IEEE ICC 2015 - Communication and Information Systems Security Symposium

Providing Elasticity to Intrusion Detection Systems
in Virtualized Software Defined Networks

Martin Andreoni Lopez, Otto Carlos M. B. Duarte
Universidade Federal do Rio de Janeiro - UFRJ
GTA/COPPE/UFRIJ - Rio de Janeiro, Brazil
Email: {martin, otto}@gta.ufrj.br

Abstract—This paper presents BroFlow, an Intrusion De-
tection and Prevention System based on Bro traffic analyzer,
and on the global network-view feature of OpenFlow Applica-
tion Programming Interface. BroFlow main contributions are:
i) dynamic and elastic resource provision of machines under
demand; ii) real-time detection of DoS attacks through simple
algorithms implemented in a policy language for network events;
iii) immediate reaction to DoS attacks and malicious packets,
dropping flows close from their source; iv) strategic sensor
positioning for attack detection in the network infrastructure
shared by multi-tenants. A system prototype was developed and
evaluated in the virtual environment Future Testbed Internet with
Security (FITS). An evaluation of the system under attack shows
that BroFlow guarantees the forwarding of legitimate packets
at the maximal link rate, up to 90% reduction of the maximal
network delay caused by the attack, and 50% of bandwidth gain
compared with conventional firewalls approaches, even when the
attackers are legitimate tenants acting in collusion.

I. INTRODUCTION

Most of current cyber-attacks are originated by legitimate
and authenticated internal users [1], thus, conventional security
methods, such as firewall and access control mechanisms
are totally inefficient. Therefore, the Intrusion Detection and
Prevention System (IDPS) are mandatory to complement con-
ventional security methods, protecting the system from either
internal or external attacks [2]. Denial of Service (DoS) at-
tacks consume big amounts of resources, hampering legitimate
users achieve the appropriate quality of service (QoS) for
their applications. DoS may even disrupt services, generating
millions of dollar losses [3]. One kind of DoS attack, the SYN
flooding, exploits the three handshake procedure vulnerability
of TCP, keeping multiple open connections at the same time,
consuming server resources. Another kind, the Distributed
Denial of Service (DDoS) attacks are composed of thousands
of bots which coordinate successful attacks with few packets
per bot. The detection of a flooding attack formed by the sum
of multiple distributed flows occurs close to the destination,
hindering the blocking of the attack close to the source.

Software Defined Networking (SDN) paradigm separates
the network operation into a logically centralized control plane
and a distributed data plane, which provides programmability
and global network view that allows a better security man-
agement. OpenFlow (OF) [4], an Application Programming
Interface (API), is the most successful SDN implementation.
OpenFlow provides a basic instruction set to modify, route,
and block flows on the network. Consequently, it is possible
to create security applications that promptly react against
attacks, taking actions on network flows. Nevertheless, security
concerns arise due to OpenFlow centralization [5].

978-1-4673-6432-4/15/$31.00 ©2015 |IEEE

7120

In this paper we propose BroFlow, an elastic and distributed
IDPS for defense against DoS attacks in virtualized Software
Defined Networks. BroFlow is based on the OpenFlow [4]
API and on the network traffic analyzer Bro [2]. BroFlow
implements different anomaly detection algorithms against
flooding DoS attacks. The BroFlow traffic sensors commu-
nicate through secure channels with an application in the POX
Network Controller and thus, it performs the countermeasures
to block DoS attacks. According to the system load, BroFlow
adds or reduces physical resources on the fly. BroFlow uses
Bro traffic analyzer and its policy language for network events
making it easy to program. Unlike most current intrusion
detection systems, BroFlow allows a prompt reaction to block
DoS attacks, due to the OpenFlow features. BroFlow reacts
directly into routing and forwarding of flows on the network
and, hence, eliminates the malicious flows close to its source.

A BroFlow system prototype is implemented and evaluated
into the Future Internet Testbed with Security (FITS), which is
experimentation platform based on virtualization techniques.
The results show the elasticity of the proposal to provide
machines under a high packet rate flooding attack. The system
shows a high efficiency to react under flooding attacks, re-
ducing network delay up to 90%, guaranteeing proper packet
forwarding with the maximal link rate up to 50% compare
with conventional firewalls approaches.

The remainder of this paper is organized as follow. In
Section II we describe related work. We detail the BroFlow
architecture in Section III. Experimental results are shown in
Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

Software Defined Networking (SDN) provides a global
view of the network to an intelligent and logically central-
ized controller, which simplifies network management. The
OpenFlow API provides SDN capabilities to the network
which allows the dynamic control of flows. This feature grants
OpenFlow a suitable use for network security applications,
such as SDN firewall [6] or anomaly detection [7], [8], being
effective for detection and reaction of security threats.

Porras et al. [9] propose FortNOX, a special OpenFlow
controller to ensure coherency of flow rule settings. As several
applications run on the OpenFlow network controller, an appli-
cation may configure flow rules which conflict with rules set
by another application. As a solution, it is proposed a security
extension in the NOX-OpenFlow controllers. In this extension,
each application has its own policies with different priority.
When applied in the controller flows, policies generated by

IEEE ICC 2015 - Communication and Information Systems Security Symposium

security applications are prioritized. This solution, however,
rejects non security applications rules in the Network Con-
troller (NC). Hu et al. [6] design a firewall SDN application
which presents a solution to firewall policy violation conflicts
in OpenFlow based networks. Fresco is a similar approach
and deals with OpenFlow rules setting [10]. Our work differs
from Fresco as it provides security for virtual environment with
several Virtual Network for SDNs.

Medhi et al. [8] implement anomaly detection algorithms
into NOX-OpenFlow controller. The proposal inspects only the
first packet of the connections, thus it is effective against port
scanning attacks, which the packet header is only analyzed.
Nevertheless, this approach is inefficient in more sophisticated
attacks, such as worm attacks or virus propagation. Moreover,
as the NC generates flow table entries for each new flow, when
a DDoS attack creates several different flows, it overloads the
NC increasing packet delivery time. Giotis ef al. [7] propose an
OpenFlow-based anomaly detection architecture. sFlow tools
gather flows information,and communicate with an anomaly
detector to identify potential threats. These proposals do not
take into account virtualized multi-tenants environments.

XenFlow [11] prevents DoS attacks from a malicious tenant
of a Virtual Network who share the same physical infrastruc-
ture. XenFlow proposes resources and traffic isolation in an
OpenFlow based network. Eventhough, the isolation feature
of XenFlow is fundamental for preventing DoS attacks that
consumes shared resources, it is not effective for preventing
flooding DoS attacks in a Virtual Network. DoS attacks into
SDN are studied by Lim et al. [12] presenting a botnet
DDoS detection scheme in OpenFlow networks. This proposal
overloads the NC during the attack detection process.

SnortFlow [13] consists in an IDPS based on the Snort tool,
which is an open source IDS based on signature detection,
and OpenFlow API. The Snort Agent is localized into the
management domain on the XEN hypervisor. This proposal
lacks communication between the single Snort Agent and the
Network Controller. Moreover, this work only evaluates the
performance of the agent localization in the XEN hypervisor.
The agent localization only in the management domain causes
a coarse-grained rule implementation for each Virtual Network.
Furthermore, the Snort tool only utilizes the signature detection
method lacking the anomaly detection, which generates high
false positive rate under small attacks variations.

III. THE PROPOSED SYSTEM

BroFlow employs a software programmable switch, Open
vSwitch (OVS)', used as an OpenFlow switch. OVS presents
a forwarding table which could be updated by an OpenFlow
controller, it also offers several features, such as packets drop-
ping, packet-header fields modifying, etc. The POX Network
Controller (NC) configures and controls OpenFlow switches.
We choose POX controller among others due to its pro-
gramming simplicity and a fair trade-off between prototyping
time and performance. Besides, our POX-based prototype,
BroFlow application is easily portable to other controllers,
even distributed ones [14]. Our system architecture consid-
ers a hybrid network virtualized environment, composed by
XEN Virtual Machines running over an OpenFlow switching

Thttp://openvswitch.org/

7121

matrix. In these virtualization environments, the VMs are
connected through OpenFlow switches, implemented by the
programmable Open vSwitch (OVS).

BroFlow sensors are spread in the networks, then sensor
localization results into an optimization problem. For attack
detection, it is possible to establish a reduced number of sen-
sors instead of placing sensors in every switch. This advantage
is granted by combining Bro tool with the network global
view provided by OpenFlow. We choose the Bro open source
network traffic tool analyzer due it high policies description
language, which defines events for the network activities,
represented by a packet abstraction in a higher information
level. With Bro language, the user can define its own policies.
In addition, Bro inspects network traffic in real time, creating
reports and alarms when a security policy is threaten.

A. BroFlow Sensors

Our system owns two types of sensors, the BroFlow Virtual
Network (VN) Sensors and the BroFlow Infrastructure Sensor,
illustrated in Figure 1. Every sensor executes a Bro tool
daemon, with minimal resources consumption. The VN sensor,
which monitors either virtual switches or specific hosts, must
be geographically distributed between the virtual switches.
In each VN Sensor, are established specific and independent
policies for each Virtual Network. This facility provided by
BroFlow is important in a cloud virtualized environment,
because the policy persists even when there is a virtual switch
migration. Once the BroFlow sensor carries all policies, and it
migrate together within the switch. In addition, a daemon mon-
itors system resources consumed both by physical machines
and the virtual machines. In this architecture, the physical
machines could allocate several BroFlow Virtual Network Sen-
sors which send notifications trough a secure communication
channel with the network controller. All BroFlow sensors have
attack detection and alarm-dispatch applications defined by
two modules: Policy and Countermeasure Modules.

The BroFlow Infrastructure Sensor runs parallel to the
Network Controller (NC) in order to protect the Physical
Network (PN). An example of an infrastructure threat is the
ARP flooding attack, known as ARP poisoning. This threat
attacks switches with ARP packets to overload the routing
tables with fake MAC addresses, causing a memory DoS of
infrastructure switches. The Infrastructure Sensor detects and
prevents these types of attacks, protecting the PN and the
hosted VN. Furthermore, BroFlow Application, executed into
the Network Controller, manages the alarms and countermea-
sures. The captured packets are sent to the event engine which,
verifies, orders and converts them into events. Then, these
events are sent to the policy interpreter. The event engine
and the policy interpreter belong to the original Bro traffic
analyzer tool. The BroFlow Policy Module decides which
events generated by Bro represent an attack, and in that case,
which action the BroFlow Application must take.

1) BroFlow Policy: Security Policies are composed by
two modules: Network Event Inspection (NEI) and Attack
Detection (AD). The NEI Module analyses in real time relevant
information, provided by Bro tool, about the established flows
during packet reception. All DoS attack detection policies are
written in Bro language, and consist of: TCP-SYN, ICMP,

IEEE ICC 2015 - Communication and Information Systems Security Symposium

|VirtLﬁ|’NEwﬁR 1

1 | <eccccce-- Countermeasure Message

| | ~«—— Statistics Resources Message

Virtual Vvirtual Vvirtual Vvirtual
|| _machine 1 Machine 2 Machine n switch
BroFlow Virtual i‘
. Network Sensor| "'*
Applications Applications Applications |

| Applications i
L |-:

(Physical Machine with Network Controller

pecccccccccad

Physical Machine n

Physical Machine 1

H

H

BroFlow
Infrastructure

Sensor

Applications

H roFlow Infrastructure
1o :BroFIow Sensor
................ POX App=it- BroFlow
Countermeasures

Resource
Monitoring
Daemon

POX- BroFlow Policies
OpenFlow :

Controller

Figure 1.

BroFlow system Architecture. Sensors analyses network traffic to protect the physical infrastructure and virtual networks from attacks. All sensors

communicate with the BroFlow Application thought secure channels. Inspection modules provide elastic resources on demand.

and UDP. Thus, every time a packet related with these events
is detected by NEI module, the AD module is invoked. The
AD module implements algorithms, abstracted into policies of
Bro language. In this paper we exemplify the use of Bro with
two detection algorithms for packet flooding attack: ramp and
adaptive thresholds [3]. Ramp algorithm sums packets during a
specific period and raises an alarm when a threshold is reached.
Adaptive threshold aims to decrease the false positive due to
“flash crowds”, that quickly exceeded the mean value. The
algorithm detects variations in traffic statistics, based on traffic
measures in consecutive T time intervals. Every time that a
threshold is exceeded, a counter k is incremented. A counter
bigger than one indicates a threshold exceeding for consecutive
time intervals, featuring an anomaly considered as an attack.

B. BroFlow Countermeasures

The countermeasure module performs the communication
with the BroFlow Application in the POX OpenFlow Net-
work Controller (NC). This module, translates the information
generated by the BroFlow Sensors and forwards the alarms
messages to the BroFlow Application. When an attack is
detected by the policy module it sends an alarm message
to the OpenFlow Controller. We establish a Secure Socket
Layer (SSL) channel in dedicated network interfaces, ensuring
authenticated and encrypted communication. The messages are
JSON formatted and include flows information, IP addresses
and ports, source and destination, the destination MAC address
and the countermeasure to be taken. These fields are all infor-
mation that Bro traffic analyzer tool obtains from a monitored
packet. As these fields do not composes an OpenFlow (OF)
complete flow, OF fills the other fields with wild-cards values.
Although this definition installs general flows in switches, the
use of wild-card fields do not generate ambiguity, as long as
a TCP connection is normally defined by four specific fields:
source and destination addresses, source and destination ports.
Thus, as the four fields that identify the TCP connection are
well defined, there is not ambiguity in the suspicious flows.

C. BroFlow Application

BroFlow application runs on the top of POX-OpenFlow
Network Controller. This application receives alarms derived
from several BroFlow sensors and executes the required coun-
termeasures to answer those alarms. Thereby, when an alarm
message is received from sensors countermeasure module, the

7122

BroFlow Application verifies in its table which flow match the
alarm message content. After that, the application indicates
the network controller the countermeasure to be taken in all
network switches. In our prototype, the countermeasures are
corresponding OpenFlow action: drop for packet dropping and
output to forwarding the packet to a specific switch port.
Therefore, with these two OpenFlow actions over the network
switches, we defined countermeasures to block a specific flow
or set of flows, and to deviate a flow to another host, in order
to avoid the DoS attacks. All the countermeasures are applied
under a quarantine regime. Every time a countermeasure is
applied in the switches, a timer is activated. When a timer
bursts, the countermeasure is cleaned and all the analyses are
established again. Hence, it is possible to detect if the attack
finishes, ceasing to use system resources.

1) Flow management Module: Bro tool machine can re-
mains overloaded with a high packet rate of a flooding
DoS attack. As a consequence, our system can deviate the
malicious flows to be analyzed in several parallel machines.
We create a module into the BroFlow Application in the
Network Controller, responsible for flow distribution between
BroFlow Sensors. For packet mirroring between the BroFlow
Sensors, we use Generic Routing Encapsulation (GRE) tunnel.
Although GRE increases the total amount of data in the
network, this approach alleviates inspection loads in each in-
dividual physical machine. The packet inspection is done after
the decapsulation, assuring packet integrity. This mirroring
method allows to place BroFlow Sensors into different Virtual
Networks hosted on different Physical Machines. Therefore,
the flows distribution takes into account the system resources
availability in each virtual machine; and the packet source.
A flow of a new source is allocated in the lowest processing
machine, and flows from the same source are allocated together
in the same machine preventing attacks of going unnoticed.

2) Resources Management Module: Located in the privi-
leged domain, called Domain 0, of every Physical Machines
(PM) in the network, this module monitors system resources
such as bandwidth, processing and memory of each PMs.
Resources monitoring is performed by XEN data gathering,
through the libvirt library running as a daemon. Statistics of all
PMs are aggregated in the Network Controller (NC). Thereby,
the NC has information about the resources availability of each
analyzed machine. In case of an overload, this module analyzes
the available resources in the physical machines and decides

IEEE ICC 2015 - Communication and Information Systems Security Symposium

where to instantiate a new BroFlow Sensor. Likewise, all PM
containing BroFlow Sensors are analyzed together, in order
to detect when a flow redistribution is possible, allowing to
deactivate a machine, ensuring the elasticity of the proposal.

IV. RESULTS

We developed a prototype in Future Internet Testbed with
Security* (FITS), an interuniversity testbed for Future Internet
proposals. FITS consist of spreads nodes between Brazilian
and European institutions to develop experimentation in new
generation networks. FITS is based in the XEN and OpenFlow
(OF) mechanisms to provide a pluralist architecture, allowing
a coexistence of parallel multiples networks running different
applications. In FITS [15] the control plane executes in the
XEN VMs and the packet forwarding is performed by OF.

A. Countermeasure Evaluation

The first experiment analyzes TCP-SYN packet flooding
DoS attack in VN hosted by physical switches. The considered
scenario is constituted by a physical switch hosting four
virtual switches belonging to four different VN. Every Virtual
Machine, corresponds to a virtual switch, runs a BroFlow
sensor, which analyzes the traffic of its network. In addition,
an Infrastructure Sensor is installed in the physical router.

Figure 2 shows the experiment with three attackers sending
SYN packets at different rates, 45, 50, 55 packets per seconds.
It was defined, as a test criterion the threshold in 100 SYN
packets per second which represents the maximal SYN packet
rate allowed in each network, then the threshold in each VN is
never passed. Nonetheless, as the tenants act in collusion, the
maximal established threshold is exceeded more than 50%. It is
because the connection aggregated rate per second of the VNs
is totally forwarded the physical switch that hosts these VNs.
Thus, the threshold established in the VN is not extrapolated
individually, but the aggregated threshold is considered an
attack for the Infrastructure Sensor. At the detection moment,
approximately at 40 seconds, an alarm message is generated
by BroFlow sensor located at the physical switch. This value
allows the implementation of the adaptive threshold algorithm
to avoid flash crowds. This algorithm increment a counter £,
when the mean rate value of the previous 7' time interval of
10 seconds is exceeded. Then, if the average packet rate is
exceeded only one time, the countermeasure is not launched,
assuming a false positive, but if the average rate is exceeded
four times consecutively, the alarm is sent to the BroFlow
application. Hence, from the Infrastructure Sensor viewpoint,
there is a DoS Attack to the physical infrastructure. The
adaptive threshold values adopted are: estimated average per
interval p; = 100; exponentially-weighted moving average
(EWMA) factor = 0.98; amplitude factor « = 0.5; time
interval 7" = 10 seconds; successive threshold violation k = 4,
being the same values adopted by Siris and Papagalou [3].

The next experiment analyzes the selective block effect,
when a flow is considered malicious over others flows in the
network. Figure 3 indicates the moment when an attack is
blocked, and the legitimate flow is not affected. When an intru-
sion is detected, the Intrusion Detection Module sends an alert
to the network controller which updates its flow table, blocking

Zhttp://www.gta.ufrj.br/fits.

7123

@ 150f ————— '

% W\ Detection

S Infrastructure Switch and

8 Countermeasure

o 100F 1

5]

S Attacker 1 Attacker 2

o Packets

€ Block

»n Attacker 3 . Effect |

10 20 30 40 50 60

Time(s)

Figure 2. Infrastructure threat detection. Three attackers acting in collusion,
detected by Infrastructure Sensor around 40 seconds.

the malicious flows in all OpenFlow Switches. Detection
occurs approximately at 20 seconds, and the countermeasure
is applied under a quarantine regime. After 15 seconds, the
quarantine finished, avoiding system idle resources. If the
attack is still occurring the countermeasure is reapplied.

1200 r x x .
. Detection and Countermeasure
2 1000}
g
S 800 .
a Malicious
) L Flow
2 600
= SEEEE SEOECPOPETTEPEPERERLE
2 400+ \ Quarentine
2 Legitimate Effect
S 200} Flow / \
0
0 10 20 30 40 50 60
Time (s)
Figure 3. Selective flow block and countermeasure quarantine effect. Once

an attack is detected, around 20 seconds, the flow is blocked and 15 seconds
later the flow is permitted, avoiding idle resources.

The SDN network global view, allows a DoS attack to be
blocked close to its source. This behavior is evaluated with
three virtual switches working in one physical machine. The
attacker performs an UDP flood at different rates, from 0
to 500 Mb/s, to a victim at two-hop distance. At the same
time, a legitimate VM, which shares the link with the attacker,
performs a TCP bandwidth measurement. We implement one
BroFlow Sensor in the last virtual switch close to the victim.
We compare our solution with iptables and with the system
without any defense. Figure 4 shows that reception of TCP
packets without defense at 500 Mb/s is lost, because UDP
attack fills all link capacity. An improvement is reached with
iptables, whereas it blocks the malicious flow in the last hop.
Nevertheless, with BroFlow leveraging the SDN global view,
once the sensor detects the attack it blocks the malicious flow
in all virtual switches, even in the closest switch to the source.
As Figure 4 shows, the fall between 0 and 50 Mb/s, in case
of BroFlow, it is due to the time taken to detect an attack. All
the experiments performed are presented with average value
and a confidence interval of 95%.

Figure 5 shows the BroFlow performance evaluation un-
der a flooding attack. Figure 5(b) shows either the overload

IEEE ICC 2015 - Communication and Information Systems Security Symposium

1400
- 1200
= 1000 BroFlow
< =,
S 800f R iptables
E 600}
o 400 .
O No Defense =..
= 200 e

G0 100 200 300 400 500
Attack UDP rate (Mb/s)
Figure 4. BroFlow compared with the iptables and with the system with

no defense under a UDP flood attack at different rates. A gain of 50% is
obtained by the BroFlow, where a global countermeasure is applied in all
switches blocking malicious flow close to its source.

10 121
No @ BroFlow g NI?I BroFlow
re) rorFlow
_ BroFIow\ g 100 /
£10° BroFlow 2 8 No
° g BroFlow
E B 60]
Eo S
210 = 40
= BroFlow_ No]
BroFlow < 20|
o
10 No Attack Under Attack No Attack Under Attack
(a) Network average delay. (b) Packet forwarding comparison.
Figure 5. BroFlow performance evaluation under and without attack. a)

Network average delay is reduced up to 90% under attack scenario, time in
logarithm scale. b) Packet forwarding rate of the system is minimum affected
under attack with BroFlow.

introduced by BroFlow as well as its efficiency blocking a
DoS attack. Figure 5(a) compares the average packet for-
warding delays with and without an attack. The delay added
by BroFlow is insignificant when there is no attack. On the
other hand, BroFlow decreases the average delay due to the
packet dropping under attack. Figure 5(b) shows the packet
forwarding rate. BroFlow practically does not overload the
system without attack, reaching the maximal rate of 100 Mb/s.
During the DoS attack, the forwarding rate falls 50% of
the maximal rate, while the maximal average keeps almost
unaffected with the BroFlow system.

B. Evaluation of Resources Consumed by Bro

IDPSs analyze in real time all mirrored traffic, and thus,
it overloads the IDPS machine. Hence, we evaluate consumed

@100 <100
°‘C’ gol Stand-Alone pre Cluster

S 1 core kot 2 cores

2 g Cluster < 90

% 1 core S N

€ 40 Cluster 3 80 uster
S ; a 1 core
o 2 cores_; @

o S ’ 8 70 Stand-Alone
© a 1 core

(=}

1000 2000 3000 4000 5000

Rate (Packets/s)

1000 2000 3000 4000 5000

Rate (Packets/s)

(a) Bro tool process consumption (b) Analyzed packet by Bro tool com-
comparison. parison.

Figure 6. CPU consumption and analyzed packet comparison. Bro traffic
analyzer tool running in stand-alone and cluster with one and two cores
configuration.

7124

resources of the Bro traffic analyzer tool to determine which
aspect bandwidth or processing is the most critical for the
system when a DoS attack takes place. It is important to
highlight that the processing required for the analysis machine
depends on the security policy and the threat types. Deep
Packet Inspection (DPI) technique demands a considerable
amount of processing. We generated increasing packet rates,
and we analyzed the amount of CPU spent by the machine
and the perceptual of analyzed packets by Bro.

Bro natively executes as single-threading, using only one
CPU core [2]. Within Bro evolves, it executes as multi-
threading, using several CPU cores, with the use of cluster
technique and the help of the PF_RING library instead of
the 1ibpcap [2]. We evaluate the use of both technologies
under a DoS attack. In the conventional configuration, called
stand-alone, the Virtual Machine (VM) is configured to have
access only to one core, avoiding idle resources. In cluster
configuration it was performed an execution with only one core
and with two cores. Figure 6(a) shows cluster configuration
running two cores. Bro simulates a cluster but still uses single-
thread technique in each processor.

Figure 6(a) shows Bro CPU consumption in a VM. In
stand-alone configuration the system saturates using all CPU
resources. Thus, after 4000 packets per second, CPU consump-
tion reaches 100%. Notwithstanding, for the same packet rate,
in one core cluster configuration, the system stays behind this
limit and with two cores configuration. In this configuration,
CPU consumption increase was almost negligible under the
maximal tested rate of 5000 packets per second. Figure 6(b)
shows the difference between sent and received packets ana-
lyzed. Comparing these values with the ones in Figure 6(a),
we observe that analyzed packets suffer a decrease when CPU
consumption is maximum, this effect is notorious with one
core stand-alone configuration, reaching to analyses at most
only 70% of the packet under the maximal tested rate of
5000 packets per second. The results show an improvement
when one core cluster configuration is used, under the maximal
tested rate of 5000 packets per second, in which approximately
80% of packets are analyzed. Nevertheless, in two-cores cluster
configuration, under the same rate, there is no packets dropped.

C. Elasticity Under Attack

For this experiment, we generated constant packet rates
that are inspected by an only active virtual machine. Then we
create a new flow in order to overload the inspection module
in the BroFlow Sensor machine. When the daemon running
on the PM detects the overload, it sends a message to the
Network Controller (NC). In this experiment, the overload is
considered the CPU consumption of the machine where Bro
is executed. Whereas the NC receives the overload message,
it executes the balancer algorithm to decide if a new BroFlow
sensor machine must be instantiated. After the new machine
activation, the flows are redistributed taken into account its
origin and the resources available in the sensors machines.

Figure 7 shows when second flow starts, it overloads the
BroFlow Sensor machine, approximately at 30 seconds. Once
an overload is detected, there is a time interval to the new
machine instantiation, until all flows are redistributed. Then,
after the flow load balance, all the packets are being analyzed

IEEE ICC 2015 - Communication and Information Systems Security Symposium

10k

o
S

Flows = Overload”"!
ad VM1 {Redistribution L | VM1 etection
2% _yme2 b 58 —vm2 P
2 6K 3 g '
5] ; > 60
) (]
g 5 40
2K 5
20

0 10 20 30

0 10 20 30 40 50
Time (s) i

(a) Packet rate received by BroFlow (b) CPU consumption of BroFlow
Sensors in an overload scenario. Sensors in an overload scenario.

Figure 7. Analysis of the CPU consumption and Packet reception of the
BroFlow Sensor machines in an overload scenario.

VM 1
—VM2

- VM 1 Flow
— VM2 end

2]

=
o
1

Rate (Packets/s)
s
=

CPU Consumption (%)
[o2]
o

®
o

-------- — CPU
Flows Balancing
o Redistributio 40|
Unload _—"
20] Detection
GO 10 20 30 40 0 10 20 30 40

Time (s) Time (s)

(a) Packet rate received by BroFlow (b) CPU consumption of BroFlow
Sensors in an unload scenario. Sensors in an unload scenario.

Figure 8. Analysis of the CPU consumption and Packet reception of the
BroFlow Sensors in an unload scenario.

without overloading the BroFlow Sensor. This test performs
a temporal analysis of the machines in overload case. Two
flows are initiated in one machine, Figure 7(a), causing a CPU
overload as shown in Figure 7(b). To avoid the overload a
new machine is instantiated and all the flows are redistributed,
balancing the CPU consumption. In contrast, we evaluate the
system on the opposite scenario, when the system is unloaded.
The consumed resources are constantly analyzed and informed
to the NC in order to redistribute flows with the goal to
deactivate BroFlow Sensors, in order to avoid idle resources.

Figure 8 shows the temporal analysis of the BroFlow
Sensors in a unload scenario, the test begin with two Virtual
Machines receiving packets in a constant rate. After some
time, one of these flows is deactivated, causing a noticeable
decrease in the CPU consumption of one BroFlow Sensors.
‘When unload is detected, the NC redistribute the flows, so the
machine with the lowest CPU consumption will not receive
any flows, and thus can be deactivated. Two machines are
inspecting packets when one flow is over, Figure 8(a). Then,
the NC analyze the CPU consumption of the two machines,
Figure 8(b), redistributing flows in order to deactivate a Sensor.

V. CONCLUSION AND FUTURE WORK

In this paper we presented BroFlow, an Intrusion Detection
and Prevention System (IDPS) for Denial of Service (DoS)
attacks in virtualized Software Defined Networks (SDN).
BroFlow joins the simplicity of policy elaboration of Bro tool
with the network global view and control agility provided
by OpenFlow. BroFlow contributions are evidenced with a
prototype implementation running over FITS platform. Upon
elasticity techniques, several BroFlow Sensors can be instan-
tiated dynamically in case of overload, taking into account
system resources. Moreover, sensors can be deactivated in case

7125

of unload. Therefore, the architecture provides resources ac-
cording to demand. The prototype shows a good performance
reacting to different DoS attacks, reducing up to 90% the
network delay caused by the attack. Trough simple detection
algorithms, the system blocks packets close the source attack,
allowing the network availability in more than 50% compared
with conventional firewalls approaches. As future work, we
will correlate different BroFlow sensors alarms, taking into
the account the rules establishment into switches.

ACKNOWLEDGMENT

This work was supported by CNPq, CAPES, and FAPERJ.
We also thank Antonio Lobato and Ulisses Figueredo for their
significant contributions to obtain the results.

REFERENCES

[1] D. M. Lynch, “Securing against insider attacks,” Information Systems
Security, vol. 15, no. 5, pp. 3947, 2006.

[2] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in IEEE Symposium
on Security and Privacy, May 2010, pp. 305-316.

[3] V. A. Siris and F. Papagalou, “Application of anomaly detection algo-
rithms for detecting SYN flooding attacks,” Computer communications,
vol. 29, pp. 1433-1442, May 2006.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Computer Communication, vol. 38,
pp. 69-74, Apr. 2008.

[5] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and
dependable Software Defined Networks,” in Proceedings of the second
workshop on Hot Topics in SDN. ACM, Aug. 2013, pp. 55-60.

[6] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FLOWGUARD: building
robust firewalls for Software-Defined Networks,” in Proceedings of the
third workshop on Hot topics in SDN. ACM, Aug. 2014, pp. 97-102.

[71 K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, “Combining OpenFlow and sFlow for an effective and
scalable anomaly detection and mitigation mechanism on SDN envi-
ronments ,” Computer Networks, vol. 62, pp. 122 — 136, Apr. 2014.

[8] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly
detection using software defined networking,” in Recent Advances in
Intrusion Detection. Springer, Sep. 2011, pp. 161-180.

[9] P Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for OpenFlow networks,” in Proceedings
of the first workshop on Hot topics in SDN. ACM, aug 2012, pp.
121-126.

[10] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson,
“FRESCO: Modular composable security services for Software-Defined
Networks,” in Proceedings of Network and Distributed Security Sym-
posium, Feb. 2013.

[11] D.M.F. Mattos and O. C. M. B. Duarte, “XenFlow: Seamless migration
primitive and Quality of Service for virtual networks,” IEEE Global
Communications Conference - GLOBECOM, Dec. 2014.

[12] S. Lim, J. Ha, H. Kim, Y. Kim, and S. Yang, “A SDN-oriented
DDoS blocking scheme for botnet-based attacks,” in Sixth International
Conferece on Ubiquitous and Future Networks, Jul. 2014, pp. 63-68.

[13] T. Xing, D. Huang, L. Xu, C.-J. Chung, and P. Khatkar, “SnortFlow: A
OpenFlow-based intrusion prevention system in cloud environment,” in
2nd GENI Research and Educational Experiment Workshop, Oct. 2013,
pp. 89-92.

[14] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama ef al., “Onix: a distributed
control platform for large-scale production networks,” in Proceedings
of the 9th USENIX conference on Operating systems design and
implementation. USENIX Association, 2010, pp. 1-6.

[15] I. M. Moraes, D. M. Mattos, L. H. G. Ferraz, M. E. M. Campista, M. G.
Rubinstein, L. H. M. Costa, M. D. de Amorim, P. B. Velloso, O. C.
Duarte, and G. Pujolle, “FITS: A Flexible Virtual Network Testbed
Architecture,” Computer Networks, vol. 63, pp. 221-237, Apr. 2014.

