and sequential strategies. Moreover,
when the simulation achieves 90% of the total time, only 1.6%
(resp. 29%) of nodes are infected with the sequential strategy
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Figure 8: Contact effectiveness according to the number of nodes. Dissemina-
tion of a 12MB data divided on 32 pieces of 384kB. Random trip (RT) versus
community-based model (CB).
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(b) Community-based model.

Figure 9: Piece dissemination evolution. 250 nodes. Dissemination of a 48MB
data divided on 128 pieces of 384kB. Area 1, 000m× 1, 000m.

(resp. random strategy), whereas 96% of nodes are already in-
fected with PACS and Oracle. This result indicates that PACS
could be more robust to a premature departure of the source
node from the network since other nodes are able to play the
role of seeds earlier in the dissemination process.

8.3. Impact of the strategy on the neighborhood redundancy

We define the neighbor redundancy as the average fraction
of useless contacts. A contact is considered useless if the two
nodes involved in it have no pieces to exchange. We consider
the dissemination of a 48MB-file divided in 128 pieces. Fig 11
shows the neighborhood redundancy according to the number
of nodes in the network. For all strategies, the nodes face more
useless connections when the network is denser. Indeed, with
the random trip model for example (Fig. 11(a)), only 1% or less
of the contacts are useless when we have 100 nodes in the net-
work. This proportion is 10 times larger for 250 nodes. The im-
pact of network density can be explained by the augmentation
of simultaneous co-located contacts. In the same neighborhood,
nodes can get pieces from more neighbors when the network in
denser. In particular, two co-located nodes can get the same
pieces at the same time but from different neighbors. As a con-
sequence, a future contact between these two nodes becomes
useless. We observe, however, that PACS limits neighborhood
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Figure 10: Nodes infection evolution. 250 nodes. Dissemination of a 48MB
data divided on 128 pieces of 384kB. Area 1, 000m× 1, 000m.
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Figure 11: Neighborhood redundancy. Dissemination of a 48MB data divided
on 128 pieces of 384kB. Area 1, 000m× 1, 000m.

redundancy as compared to sequential and random strategies.
For example, with 500 nodes, the number of useless contacts
with PACS is divided by two comparing to the random strategy.
This highlights the fact that co-located nodes get more hetero-
geneous pieces with PACS.

8.4. Impact of the number of data sources

We study the impact of the number of data sources on the
dissemination delay of the different strategies (Fig. 12). Re-
call that a data source is a node that initially has all the pieces.
As expected, for all the strategies, the dissemination delay de-
creases with the increase of the number of data sources in the
network. Nevertheless, the input of additional sources does not
give the same proportion of improvement to the overall dissem-
ination delay. For example, when we double the number of data
sources from 50 to 100, the delay decreases by less than 15%
for all the strategies. Hence, the benefits of introducing new
data sources decreases as the number of data sources increases.
In addition, we observe that the improvement is less important
for PACS and Oracle. Indeed, the delay only decreases by 20%
when changing from 1 to 25 sources, while it reaches more than
40% for the random and sequential strategies. It is important to
note that the results of the random and the sequential strategies
become very close to the one obtained by PACS and Oracle
when the number of data sources increases.

8.5. Impact of fragment dispersion

We want to figure out if the piece dispersion can impact the
obtained results. Fig 13 shows the dissemination delay when
the number of piece sources varies from 1 to 32. When the
number of piece sources is equal to 1, all the pieces are initially
available at one node. This configuration is equivalent to the
single data source scenario. In contrast, when the number of
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Figure 12: Dissemination delay according to the number of data sources. Dis-
semination of a 12MB data divided on 32 pieces of 384kB. Random trip (RT)
versus community-based model (CB).

piece sources is equal to 32, each piece is initially available at
a different node in the network. In this study, we do not con-
sider the sequential strategy since the strategy principledoes
not hold anymore if more than one piece source exists. Indeed,
the initial state represents nodes that did not get the pieces in
an increasing order of identifiers. We only evaluate the dissem-
ination delay for the random strategy, PACS, and Oracle. Even
if the dissemination delay decreases with the increase of piece
source for all strategies, the improvement achieved is moresig-
nificant with the random strategy. Indeed, the delay is improved
by more than 30% in this case, while it only reaches 12% with
PACS and Oracle. This result can be explained by the fact that
distributing different pieces to different nodes enables an initial
piece shuffling. In addition to node mobility, this can be enough
to get a good heterogeneity of pieces in the network even with
a random piece selection strategy. However, such an initialdis-
persion of piece is not obvious in real content sharing scenario.

9. Real-world trace evaluation

In this section, we evaluate the performance of the spread-
ing strategies using the real-world mobility traces of RollerNet.
We vary the scenario by setting each node in the network as data
source. Plots represent average results. Section 7.3 summarizes
the experimentation details.

9.1. Impact of the piece size

When the piece header is set to 0, the dissemination delay
increases with the augmentation of the piece size and those re-
gardless the strategy (Fig. 14). One reason is that the larger
the piece size, the less the number of contact opportunitiesable
to transmit the piece. Moreover, when the piece is too volu-
minous, the dissemination fails in many cases. This is what
happens when trying to send pieces larger than 1.5MB (resp.
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Figure 13: Dissemination delay according to the number of piece sources. Dis-
semination of a 12MB data divided on 32 pieces of 384kB. Random trip (RT)
versus community-based model (CB).
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Figure 14: Dissemination delay according to the piece size.Header size set to
0. Nodes move based on RollerNet trace. (Please note that thetwo graphs do
not use the same scale, for the sake of visualization).

3MB) for 48MB data (resp. 12MB data). Nevertheless, com-
paring the different strategies, the increase of the dissemination
delay is less significant with PACS than with the sequential and
random strategies. This difference is more noticeable when dis-
seminating larger data (Fig. 14(b)). Indeed, when the number
of contact opportunities able to transmit the piece is smaller, the
impact of the strategy grows.

9.2. Impact of the overhead

We now study the impact of the overhead introduced by
the piece header on the previous results. Fig. 15 shows the
global goodput obtained from the RollerNet trace accordingto
the piece size. We consider a large scale of header size from rea-
sonable values (28B, 56B) to some very large values (1,400B,
2,800B). Although a header of 2,800B is impractical in a real
deployment, we intentionally consider such large header sizes
to understand the tendency of the resulting goodput. We vary
the piece size according to the header size. When piece size
ratio equals 1, the piece contains only the header. In this case,
the goodput is equal to 0 since no useful data is sent. On the
other hand, when the piece size ratio is very large, the header
represents a small fraction of the piece size. However, here
again, the goodput tends to 0 since the number of usable con-
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Figure 15: Global goodput according to the piece size ratio.Header size varies
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Figure 16: Dissemination delay according to the piece size when overhead is
considered. Dissemination of a 12MB data. Nodes move based on RollerNet
trace.

tact decreases as the piece becomes too large. Between these
extreme values, the shape of the goodput curve depends on the
value of the header size. The larger the header size, the sharper
the goodput curve. This means that the selection of the piece
size is crucial when the header is significant. Indeed, when the
header is large, the goodput considerably changes depending on
the piece size. In all cases, the maximum global goodput is ob-
tained with a piece size ratio around 90. What is interestingto
observe here is that the smaller the header, the larger the plateau
of piece size ratios that optimize the goodput.

Plots in Fig. 16 concur with the results obtained with the
theoretical computation of the global goodput. Fig. 16 shows
the dissemination delay according to the piece size when the
header equals 56B and 512B. For the four strategies, when the
piece is in range [6kB, 768kB], we obtain similar dissemination
delays. This confirms that when the header remains reasonable,
we can select the piece size among a large range of values with-
out significant consequences on the results.

9.3. Impact of the piece selection strategy

This section investigates the importance of the piece selec-
tion strategy in a real environment. We analyze the impact of
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(b) Node infection evolution.

Figure 17: Dissemination evolution. Dissemination of a 48MB data divided on
128 pieces of 384kB. Nodes move based on RollerNet trace.

the strategy in the evolution of both piece dissemination and
node infection. Figs. 17(a) and 17(b) confirm the observations
made with the mobility models. Indeed, compared to the se-
quential and random strategies, PACS achieves slower piece
dissemination and a faster node infection. Clearly, the percent-
age of nodes having all pieces and playing the role of a source
node increases faster with PACS. This observation reflects a
higher heterogeneity of the disseminated pieces with PACS that
explains the better dissemination delay.

To see in detail how the dissemination evolves in time, we
estimate the piece dissemination delay (Fig. 18). We define the
piece dissemination delay as the time required for a particular
piece to be fully disseminated. We consider the dissemination
of a 48MB data divided into 32 pieces of 1.5MB. Each plot in
the figures represents a different data source. We clearly distin-
guish two different behaviors. On the one hand, the random and
the sequential strategies (Fig. 18(c), Fig. 18(d)) achievethe dis-
semination of the first pieces very quickly. Nevertheless, they
spend much more time to disseminate the last pieces. This can
be explained by the lack of piece diversity in the network that
causes useless contact opportunities. On the other hand, Ora-
cle and PACS (Fig. 18(b), Fig. 18(a)) start by spreading various
pieces. This explains the slowness for the first piece to be fully
disseminated. But, because nodes get different pieces, the over-
all dissemination is faster.

9.4. Impact of the data source
Fig. 19 shows the dissemination delay according to the node

that plays the role of the data source. We assume the dissemina-
tion of a 12MB data divided into 2 pieces of 6MB each. When
the strategy fails to disseminate the content before the endof
the trace, the dissemination delay is set to -1. The strategies
dissemination success depends on the data source. Indeed, for
some data sources (for example, nodes 26 and 50), the dissemi-
nation fails regardless the strategy. Moreover, we observesome
data sources that achieve the dissemination for some strategies
and fail for the others (for example, nodes 44 and 47). This lat-
ter observation highlights the fact that the piece selection strat-
egy remains important even when the number of pieces is small
(here, there are only 2 pieces). Furthermore, we notice that
PACS has the same delivery ratio as Oracle and outperforms
the random and sequential strategies by more than 13%.

We further investigate the dissemination failures. Fig. 20
shows the node infection delay according to data source’s iden-
tifier. We consider three particular data sources: 26, 44, and 47.
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(b) Oracle.
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(c) Random.
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Figure 18: Piece dissemination delay. Dissemination of a 48MB data divided
on 32 pieces of 1.5MB. Nodes move based on RollerNet trace.
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Figure 19: Dissemination delay according to the data sourceID. Dissemination
of a 12MB data divided on 2 pieces of 6MB. A dissemination delay equals to
-1 means that the strategy fails to disseminate the content.λ is the complete
delivery rate. Nodes move based on RollerNet trace.

When node 26 is the data source, no strategy completes the dis-
semination (this represents 8% of the points in Fig 19). In this
case, the infection of the first node in the network comes very
late comparing to the common case represented by the source
node 7 (Fig 20(a)). Nevertheless, even if the disseminationis
not achieved for all strategies, the node infection delay isfaster
in PACS comparing to the random and sequential strategies. In-
deed, with PACS, 95% of nodes are infected at the time 7,135
of the trace whereas the same rate is reached by the random and
sequential strategies at time 8,810. When node 44 is the source,
PACS and Oracle complete the dissemination while the random
and sequential strategies fail (represents 14.5% of the points in
Fig 19). Here, the random and sequential strategies infect only
82% nodes when PACS achieves full dissemination. Finally,
when node 47 is the source, random and sequential strategies
achieve the dissemination while Oracle and PACS fail (repre-
sents 1.6% of the points in Fig. 19). In this case, PACS infects
98% of the nodes at time 6,681 and fails to infect the last node
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(b) Source 26.

 0.01

 0.1

 1

 0  2250  4500  6750  9000

C
C

D
F

 in
fe

ct
ed

 u
se

rs

Time (seconds)

PACS
Oracle

Random
Seq

(c) Source 44.
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(d) Source 47.

Figure 20: Node infection delay according to data source ID.Dissemination
of a 12MB data divided on 2 pieces of 6MB. Nodes move based on RollerNet
trace.

even if it still remains 30% of the total time. We find that the
last non-infected node becomes isolated at this moment. This is
due to the random selection of the neighbor with whom pieces
are exchanged.

10. Conclusion and open issues

In this paper, we investigate challenges of large content dis-
semination in opportunistic networks. First, we observe that
fragmentation reduces the dissemination delay and even en-
ables the dissemination of contents that could not be dissem-
inated otherwise. Second, we address the piece size selection
problem and show that, for reasonable header size, the piece
size can in general be selected from a large range of values
without significant impact on the results. Finally, we proposed,
designed, and evaluated PACS, an efficient strategy to dissem-
inate large contents in opportunistic networks. PACS selects
pieces to disseminate based on a local view of their dissemi-
nation progress in the network. We evaluate PACS using both
mobility models and real-world trace simulations. Thanks to
higher heterogeneity when distributing pieces, PACS achieves
better dissemination delays and faster node infection thanthe
sequential and random strategies.

Future directions include a number of open issues. A first
question is the impact of the selected neighbor, i.e., how tobet-
ter select the relaying node when having several simultaneous
contact opportunities. Results from Section 9 indicate that the
random selection of the relaying nodes can lead to situations
where the last non-infected node becomes isolated. A more so-
phisticated relay selection strategy could avoid such a scenario
by infecting nodes likely to be isolated first. Second, we could
extend the population of users to the case of multiple groupsof
various interests. In this case, extending the algorithm with a
caching policy could be a good solution [29, 30]. Finally, we
also intend to extend PACS with networking coding capabili-
ties.
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[28] A. Keränen, J. Ott, T. Kärkkäinen, The ONE Simulatorfor DTN Pro-

tocol Evaluation, in: International Conference on Simulation Tools and
Techniques, Rome, Italy.

[29] L. Yin, G. Cao, Supporting cooperative caching in Ad Hocnetworks,
IEEE Transactions on Mobile Computing 5 (2006) 77–89.

[30] M. Fiore, F. Mininni, C. Casetti, C. Chiasserini, To Cache or Not To
Cache?, in: IEEE Infocom, Rio de Janeiro, Brazil.

13


